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a b s t r a c t

This paper is concerned with the consensus control problem for multi-agent systems with agents
characterized by high-order linear continuous-time systems subject to communication delays between
neighbouring nodes in the network. A new consensus protocol is proposed. It requires communication
between neighbouring agents only at certain sampling points, rather than at all times. It is also unique in
the sense that it is nonlinear in the continuous-time domain but linear when the agents are viewed in the
sampled-data domain. Under the proposed consensus protocol, marginally stable multi-agent systems
can reach consensus for any large delay. Unstable multi-agent systems achieve consensus when the time
delay is within a certain range. Moreover, in the single-input case, we give an optimal control gain which
yields the fastest consensus speed. The proposed technique is expected to pave a new way for new
theoretical studies on network properties required for consensus control.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Consensus is a process that a group of agents with different
initial states reach an agreement by local communication be-
tween agents. As a distributed cooperative control of multi-agent
systems, consensus control is closely related to problems such
as flocking (Tanner, Jadbabaie, & Pappas, 2007), formation con-
trol (Fax & Murray, 2004), and network congestion control (Pa-
ganini, Doyle, & Low, 2001). Consensus algorithms also find wide
applications in many disciplines, including smart grid (Mou, Xing,
Lin, & Fu, 2015), sensor networks (Kar & Moura, 2010) and dis-
tributed parameter estimation (Kar, Moura, & Ramanan, 2012).

Consensus control problems have attracted a lot of attention,
see, e.g., Ma and Zhang (2010) and You and Xie (2011a, b).
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Reference Ma & Zhang (2010) considers the consensus control
problem for the following multi-agent system

ẋi(t) = Axi(t) + Bui(t), i = 1, . . . ,N, (1)

where xi(t) ∈ Rn and ui(t) ∈ Rm represent the state and the control
input of the ith agent, respectively; A ∈ Rn×n and B ∈ Rn×m are
constant matrices. The consensus protocol is given by

ui(t) = K
N∑
j=1

aij(xj(t) − xi(t)), i = 1, . . . ,N, (2)

where {aij, i, j = 1, . . . ,N} are elements of the adjacency matrix
and K ∈ Rm×n is a gain matrix. It is shown in Ma and Zhang
(2010) that there exists a gain K such that the multi-agent system
(1) reaches consensus under the protocol (2) if and only if (A, B) is
stabilizable and the network topology has a spanning tree. In this
case, such a K can be constructed by a standard Riccati equation.
It is also pointed out in Ma and Zhang (2010) that the above
results fail to have counterparts in discrete-time linearmulti-agent
systems. A necessary and sufficient consensusability condition for
discrete-timemulti-agent systemswith a single input is presented
in You and Xie (2011b). Besides a controllability requirement, this
condition contains an inequality involving unstable eigenvalues
of A and the ratio λ2/λN (where λ2 and λN are the smallest and
the largest non-zero eigenvalues of the Laplacian matrix for the
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network topology, respectively). The control gain solving consen-
sus is given by modified Riccati inequalities.

Aforementioned works all deal with consensus problems with-
out delay. When delays happen in the information transmis-
sion between neighbours, a commonly used consensus protocol
is

ui(t) = K
N∑
j=1

aij(xj(t − τ ) − xi(t − τ )). (3)

Most works in the literature study consensus control problems
with time delay in the following framework: for a fixed K , seek
an upper bound τ̄ for the delay such that consensus can always
be achieved under protocol (3) for any τ ∈ [0, τ̄ ), see Cepeda-
Gomez (2015), Munz, Papachristodoulou, and Allgower (2010),
Olfati-Saber and Murray (2004) and Xu, Zhang, and Xie (2013).
For example, Olfati-Saber and Murray (2004) considers integrator
dynamics and obtains an exact delay bound (‘exact’ means that the
bound is necessary and sufficient) for the protocol (3) with K = 1
by analysing the roots of certain characteristic equation. Cepeda-
Gomez (2015) investigates high-order multi-agent systems and
characterizes the exact delay bound for general gains by using
the cluster treatment of characteristic roots paradigm. Departing
from these works, Li and Fu (2016), Wang, Zhang, and Fu (2015),
and Zhou and Lin (2014) discuss consensus control problems with
time delay in another framework. They design K to be a function
of delay τ , denoted by K (τ ), such that protocol (3) with K =

K (τ ) renders system consensus when the delay is equal to τ . It
is not a concern whether this control gain works for other values
of delay. Zhou and Lin (2014) focuses on system (1) where all
the eigenvalues of A lie on the imaginary axis. It is shown that
consensus can be achieved for arbitrarily large delay. Allowing A
to have eigenvalues on the open right-half plane, Wang et al.
(2015) give a delay bound belowwhich consensus can be achieved.
However, this bound is presented using the maximal value of a
function, which cannot be solved analytically.

This paper is concerned with the consensus problem for the
multi-agent system (1)with communication delays. Different from
(3), a new consensus protocol is proposed. It requires relative state
and input signals between neighbouring agents only at certain
sampling points, rather than all the time. This means that only
a limited amount of communication is needed between neigh-
bouring agents. Our consensus control gain is delay dependent
like Wang et al. (2015) and Zhou and Lin (2014). The motivation
for designing such a gain is that we hope to deal with larger delay
than using a delay-independent gain as in Xu et al. (2013). The
method of constructing consensus control gains is using modified
Riccati inequalities and is from reference You & Xie (2011b). Our
approach is as follows. First, the consensus problem for discrete-
time multi-agent systems with multi-step communication delay
is studied. It is transformed to a delay-free consensus problem
by the reduction technique (Artstein, 1982). Then, this result is
applied to the problem under consideration via the sampled-data
models. The contribution of this paper includes two aspects. First,
for marginally stable agents (here, ‘‘marginally stable’’ means that
all the eigenvalues of the system are located on the closed left-half
plane), consensus is guaranteed for any large delay. For unstable
agents, consensus is achieved when the delay is below a bound
which depends on the network topology and the agent dynamics.
This bound is shown to be larger than that in Wang et al. (2015)
and Xu et al. (2013) in some cases. Secondly, the influence of
consensus control gains on the consensus speed is investigated and
an optimal gain yielding the fastest consensus speed is provided in
the single-input case.

The rest of the paper is organized as follows. The problem
formulation is given in Section 2. The consensus control problem

for discrete-time multi-agent systems with multi-step delay is
discussed in Section 3. The problem under consideration is solved
in Section 4. Performance analysis of the proposed consensus
protocol is given in Section 5. Numerical examples are provided
in Section 6. Conclusions are presented in Section 7. A useful
proposition is given in the Appendix.

Notations: R denotes the set of real numbers; Rn and Rn×m are the
sets of n-order column vectors and n×m-order matrices with real
elements, respectively. For a complex number c , Re(c), Im(c), |c|,
and c̄ stand for its real part, imaginary part, modular, and con-
jugate, respectively. For a matrix X ∈ Rn×m, X ′ is its transpose.
For a matrix X ∈ Rn×n, ρ(X), tr(X), and λj(X), j = 1, . . . , n,
denote its spectral radius, trace and eigenvalues, respectively. For
a symmetric matrix X , X > 0 means that it is positive definite. For
a positive integer N , N̄ represents the set {1, . . . ,N}; eX represents
the exponential of a matrix.

2. Problem formulation

Let the directed graph G = {V, E,A} denote the commu-
nication topology between multi-agents with the set of vertices
V = {1, 2, . . . ,N} and the set of edges E ⊆ V × V . The ith
vertex represents the ith agent and the edge (i, j) ∈ E denotes that
the agent j receives information from the agent i. Self-edges are
not allowed. The set of neighbours of the ith agent is denoted by
Ni = {j ∈ V|(j, i) ∈ E}. A = [aij] ∈ RN×N is called the weighted
adjacency matrix of G with nonnegative elements and aij > 0 if
and only if j ∈ Ni. The in-degree of the ith vertex and the in-degree
matrix are denoted by di =

∑
j∈Ni

aij andD = diag{d1, d2, . . . , dN},
respectively. The Laplacian matrix L of G is defined by L = D −A.
Note that aij = aji, ∀i, j ∈ V , if and only if G is an undirected
graph (You & Xie, 2011b). Obviously, for an undirected graph, L is
a symmetric, positive semi-definite matrix and all its eigenvalues
λi, i ∈ N̄, are non-negative. For a connected graph having a
spanning tree, we have 0 = λ1 < λ2 ≤ . . . ≤ λN .

The dynamics of each agent is given by (1). Suppose the commu-
nication delay from agent j to agent i is sijτ where sij is a positive
integer and τ is positive and constant. The maximal value of sij is
s̄, i.e., maxi,j∈N̄{sij} = s̄. In this context, the available information
for the controller ui(t) is {xj(s), uj(s) : s ≤ t − sijτ , j ∈ Ni} and
{xi(s), ui(s) : s ≤ t − siiτ }. The aim is to design the controller ui(t)
for each agent i using the above available information such that the
multi-agent system (1) achieves consensus.

Definition 1. The agents in the network achieve consensus if
limt→∞xj(t) − xi(t) = 0, ∀i, j ∈ N̄, for any initial value xi(0).

The following assumptions are made in this paper.

Assumption1. Thenetwork topologyG is anundirected connected
graph.

Assumption 2. All the eigenvalues of A lie in the closed right-half
plane.

Assumption 3. (A, B) is controllable and B has full column rank.

Remark 1. If some eigenvalues of A lie in the open left-half plane,
it is a standard practice to decompose the system (1) into two sub-
systems, one asymptotically stable which requires no consensus
control action, and one with eigenvalues in the closed right-half
plane, which is considered under Assumption 2. Thus, Assump-
tion 2 does not lose generality.
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Remark 2. The assumption that the communication delays are
multiples of a positive number τ and knownby involved agents can
be justified for commonly used medium access control (MAC) pro-
tocols where time stamping is used for data transmission. Namely,
time stamping allows each agent to easily determine the amount
of transmission delay for each received signal, and if the delay is
not an integer multiple of τ , the received signal can be held for
a fractional amount of extra delay to make the delay an integer
multiple.

3. Consensus for discrete-time agents with multi-step delay

In this section, we consider the discrete-time multi-agent sys-
tem

xi(k + 1) = Ãxi(k) + B̃ui(k), i ∈ N̄, (4)

where xi(k) ∈ Rn and ui(k) ∈ Rm are the state and the control input
of agent i, respectively; Ã ∈ Rn×n and B̃ ∈ Rn×m are constant ma-
trices. The network topology is given by the undirected connected
graph G = {V, E,A}. The communication between neighbours is
with delay d ≥ 1. The problem is to design the controller ui(k) for
each agent iusing the information of {xj(s)−xi(s), uj(s), ui(s)}where
s ≤ k − d and j ∈ Ni such that the system (4) achieves consensus.
This problem will be converted into a consensus control problem
without delay using the reduction technique (Artstein, 1982).

Lemma 1. Suppose that
(1) Every eigenvalue of Ã lies on or outside the unit circle and it is

not a root of the polynomial
∑d−1

i=0 z
i;

(2) (Ãd, B̃) is controllable and B̃ has full column rank;
(3) λN−λ2

λN+λ2
< 1∏n

j=1|λj(Ã)|
d .

Then the control protocol

ui(kd + d) = . . . = ui(kd + 2d − 1)

= K
N∑
j=1

aij[xj(kd) − xi(kd)

+

d∑
m=1

Ã−mB̃uj(kd) −

d∑
m=1

Ã−mB̃ui(kd)]

(5)

renders system (4) consensus if the gain matrix K satisfies ρ(Ãd
−

λi
∑d

m=1Ã
−mB̃K ) < 1, i = 2, . . . ,N. One of such K is designed in

the following way: Select a δ such that λN−λ2
λN+λ2

≤ δ < 1∏
i|λi(Ã)|

d ; find a

positive definite solution Q to the inequality

Q − (Ãd)′Q Ãd
+ (1 − δ2)(Ãd)′Q B̃(B̃′Q B̃)−1B̃′Q Ãd > 0;

set K = 2(λ2 + λN )−1(B̃′Q B̃)−1B̃′Q (
∑d−1

i=0 Ã
i)−1Ã2d.

Proof. Consider the system (4)with the control protocol (5). Define
new states zi(k), i ∈ N̄ , as zi(k)

.
= xi(kd)+

∑d
m=1Ã

−mB̃ui(kd+m−1).
Due to ui(kd + d) = ui(kd + d + 1) = · · · = ui(kd + 2d − 1), the
above equation can be rewritten as

zi(k) = xi(kd) +

d∑
m=1

Ã−mB̃ui(kd), (6)

which means that the control protocol (5) is

ui(kd + d) = K
N∑
j=1

aij[zj(k) − zi(k)]. (7)

Direct computation yields

zi(k + 1) = Ãdzi(k) +

d∑
m=1

Ã−mB̃ui(kd + d). (8)

Note that the above multi-agent system with the protocol (7) is
delay free and its consensus problem is solved in You and Xie
(2011a, b). By applying the results in these references, this lemma
can be proven. This ends the proof. □

4. Consensus for continuous-time agents with multiple time
delays

This section will present one of the main results of this paper,
i.e., the designing of control protocols for the consensus control
problem stated in Section 2. Note that notations Ã, B̃, and d in
the previous section will be specified as Ã = eAτ , B̃ =

∫ τ

0 eAsdsB,
and d = s̄, respectively. Before giving the result, we take an extra
assumption about the maximal communication delay.

Assumption 4. Any two distinct eigenvalues of A, denoted by µ1
and µ2, satisfy Im(µ1s̄τ − µ2s̄τ ) ̸= 2qπ, ∀q = ±1, ±2, . . . ,
whenever Re(µ1) = Re(µ2).

Theorem 1. Under Assumptions 1–4, if the maximal time delay s̄τ
satisfies

s̄τ <
1

tr(A)
ln(

λN + λ2

λN − λ2
), (9)

then the multi-agent system (1) can reach consensus under the fol-
lowing control protocol

ui(t), t ∈ [ks̄τ , ks̄τ + s̄τ ),

= K
N∑
j=1

aij[eAτ (sij−s̄)xj(ks̄τ − sijτ ) − eAτ (sii−s̄)

× xi(ks̄τ − siiτ ) +

s̄∑
m=s̄−sij+1

e−AτmB̃uj(ks̄τ

− sijτ ) −

s̄∑
m=s̄−sii+1

e−AτmB̃ui(ks̄τ − siiτ )],

(10)

whenever K satisfies ρ(Ãd
−λi

∑d
m=1Ã

−mB̃K ) < 1, i = 2, . . . ,N. One
of such K can be designed as follows: choose a δ such that λN−λ2

λN+λ2
≤

δ < e−tr(A)s̄τ
; find a positive definite solution Q > 0 to the following

modified algebraic Riccati inequality

Q − eA
′ s̄τQeAs̄τ + (1 − δ2)eA

′ s̄τQB(B′QB)−1B′QeAs̄τ > 0;

set K = 2(λ2 + λN )−1(B′QB)−1B′QV−1eAs̄τ with V =
∑s̄

m=1e
−Amτ∫ τ

0 eAsds.

Proof. Step 1: The conditions of Lemma 1 will be verified.
(1) Any eigenvalue of Ã lies on or outside the unit circle and it

is not a root of the polynomial
∑d−1

i=0 z
i.

Any eigenvalue of Ã can be written as eµτ , where µ is an
eigenvalue of A, and |eµτ

| = eRe(µ)τ . Under Assumption 2, we have
Re(µ) ≥ 0 and thus |eµτ

| ≥ 1. Now we show eµτ is not a root
of the polynomial

∑d−1
i=0 z

i. If µ = 0, then eµτ
= 1, which is

obviously not a root of the polynomial
∑d−1

i=0 z
i. Suppose µ ̸= 0.

If
∑d−1

i=0 (e
µτ )i = 0, then

∑d−1
i=0 (e

µτ )i(eµτ
− 1) = eµτd

− 1 = 0,
which implies Re(µ) = 0, Im(µ) =

2kπ
τd , k = ±1, ±2, . . . . Thus

µ =
√

−1 2kπ
τd . As two different eigenvalues of A, µ and −µ have

the same real part, and satisfy Im(µdτ − (−µdτ )) = 4kπ, which
is contradictable with Assumption 4.



L. Li et al. / Automatica 89 (2018) 144–150 147

(2) (Ãd, B̃) is controllable and B̃ has full column rank.
First, it will be proven that matrices

∫ dτ
0 eAsds and

∫ τ

0 eAsds are
both nonsingular. Denote the Jordan canonical form of A by J .

=

T−1AT . Then∫ dτ

0
eAsds = T

∫ dτ

0
eJsdsT−1. (11)

Since eJs is an upper triangular matrix with diagonal elements
eλj(A)s, j = 1, . . . , n,

∫ dτ
0 eJsds is an upper triangular matrix with

diagonal elements
∫ dτ
0 eλj(A)sds, j = 1, . . . , n. It can be observed

that∫ dτ

0
eλj(A)sds ̸= 0, j = 1, . . . , n. (12)

Actually, if λj(A) = 0,
∫ dτ
0 eλj(A)sds = dτ ̸= 0. If λj(A) ̸= 0, there

holds
∫ dτ
0 eλj(A)sds = (eλj(A)dτ − 1)/λj(A). Suppose

∫ dτ
0 eλj(A)sds = 0,

then eλj(A)dτ = 1. In a manner similar to that of (1), a contradiction
with Assumption 4 is derived. So (12) is true and thus

∫ dτ
0 eJsds is

nonsingular. Similarly, the invertibility of the matrix
∫ τ

0 eAsds can
be shown. Secondly, the discretization system of the continuous-
time systemwith the sample period equal to dτ is (Ãd,

∫ dτ
0 eAsdsB).

According to Michael (1970), Assumption 4 ensures that this dis-
cretization system is controllable. Since

∫ dτ
0 eAsds is invertible and

is commutable with A, (Ãd, B) is also controllable. Similarly, (Ãd, B̃)
is controllable. Because B has full column rank, B̃ =

∫ τ

0 eAsdsB also
has full column rank.

(3) The inequality λN−λ2
λN+λ2

< 1∏n
j=1|λj(Ã)|

d is (9).

Step 2: We will show that the system (1) and the controller (10)
correspond to the system (4) and the controller (5), respectively, by
discretization. Note that ui(t) is constant at the interval [kτ , kτ+τ ).
By defining ũi(k)

.
= ui(kτ ), and x̃i(k)

.
= xi(kτ ), system (1) becomes

x̃i(k + 1) = Ãx̃i(k) + B̃ũi(k), (13)

which is just the system (4). Since ui(t) is constant at the interval
[kdτ , kdτ + dτ ), it is known that ũi(kd + d) = ũi(kd + d + 1) =

· · · = ũi(kd + 2d − 1). Together with (13), it yields that

x̃i(kd) = Ãv−dx̃i(kd + d − v) −

d−v∑
m=1

Ã−mB̃ũi(kd), (14)

where v is any integer in [1, d]. Define assistant variables

zi(k)
.
= x̃i(kd) +

d∑
m=1

Ã−mB̃ũi(kd). (15)

Substituting (14) into (15), it follows that

zi(k) = Ãv−dx̃i(kd + d − v) +

d∑
m=d−v+1

Ã−mB̃ũi(kd). (16)

(10) implies that

ũi(kd + d) = K
N∑
j=1

aij[Ãsij−dx̃j(kd + d − sij)

+

d∑
m=d−sij+1

Ã−mB̃ũj(kd + d − sij)

− Ãsii−dx̃i(kd + d − sii)

−

d∑
m=d−sii+1

Ã−mB̃ũi(kd + d − sii)].

Note that (16) is valid for any v ∈ [1, d]. So the above equation can
be rewritten as

ũi(kd + d) = K
N∑
j=1

aij[zj(k) − zi(k)]. (17)

Together with (15), it yields

ũi(kd + d) = K
N∑
j=1

aij[x̃j(kd) − x̃i(kd)

+

d∑
m=1

Ã−mB̃(ũj(kd) − ũi(kd))].

(18)

Also, the feedbackmatrix K above is the same as the one in the con-
troller (5). Therefore, (10) is just (5). Thus, by applying Lemma1,we
conclude that

lim
k→∞

[x̃i(k) − x̃j(k)] = 0, lim
k→∞

ũi(k) = 0. (19)

Step 3: It remains to show that limt→∞[xi(t)−xj(t)] = 0, ∀i, j ∈

N̄. For any t ≥ 0, there exists a unique integer w(t) such that
t ∈ [w(t)τ , w(t)τ + τ ). Denote g(t) .

= t − w(t)τ . From (1), it
follows that

xi(t) = eAg(t)x̃i(w(t)) +

∫ g(t)

0
eAσdσBũi(w(t)),

which means

xi(t) − xj(t) = eAg(t)[x̃i(w(t)) − x̃j(w(t))]

+

∫ g(t)

0
eAσdσB[ũi(w(t)) − ũj(w(t))].

(20)

Owing to g(t) ∈ [0, τ ), eAg(t) and
∫ g(t)
0 eAσdσ are bounded. Together

with (19), it can be derived that limt→∞[xi(t)−xj(t)] = 0. This ends
the proof. □

Remark 3. Comments on the condition (9) are in order. For
marginally stable agents, A has purely imaginary eigenvalues,
which means that the right hand side of (9) is +∞. That is, con-
sensus can always be achieved for any time delay. If A has strictly
unstable eigenvalues, then the right hand side is a finite positive
number. In this case, (9) gives a good characterization about the
delay bound. More specifically, the delay bound is closely related
to the connectivity (λ2) and synchronizability (λN ) of the network
as well as the growth rate of the agents’ states (tr(A)).

5. Performance analysis of consensus protocols

In this section, we will consider a special case that all the
communication delays between different pairs of agents are the
same, i.e., sij = s̄ = 1. According to Theorem 1, the protocol (10)
where K satisfies ρ(Ã − λiÃ−1B̃K ) < 1, i = 2, . . . ,N renders
the multi-agent system (1) consensus. The convergence speed of
the error states xi(t) − xj(t), i, j ∈ N̄ , determines the consensus
speed. Due to the existence of the delayed inputs in (10), it is
difficult to analyse the asymptotic behaviour of the error states
directly. However, from the proof of Lemma 1 and Theorem 1, it is
known that the closed-loop system of (1) under (10) corresponds
to a delay-free discrete-time system. Nowwewill discuss the error
states by means of this delay-free discrete-time system. Note that

xi(t) − xj(t) = eAg(t)[x̃i(k) − x̃j(k)] +

∫ g(t)

0
eAσdσB

× [ũi(k) − ũj(k)], t ∈ [kτ , kτ + τ ),
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where g(t) = t − kτ , t ∈ [kτ , kτ + τ ), is bounded. From (13), (18),
and (6)–(8), it can be derived that

x̃i(k) − x̃j(k)

= zi(k) − zj(k) − Ã−1B̃K {

N∑
s=1

ais[zs(k − 1)

−zi(k − 1)] −

N∑
s=1

ajs[zs(k − 1) − zj(k − 1)]},

(21)

and ũi(k) = K
∑N

j=1aij[zj(k − 1) − zi(k − 1)], where zi(k), i ∈ N̄,

reaches consensus and obeys the dynamics

zi(k + 1) = Ãzi(k) + Ã−1B̃K
N∑
j=1

aij[zj(k) − zi(k)]. (22)

According to You and Xie (2011b), the consensus speed of the
above dynamics is characterized by the asymptotic convergence
factor r1(K )

.
= maxi=2,...,Nρ(Ã − λiÃ−1B̃K ). Thus the convergence

speed of the error states xi(t)−xj(t), i, j ∈ N̄ is determined by r1(K ).
In summary, among all the matrix gains which render system (1)
consensus, the optimal one that minimizes the above r1(K ) yields
the fastest consensus speed. Together with Proposition 1 in the
Appendix, we can obtain the following result.

Theorem 2. Suppose ui(t) ∈ R and the conditions of Theorem 1
hold. Let the characteristic equation of Ã be fÃ(z) =

∑n
i=0ciz

i

with cn = 1 and Π1 be the unique nonsingular matrix such that
(Π−1

1 ÃΠ1, Π−1
1 B̃) is the controllable canonical form of (Ã, B̃). Denote

R =

(
etr(A)τ (λN−λ2)

λN+λ2

) 1
n

. Then the control gain K ⋆
= K̂Π−1

1 Ã is optimal

in the sense that it yields a faster consensus speed for system (1) under
protocol (10) than other gains, where K̂ =

(
K1 · · · Kn

)
with

Ki+1 =

⎧⎪⎪⎨⎪⎪⎩
cn−iRn−2i(λN − λ2) − ci(λN + λ2)

2λ2λN
, n is even,

−cn−iRn−2i(λN − λ2) − ci(λN + λ2)
2λ2λN

, n is odd,

for i = 0, . . . , n − 1.

6. Numerical examples

6.1. Single-delay case

Consider the multi-agent system (1) with A =

(
0 1

−0.015 0.25

)
,

B =

(
0
1

)
. The network topology is given by 2 1 3 .

Suppose the communication delay is τ , i.e., sij = s̄ = 1. Accord-
ing to (9), the delay bound for consensus under protocol (10) is
τ < 2.7726. On the other hand, Wang et al. (2015) provide the
following delay bound for consensus under protocol (3):

τ <
1

2tr(A)
max
q>0

q[1 −
(λ3 + λ2)2nq2e2q

4λ3λ2
] = 0.3627.

So Wang et al. (2015) cannot dealwith delay τ ∈ [0.3627, 2.7726).
Consider τ = 0.36. First, employing the control protocol (10) with
K ⋆

=
(
1.098 2.2269

)
given in Theorem 2, the trajectories of state

errors between agent 1 and other agents are shown in the solid line
of Fig. 1. Secondly, using protocol (3) with K =

(
0.0207 0.5189

)
given in Wang et al. (2015), the corresponding trajectories of state
errors are shown in the dashed line of Fig. 1, from which it is

(a) components of x2(t) − x1(t).

(b) components of x3(t) − x1(t).

Fig. 1. Comparison between our method and that of Wang et al. (2015).

seen that our method achieves a faster consensus speed than that
of Wang et al. (2015).

6.2. Multiple-delay case

Consider the multi-agent system (1) with A = 1 and B = 1. The
network topology is 2 1 3 . The communication
delays between agents 1 and 2 and between agents 1 and 3 are 2τ
and τ with τ = 0.3, respectively. The trajectories of the state errors
between agent 1 and other agents under the control protocol (10)
with feedback gain K = 2.0192 given in Theorem 1 are derived
in Fig. 2, which verifies that this protocol renders the system (1)
consensus.

7. Conclusions

In this paper, we have proposed a novel and simple technique
for consensus control of a network of continuous-time agents
with communication delays between neighbouring agents. High
order dynamic models are allowed for each agent. Our consensus
algorithm requires communication between neighbouring agents
only at sampling instants, not at all the time. A delay bound be-
low which consensus can be achieved is proposed. For marginally
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Fig. 2. State errors between agent 1 and other agents.

stable agents, this bound is infinite and for unstable agents, it is a
finite number depending on the ratio λ2/λN and the trace of agent
system matrix. Consensus control gains are designed in terms of
a modified Riccati inequality. In the single-input case, an optimal
control gain leading to faster consensus speed than other gains is
presented analytically. Future study can be directed to generalize
the results to time-varying and directed graphs and time-varying
delays.

Appendix. On the fastest consensus speed

To make the following multi-agent system

xi(k + 1) = A xi(k) + Bui(k), i ∈ N̄, k ≥ 0, (A.1)

achieve consensus under the protocol

ui(k) = K
N∑
j=1

aij[xj(k) − xi(k)], (A.2)

in the fastest convergence speed, one needs to find the solution to
the optimization problem

r⋆
= min

K
r(K ), r(K ) = max

i=2,...,N
ρ(A − λiBK ). (A.3)

This problem is studied in Xiao and Boyd (2004) and You and Xie
(2011b) which focus on scalar and two-order multi-agent systems,
respectively. To the best of our knowledge, it has not been solved
for high-order systems. Here, we will give an analytic solution to
this problem for single-input agents. Due to the limitation of paper
length, the result is presented below without proof.

Proposition 1. Suppose all the eigenvalues of A lie on or outside
the unit circle, B ∈ Rn, (A , B) is controllable, and the inequality
λN−λ2
λN+λ2

< 1∏n
j=1|λj(A )| holds. Then one of the optimal solutions to the

optimization problem (A.3) is given by the following K ⋆:

K ⋆ .
= K̂Π−1, K̂ .

=

(
K1 · · · Kn

)
,

Ki+1
.
=

cn−iRn−2i(λN − λ2) − ci(λN + λ2)
2λ2λN

, if c0 > 0,

Ki+1
.
=

−cn−iRn−2i(λN − λ2) − ci(λN + λ2)
2λ2λN

, if c0 < 0.

Therein, the matrix Π is the unique nonsingular matrix such that
(Π−1A Π, Π−1B) is the controllable canonical form of (A , B),
i.e.,

Π−1A Π =

⎛⎜⎜⎜⎜⎝
0 1
...

. . .

0 1

−c0 −c1 · · · −cn−1

⎞⎟⎟⎟⎟⎠ , Π−1B =

⎛⎜⎜⎜⎜⎝
0
...

0

1

⎞⎟⎟⎟⎟⎠ ,

cn is equal to 1, and R is given by

R =

(∏n
j=1|λj(A )|(λN − λ2)

λN + λ2

) 1
n

.

In addition, the associated optimal asymptotic convergence factor is
r⋆

= R.
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