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a b s t r a c t

Studying the stability of the Kalman filter whose measurements are randomly lost has been an active
research topic for over a decade. In this paper we extend the existing results to a far more general setting
inwhich themeasurement equation, i.e., themeasurementmatrix and themeasurement error covariance,
are random. Our result also generalizes existing ones in the sense that it does not require the system
matrix to be diagonalizable. For this general setting, we state a necessary and a sufficient condition for
stability, and address their numerical computation. An important application of our generalization is a
networking setting with multiple sensors which transmit their measurements to the estimator using a
sensor scheduling protocol over a lossy network. We demonstrate how our result is used for assessing
the stability of a Kalman filter in this multi-sensor setting.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

With the fast development of communications technologies,
distributed control andmonitoring are becoming increasingly pop-
ular. Packet losses resulting from communication links cause that
the estimation accuracy of a Kalman filter deteriorates. Motivated
by this, the stability condition of a Kalman filter when measure-
ments are intermittently available has attracted a great attention
in the recent years. In Sinopoli et al. (2004), the authors established
the mathematical foundations for the estimation stability with
measurement losses and pointed out that the covariance of the
estimation error may not reach a steady state. Inspired by this,
several authors have studied different aspects of the problem,
using different assumptions on network models and protocols.
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When a Kalman filter is subject to randomly intermittent ob-
servations (KFIO), its error covariance (EC) matrix becomes also
random. Its asymptotic expected value, denoted by AEEC (for
asymptotic expected error covariance), is typically used as a per-
formancemeasure for designing the components of the system, the
communication channel, and the estimator. There exists rich litera-
ture dedicated to finding the stability conditions of the KFIO (Dana,
Gupta, Hespanha, Hassibi, & Murray, 2007; Huang & Dey, 2007;
Liu & Goldsmith, 2004; Mo & Sinopoli, 2008, 2012; Park & Sahai,
2011; Plarre & Bullo, 2009; Quevedo, Ahlen, & Johansson, 2013;
Rohr, Marelli, & Fu, 2010a, 2010b, 2011; Schenato, 2008; Schenato,
Sinopoli, Franceschetti, Poolla, & Sastry, 2007; Sinopoli et al., 2004;
Xie, 2008, 2012; Xie & Xie, 2007; You, Fu, & Xie, 2011). Some
authors adopt the stability criterion used in Sinopoli et al. (2004),
namely, a KFIO is said to be stable if its AEEC is finite (Sinopoli et al.,
2004), and unstable otherwise. Other authors adopt the concept of
peak error covariance introduced in Huang and Dey (2007). More
recently, the equivalence between the two notions of stability has
been studied in Xie (2012) and You et al. (2011).

In spite of the fact that there are many papers studying stability
conditions of the KFIO, a necessary and sufficient condition for a
general system is still not available. Most answers are only partial,
in the sense that they depend on a particular structure of the
system, or offer only a sufficient condition which is not necessary.
In these papers, there are mainly two kinds of packet loss models:
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The first one considers the dropouts as a sequence of independent
and identically distributed (i.i.d.) binary random variables. The
second one is known as the Gilbert–Elliott model (Elliott, 1963;
Gilbert, 1960), andmodels the dropouts using a first-orderMarkov
process. A generalization of these twomodels is the stationary high
order Markov model, also known as finite state Markov channel
(FSMC) (Sadeghi, Kennedy, Rapajic, & Shams, 2008). It permits
modeling more complex channels with memory and fading. In the
context of KFIO, this network model has been considered in Censi
(2011), although not for the purposes of assessing stability.

For the i.i.d. packet loss model, the authors of Sinopoli et al.
(2004) showed that there exists a critical value, such that the
AEEC is bounded if the packet arrival probability is strictly greater
than this value, and unbounded if the packet arrival probability
falls below the critical value. They also provided lower and upper
bounds on the critical measurement packet arrival probability.
These bounds are only tight for systems whose observation matrix
C is invertible, leading to a necessary a sufficient condition for
stability of this kind of systems. This assumption was relaxed
in Plarre and Bullo (2009), so that only the part of the matrix C
corresponding to the observable subspace is required to be invert-
ible. The assumption was further relaxed by Mo et al. in Mo and
Sinopoli (2008), where they studied the case where the unstable
eigenvalues of A have different magnitudes.

For the Gilbert–Elliott network model, the first work studying
the stability of a KFIO is Huang & Dey (2007). In that work, a
sufficient condition for stability was derived, considering the peak
covariance criterion. For a scalar system, the authors showed that
this sufficient condition is also necessary. In Xie (2008), a new
sufficient condition for the stability of the peak covariance was es-
tablished. In the particular casewhere the observationmatrixChas
full column rank (FCR), the sufficient condition is also necessary. In
the case of second order systems, You et al. (2011) gave a necessary
and sufficient condition for stability. In Mo and Sinopoli (2012),
the authors derived a necessary and sufficient stability condition
for a kind of systems which they call non-degenerate. This result
generalizes most necessary and sufficient stability conditions of
systems using the Gilbert–Elliott network model.

For the general FSMC model, to the best of the authors knowl-
edge, the only available work is Rohr, Marelli, & Fu (2014). The
authors provided a necessary and a sufficient condition for the
stability of the KFIO, which is valid under the assumption that
the state transition matrix A is diagonalizable. This is the most
general result known so far, since, as the authors show, every other
available result follows as a particular case.

The goal of this paper is to generalize the result in Rohr et al.
(2014), so that the resulting necessary and sufficient condition for
stability can be applied to distributed Kalman filtering problems
under a much more general setting. An important example is the
state estimation on discrete-time systems, whose measurements
are acquired by multiple sensors, and transmitted to the estimator
using sensor scheduling over a lossy network. More precisely, in
some wireless networked applications, only limited energy and
bandwidth is available for data collection and transmission. Con-
sequently, it is not feasible that all sensors transmit their measure-
ments at every sampling time. Then, amethod is required to decide
which sensor sends its measurement to the estimator at each time.
This decision-making process is referred to as sensor scheduling.

Sensor scheduling has been an active research problem for
several years. For example, Walsh and Ye (2002) have studied the
stability for the close-loop control problem with sensor schedul-
ing. Also, Gupta, Chung, Hassibi, and Murray (2006) proposed a
stochastic scheduling strategy for the networked state estimation
problem, and derived the optimal probability distribution for se-
lecting sensors at each sample time. Shi, Cheng, and Chen (2011b)
considered a systemwith a single sensor, and studied the problem

of whether or not to send its data to a remote estimator, with
the aim of saving communications. They studied two scheduling
schemes, according to the computational power of the sensor. If
the sensor has sufficient power, and under a given communication
constraint, they provide an optimal scheduling scheme to min-
imize the mean squared error (MSE). On the other hand, if the
sensor has limited computation power, they gave a scheduling
scheme that guarantees that the MSE remains within certain pre-
scribed level. Also, an optimal periodic schedule, satisfying given
communication and power constrains, is derived in Shi, Cheng, and
Chen (2011a). Sui, You, and Fu (2015) studied the optimization of
certain sensor scheduling frameworks for the CMSA/CA protocol.
Other relevant works on sensor scheduling include Hovareshti,
Gupta, & Baras (2007), Savage & Scala (2009), Shi, Epstein, Sinopoli,
& Murray (2007), You & Xie (2013) and You, Xie, & Song (2013), to
name a few.

When a sensor scheduling scheme is used together with a
randomly lossy data transmission, both scheduling and packet
loss directly affect the stability of estimation process. Our stability
results are general enough so as to be applicable to assess stability
in this setup. We show how this is done using two scheduling
schemes, namely, time-based scheduling and random scheduling.

In order to achieve the above, we generalize the result in Rohr
et al. (2014) in the following senses:

Model: we drop the diagonalizable assumption on the state tran-
sitionmatrix A, making the result valid for any arbitrarymatrix.

Measurements: we generalized theway inwhichmeasurements
are produced in the following three directions:

(1) Instead of considering a random channel model in which
a measurement can be either perfectly transmitted or
totally lost, we consider a far more general random mea-
surement equation, in which, at each sample time t , both
the measurement matrix Ct and the measurement noise
covariance Rt , are randomly drawn from some known
distribution.

(2) While in currentworks themost general statistical depen-
dence condition for the packet loss process is given by the
FSMCmodel, we assume a more general condition for the
pair (Ct ,Rt). This condition is stated in Eq. (15).

(3) Also, while current works assume that the model for the
packet loss process has stationary statistics, we generalize
this assumption to the case where (Ct ,Rt) has cyclo-
stationary statistics. This generalization is essential to
the application of our results to a time-based scheduling
setting (Section 7.1).

The paper is organized as follows. Section 2 introduces some
mathematical background. Section 3 states the research problem.
The main result (Theorem 14) is presented in Section 4, together
with the general random model of the measurement equation, for
which this result is valid. In Section 5, we provide some insight
into this general random model. The stability condition stated in
our main result is expressed in terms of certain quantity, whose
computation is non trivial. In Section 6 we describe how to com-
pute this quantity. In Section 7, we show how to apply our sta-
bility results for sensor scheduling. We draw our conclusions in
Section 9. For the ease of reading, the formal proof of our main
result is presented in Section 8.

2. Preliminaries

Throughout the paper we use the following notation.

Notation 1. We use N to denote the set of natural numbers, Z to
denote set of integers, R for the real numbers and C for the complex
numbers. For a real or complex scalar, vector or matrix, we use ∗ to
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denote its transpose conjugate. For an arbitrary set S , we use SN to
denote the set of N-tuples with values in S , and SI for the set of
sequences with the same values indexed by I. For s ∈ SN or s ∈ SI ,
we use s(i) to denote the ith element in s.

We useN (µ,Σ) to denote a normal distribution with meanµ and
covariance matrixΣ and CN (µ,Σ) to denote a circularly-symmetric
complex normal distribution with the same mean and covariance.
For an event A, we use P (A) to denote its probability. For a random
variable x, E (x) denotes its expectation and P (x = a) denotes the
probability of the event {x = a}. Following a standard convention, in
order to simplify the notation, we use x to denote both, the random
variable and the value defining the event. We therefore write P (x) as
a shorthand notation for P (x = x).

Wenow introduce some requiredmathematical background on
measure theory.

Let (E,B) be a measurable space. We use M(E) to denote the
Banach space of signed measures on E , which are bounded in the
total variation norm (which we denote by ∥·∥). We also use L (E)
to denote the set of bounded linear operators κ : M (E) → M (E).
We use σ (κ) to denote the spectrum of κ ∈ L (E) and ρ (κ) to
denote its spectral radius. We also define

∏N
n=1κn = κN · · · κ1 and

κN
=
∏N

n=1κ .
An important subset of M (E) is that of probability measures,

which we denote by P (E). We use K (E) ⊂ L (E) to denote the
set of stochastic transition maps κ : P(E) → P(E). A stochastic
kernel is a map κ : E → P(E) such that, for every B ∈ B, the
map e ↦→ κ(e)(B) is measurable. We use κ ∈ K (E) to denote the
stochastic transition map induced by κ as follows

κµ (B) =

∫
E
κ(ε)(B)µ (dε) .

We finish this section by defining certain elements from the
above spaces, which wewill use in the rest of the paper. We define
δe ∈ P(E) by δe(A) = 1 if e ∈ A and 0 otherwise. For D ∈ B we
use χD ∈ L (E) to denote the map assigning each measure to its
restriction to D, i.e.,

(χDµ) (B) = µ (D ∩ B) , for all B ∈ B, µ ∈ M (E) .

For µ ∈ M (E) and κ ∈ L (E), we define U (κ, µ) ⊂ M (E) to be
the set of accumulation points of the sequence κnµ, i.e., the set of
all ν ∈ M (E) such that, for every ϵ > 0, there exist infinitelymany
n ∈ N such that ∥κnµ− ν∥< ϵ. We define

U (κ) = span(
⋃

µ∈M(E)

U(κ, µ)), (1)

where span (U) denotes the closed linear span of the set U . We also
use

κ̆ = κ|U(κ) : U (κ) → U (κ) (2)

to denote the restriction of κ to U (κ). Finally, for a collection U ⊂

M (E) of measures, we define the collection of sets F (U) ⊂ B, as
those which are not null with respect to some measure in U,i.e.,

F (U) = {A ∈ B : µ(A) > 0 for some µ ∈ U} . (3)

3. Problem formulation

Consider the discrete-time linear system

xt+1 = Axt + wt , (4)
yt = Ctxt + vt , (5)

where xt ∈ Cn is the vector of states, yt ∈ Cp is the vector of
measurements, wt ∼ CN (0,Q), with Q ≥ 0, is the process noise,
vt ∼ CN (0,Rt ) with Rt ≥ 0, is the measurement noise, A ∈ Cn×n

is the state matrix and Ct ∈ Cp×n is the measurement matrix at
time t . It is assumed, without loss of generality, that A is in Jordan
normal form. The initial state is x0 ∼ CN (0, P0), with P0 ≥ 0. Also,
the set of random vectors {x0,wt , vt : t ≥ 0} is jointly statistically
independent. At time t , the pair γt = (Ct ,Rt) is randomly drawn
from the finite set A = C × R, where C =

{
C(1), . . . , C(D)

}
and

R =
{
R(1), . . . ,R(E)

}
. For T ∈ N, let Γt,T = (γt , . . . , γt+T−1) ∈ AT

denote the random sequence of measurement matrices and noise
covariances from time t up to time t + T − 1.

Our next step is to introduce the model describing the statistics
of γt . We assume that γt is generated by a hidden Markov model
whose state is an element of E . More specifically, let h : E → A be
a measurable function, µ0 ∈ P (E) and κt : E → P (E), t ∈ Z, be
a sequence of stochastic kernels. The sequence γt is generated as
follows: ϱ0 ∼ µ0, and, for each t > 0,

ϱt ∼ κt (ϱt−1) , (6)
γt = h (ϱt) , (7)

where ϱ ∼ µ denotes that ϱ is independently drawn from the
probability distribution µ. We assume that, for each s ≥ 0, the
{x0,wt , vt , ϱs : t ≥ 0} is jointly statistically independent.

Remark 2. We assume the above model for γt without loss of
generality, as it is equivalent to the general model characterized
by specifying P (γt |γs, s < t), for all t ∈ Z and all possible values
of γs, s ≤ t . To see this, notice that the latter can be written in the
form (6)–(7) by taking E = AN, ϱt = (γs : s ≤ t), and defining the
σ -algebra B to be the one generated by the sets Ct,A, t ∈ N, A ⊂ A,
where

Ct,A =
{
Γ ∈ AN

: Γ (t) ∈ A
}
.

AKalman filter is used to obtain an estimate x̂t|t−1 of the state xt
given the knowledge of y0, . . . , yt−1 and Γ0,t . The update equation
of the expected covariance (EC)Pt = E

(
x̃t x̃∗

t

)
, with x̃t = xt−x̂t|t−1,

is

Pt+1 = ψγt (Pt) , (8)

with

ψγt (Pt) =

APtA∗
+ Q − APtC∗

t

(
CtPtC∗

t + Rt
)−1CtPtA∗.

In this work we derive a necessary condition and a sufficient
condition, with a trivial gap between them (Remark 15 explains
what this means), for the stability of the Kalman filter with a ran-
dom measurement equation. This is done by studying the asymp-
totic norm of the expected error covariance (ANEEC). In order to
define the ANEEC, we introduce the following notation

Ψ
(
Pt ,Γt,T

)
= ψγt+T−1 · · ·ψγt+1ψγt (Pt) ,

i.e., Ψ
(
Pt ,Γt,T

)
denotes the covariance matrix resulting at time

t + T , after starting with covariance Pt at time t , and then applying
the sequence of random measurement equations defined by Γt,T .
This matrix depends on the random sequence Γt,T and the initial
covariance Pt . In order to work with a quantity independent of
these values, in defining the ANEEC, we take expectation with
respect to Γt,T and the supremum with respect to Pt . This leads
to the following definition.

Definition 3. The ANEEC is defined as

G = sup
t∈Z
Pt≥0

lim sup
T→∞

E (Ψ (Pt ,Γt,T
)) .
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Remark 4. In (5) we assume that the measurements yt ∈ Rp have
time-invariant dimension p. This assumption is done to simplify
the presentation, andwithout loss of generality. This is because the
case yt ∈ Rpt with time-varying dimension pt can be handled by
defining p as the maximum number of rows among the matrices
C(d), d = 1, . . . ,D, and zero padding the matrices C(d) and R(d) so
that all of them have p rows.

4. Main result

Our main result is stated in terms of certain partition of the
system (4)–(5) into subsystems which we call finite multiplicative
order (FMO) blocks. This partition is introduced next.

Definition 5. A set of complex numbers xi ∈ C, i = 1, . . . , I , is
said to have a common finite multiplicative order N ∈ N up to a
constant α ∈ C, if xNi = αN , for all i = 1, . . . , I . If there do not exist
N and α satisfying the above, the set is said not to have common
finite multiplicative order.

Example 6. The set of numbers {2, 2i,−2,−2i} has common finite
multiplicative order 4 up to 2. The set

{
1, e

√
2i
}

does not have
common finite multiplicative order.

Notation 7. Consider the following partition of A,

A = diag(A1, . . . ,AK ), (9)

where the sub-matricesAk are chosen such that, for any k, the diagonal
entries of Ak have a common finite multiplicative order Nk up to αk,
and for any k and l with k ̸= l, the diagonal entries of the matrix
diag(Ak,Al) do not have common finite multiplicative order.

Let J̄ ∈ N be the largest size among the Jordan blocks of A,
and J̄k ∈ N be the largest size among the Jordan blocks of Ak. For
convenience, we assume that the sub-matrices Ak are ordered such
that |α1| ≥ |α2| ≥ · · · ≥ |αK |. Also, when |αk| = |αk+1|, then
J̄k ≥ J̄k+1.

For each d = 1, . . . ,D, consider the partition

C(d)
=

[
C(d)
1 , . . . , C

(d)
K

]
,

such that, for each k, C(d)
k has the same number of columns as Ak. Let

Ck =

{
C(d)
k : d = 1, . . . ,D

}
.

Definition 8. In the above partition, each pair (Ak, Ck) is called an
FMO block of the system (4)–(5).

Remark 9. Notice that if (Ak, Ck) is an FMO block, then each sub-
matrix Ak can be written as

Ak = αkÃk, (10)

Ãk = diag
{
exp(i2πθk,1), . . ., exp(i2πθk,Kk )

}
+ Uk, (11)

where Uk is strictly upper triangular, i.e., its non-zero entries lie
above its main diagonal. Also, αk ∈ C and θk,j ∈ Q, for j =

1, . . . , Kk. Notice that for any k and l with k ̸= l, αk/αl is not a root
of unity, i.e., (αk/αl)m ̸= 1 for all m ∈ N.

In stating our main result, we use certain observability matrix
Ok associated to each FMO block k of the system. Our next step is to
introduce this matrix. The measurements z∗

t,T =
[
y∗
t , . . . , y∗

t+T−1

]
available from time t up to T − 1 can be written as

zt,T = O
(
Γt,T

)
xt + ft,T

(
Γt,T

)
, (12)

where the observability matrix O
(
Γt,T

)
is given by

O
(
Γt,T

)
=
[
O1
(
Γt,T

)
O2
(
Γt,T

)
. . . OK

(
Γt,T

)]
, (13)

ft
(
Γt,T

)
=

⎡⎢⎢⎢⎢⎢⎢⎣

vt
Ct+1wt + vt+1

...

CT+t−1

T+t−2∑
j=t

AT+t−2−jwj + vt+T−1

⎤⎥⎥⎥⎥⎥⎥⎦ ,

with

Ok
(
Γt,T

)
=

⎡⎢⎢⎣
Ct,k

Ct+1,kAk
...

CT+t−1,kAT−1
k

⎤⎥⎥⎦ , Ct =
[
Ct,1, . . . , Ct,K

]
,

such that, for each k, Ct,k have the same number of columns as Ak.
Our main result is stated in terms of the probability that each

matrix Ok
(
Γt,T

)
does not have full-column rank (FCR). The follow-

ing definition identifies the event associated to sequences leading
to this property.

Definition 10. For k = 1, . . . , K , let

N t,T
k ≜ {Γt,T : Ok

(
Γt,T

)
does not have FCR}. (14)

We now state our main result. This requires Assumptions 12
and 13. These conditions are rather general. For this reason, their
statement is somewhat technical. In Section 5 we give interpre-
tations of these assumptions, as well as more practical conditions
guaranteeing them. However, these assumptions also hold under
conditions more general than those given in Section 5. An example
of this appears in the proof of Corollary 26. This shows the value of
the generality of Assumptions 12 and 13.

Definition 11. We say that the sequence γt , t ∈ Z, is cyclostation-
ary with period τ ∈ N, if, in (6)–(7), we have

κt = κt+τ , for all t ∈ N,

µ0 =

τ∏
t=1

κt , µ0.

We say that it is stationary if it is cyclostationary with τ = 1.

Assumption 12. The sequence γt , t ∈ Z, in (6)–(7), is cyclostation-
ary with period τ ∈ N and

ζ ≜ sup
T∈N

0≤t<τ

sup
P(ϱt−1)̸=0

P(Γt,T )̸=0

P
(
Γt,T |ϱt−1

)
P
(
Γt,T

) < ∞. (15)

Assumption 13. For any 0 ≤ t < τ , any multiple M of τ and any
finite collection D = (Dm ∈ B : m = 1, . . . ,M), let

ηt =

M∏
m=1

χDmκt+m.

Then,

ρ (ηt) = ρ (η̆t) . (16)

Also, for any non-zero non-negativeµ ∈ U (ηt) and A ∈ F (U (ηt)),
there exists N such that

η̆nt µ (A) > 0, for all n ≥ N. (17)

We now state our main result. Its proof is deferred to Section 8.
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Theorem 14. Consider the system (4)–(5) satisfying Assumptions 12
and 13. For k ∈ {1, . . . , K }, let

Φk = max
0≤t<τ

lim sup
T→∞

P
(
N t,T

k

)1/T
,

with N t,T
k defined by (14). If

|αk|
2Φk < 1, for all k ∈ {1, . . . , K }, (18)

then G < ∞, and if

|αk|
2Φk > 1, for some k ∈ {1, . . . , K }, (19)

then G = ∞.

Remark 15. Notice that Theorem 14 is inconclusive in the case
when |αk|

2Φk = 1. Trivial gaps of this kind are common in the
literature (Mo & Sinopoli, 2012; Sinopoli et al., 2004).

5. About Assumptions 12 and 13

In this section we give an interpretation of the technical con-
dition stated in Assumptions 12 and 13. We also show that these
assumptions hold under certain conditions which are easier to
interpret. This result is given in Proposition 18 stated below.

Definition 16. A random process γt is Markov of order L ∈ N if, for
allm ≥ 1,

P (γt |γt−L−m, . . . , γt−1) = P (γt |γt−L, . . . , γt−1) .

Furthermore, it is called proper if all the above probabilities are
strictly bigger than zero. Finally, the process is independent if
L = 0.

Definition 17. A random process γt is called Gaussian hidden
Markov if it is generated by a hidden Markov model like (6)–(7),
but with (6) replaced by

ϱt = Kϱt−1 + εt ,

where K is a stable matrix (i.e., ρ (K) < 1) and εt ∼ N (0,Σ), with
{x0,wt , vt , εt : t ≥ 0} being a jointly independent set of random
vectors.

Proposition 18. Suppose that γt is cyclostationary with period τ and
is either finite-order properMarkov, or Gaussian hiddenMarkov. Then
Assumptions 12 and 13 hold.

The reminder of this section is devoted to show Proposition 18.
If γt is an independent sequence, we could simply take E =

A, ϱt = γt and h to be the identity map. Then, (15) would
hold trivially. Hence, (15) can be interpreted as a generalization
of the independence property. More generally, the following two
lemmas provide conditions under which (15) holds without the
independence property.

Lemma19. If γt is cyclostationarywith period τ ∈ N and finite-order
Markov, then (15) holds.

Proof. Since γt is finite order Markov, we can take ϱt = Γt−L+1,L.
We then have

ζ = sup
T∈N

0≤t<τ

sup
P(ϱt−1)̸=0

P(Γt,T )̸=0

P
(
Γt,T |ϱt−1

)
P
(
Γt,T

)
= sup

T∈N
0≤t<τ

sup
P(ϱt−1)̸=0

P(Γt,T )̸=0

P
(
ϱt−1|Γt,T

)
P (ϱt−1)

≤ sup
0≤t<τ

sup
P(ϱt−1)̸=0

1
P (ϱt−1)

< ∞,

where the last inequality follows since the supremum operations
are taken over finite sets.

Lemma20. If γt is cyclostationarywith period τ andGaussian hidden
Markov, then (15) holds.

Proof. Let E = Rd and ϱt ∈ E . Then there exists a partition S ={
S(d,e)

: d = 1, . . . ,D, e = 1, . . . , E
}
of Rd (i.e., S(d,e)

∩ S(d′,e′)
= ∅,

whenever (d, e) ̸= (d′, e′), and
⋃(D,E)

(d,e)=(1,1)S
(d,e)

= Rd), such that

h(ϱ) =
(
C(d), E(e)) , for all ϱ ∈ S(d,e).

Let St = h−1 (γt), i.e., the unique element from the partition S such
that h (ϱ) = γt , for all ϱ ∈ St , and let St,T = St × · · · × St+T−1. We
have that

P
(
ϱt−1|Γt,T

)
= P

(
ϱt−1|ϱt,T ∈ St,T

)
. (20)

The right-hand side of (20) can be considered as the probability
of ϱt−1 conditioned on the future output of a stationary quantizer.
Since the process ϱt is Gaussian, it is easy but tedious to show that
there exists a constant c > 0 such that

P
(
ϱt−1|ϱt,T ∈ St,T

)
P (ϱt−1)

< c, for all t, T , ϱt−1, and St,T .

We then have

ζ = sup
T∈N

0≤t<τ

sup
P(ϱt−1)̸=0

P(Γt,T )̸=0

P
(
Γt,T |ϱt−1

)
P
(
Γt,T

)
= sup

T∈N
0≤t<τ

sup
P(ϱt−1)̸=0

P(Γt,T )̸=0

P
(
ϱt−1|Γt,T

)
P (ϱt−1)

= sup
T∈N

0≤t<τ

sup
St,T ,ϱt−1

P
(
ϱt−1|ϱt,T ∈ St,T

)
P (ϱt−1)

≤ c < ∞.

We now turn our attention to condition (17). In this condition,
the output of the probability transition mapping κt is restricted to
a set Dm (via the restriction operator χDm ), which is taken from a
finite family D of sets. The resulting operators are then composed
by sequentially taking all sets within D. This yields the map ηt .
The set U (ηt) of measures is invariant under ηt . Condition (16)
requires that the spectrum of ηt equals that of its restriction to its
invariant subspace U (ηt). Also, F (U (ηt)) contains all sets which
are non-null for some measure in U (ηt). Condition (17) requires
that the measure of all sets in F (U (ηt)) becomes eventually and
persistently strictly positive, when, starting from any measure in
U (ηt), we sequentially apply the map ηt .

The above condition seems in principle difficult to verify. How-
ever, the two lemmas below show that it holds under conditions
similar to those in Lemmas 19 and 20.

Lemma 21. If γt is finite-order proper Markov, then Assumption 13
holds.

Proof. Recall the definition of ηt given in Assumption 13. Let L be
the Markov order of γt . Let E = AL and ϱt = Γt−L+1,L. It is easy to
see that F (U (ηt)) ⊆ G where

G ≜
{
ϱ ∈ E : ϱ(l) ⊂ DM−mod(L−l,M), λ(A) > 0

}
.
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Now, for any µ and n > L/M , the measure ηnt µ is strictly positive
on any A ∈ G. Hence, (17) holds. Also, ηnt µ(ϱ) = 0, for all ϱ ̸∈ G.
Hence, (16) also holds and the result follows.

Lemma 22. If γt is Gaussian hidden Markov, then Assumption 13
holds.

Proof. Recall the definition of ηt given in Assumption 13. It is easy
to see that

F (U (ηt)) = {A ∈ B : A ⊂ DM , λ(A) > 0} .

Also, for any µ, ηnt µ has density gn with respect to the Lebesgue’s
measure λ, and this density is λ-almost everywhere strictly posi-
tive on DM . Hence, for all A ∈ F (U (ηt)),

ηnt µ(A) =

∫
A
gndλ > 0, for all n ≥ 1,

and (17) holds. Also, ηtµ(A) = 0 for all A ∈ B satisfying
λ (B ∩ DM) = 0. So (16) holds and the result follows.

Proof of Proposition 18. It follows by combining Lemmas 19–22.

6. ComputingΦk

Our result in Theorem 14 is stated in terms of the quantities
Φk, k = 1, . . . , K . We introduce below results on how to compute
this quantity. Due to space limitations, their proofs appear in the
full version (Marelli, Sui, Rohr, & Fu, 2018, Appendix A). Since in
our study the choice of k = 1, . . . , K is fixed, to remove k from
the notation, we consider a generic FMO block (A, C). We start by
introducing some necessary notation.

Notation 23. Let N ∈ N be the smallest positive integer such that
AN

= αN I. Let K =
{
ker (O (Γ )) : Γ ∈ AN

}
∪ {Cn,∅} be the set of

all possible kernels of O (Γ ), for sequences Γ of length N, including,
the whole space Cn and the empty set ∅. Notice that K includes all
possible kernels of O (Γ ) for sequencesΓ of length nN, for any n ∈ N.
For any n ∈ N, define the map ψ : AnN

→ K by

ψ (Γ ) = ker (O(Γ )) .

Let I = {0, . . . , I} and Ki, i ∈ I denote all the elements in K. The
elements Ki are numerated such that, if Ki ⊂ Kj, then i > j (notice
that, in particular, K0 = Cn and KI = ∅). Let M ∈ N be any common
multiple of N and τ . For each t ∈ N0, i, j ∈ I, e ∈ E , A ∈ B, and
π ∈ L (E), let Tt : I × I × E × B → [0, 1] be defined by

Tt (i, j, e, A) = P
(
ϱt+M ∈ A, ψ

(
Γt,M

)
∩ Kj = Ki|ϱt = e

)
,

and ςt : I × I → L (E) by

ςt (i, j)π (A) =

∫
Tt (i, j, e, A) π (de).

The next result provides a method for evaluatingΦ .

Proposition 24. Let (A, C) be an FMO block. If Assumptions 12 and
13 hold, then

Φ = max
0≤t<τ

max
0≤i<I

ρ(ς̆t (i, i))1/M . (21)

The above result requires computing the spectral radius of the
map ς̆t (i, i). If E is a discrete finite space, then ς̆t (i, i) becomes
a matrix and ρ (ς̆t (i, i)) can be easily computed. Otherwise, the
following result can be used.

Proposition 25. For every non-zero non-negative µ ∈ U (ςt (i, i)),

ρ (ς̆t (i, i)) = lim
n→∞

ς̆n
t (i, i)µ

1/n .

The following corollary states how the expression (21) simpli-
fies in the particular case when there exists a single measurement
matrix C(α) producingmeasurementswhichwould nevermake the
observability matrix have FCR (e.g., when measurements are lost),
but any single measurement produced by any other matrix C(d),

d ̸= α, would.

Corollary 26. If Assumption 12 holds, there exists 1 ≤ α ≤ D such
that pair

(
A, C(α)

)
is non-observable, for each d ̸= α, C(d) has FCR, and

there exists 1 ≤ β ≤ E such that P
(
Rt |Ct = C(e)

)
= δR(β) (i.e., there

is only one possible value of Rt compatible with Ct = C(α)), then

Φ =

τ−1∏
t=0

P
(
Ct = C(α)

|Cs = C(α), s < t
)1/τ

. (22)

7. Application: Sensor scheduling with packet loss

We have a linear system whose dynamics is given by

pt+1 = Fpt + nt , (23)

with n(s)
t ∼ N (0,N). There are S sensors. For each s = 1, . . . , S,

sensor smeasures

u(s)
t = H(s)pt + e(s)t , (24)

with e(s)t ∼ N
(
0, E(s)

)
. We assume that measurements from only

R < S sensors can be transmitted at each time instant t . Then, at
each time we transmit

rt = (Mt ⊗ I)ut ,

where uT
t =

[(
u(1)
t

)T
, . . . ,

(
u(S)
t

)T]
and Mt is the row-selection

matrix determining the schedule at time t . Since there are packet
losses, the actual transmission is given by

yt = (Lt ⊗ I) rt , (25)

where Lt = diag
{
l(1)t , . . . , l

(R)
t

}
and l(r)t is a binary random variable

determiningwhether the packet associatedwith the rth scheduled
measurement was lost (l(r)t = 0) or not (l(r)t = 1). Let A = VFV−1 be
the Jordan normal form of F. Then, the system equations are given
by (4)–(5), with

Ct = BtHV−1, Qt = VNVT , Rt = BtEBT
t ,

xt = Vpt , wt = Vnt , vt = Btet ,

and

eTt =

[(
e(1)t

)T
, . . . ,

(
e(S)t

)T]
,

HT
=

[(
H(1))T , . . . , (H(S))T] ,

E = diag
{
E(1), . . . , E(S)} ,

Bt = (Lt ⊗ I) (Mt ⊗ I) .

We consider below two scheduling strategies, namely, time-
based schedule and random schedule.

7.1. Time-based schedule

In this case, the packet loss model Lt is stationary, independent
ofwt , vt and x0, and either, finite-order properMarkov or Gaussian
hidden Markov. The sequence of matrices Mt , t ∈ N, follows a
periodic deterministic pattern, i.e.,

Mt = Mt+τ ,
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for all t ∈ N and some period τ ∈ N. Clearly, this leads to γt
being cyclostationary with period τ , and satisfying the conditions
of Proposition 18. Theorem 14 then holds.

7.2. Random schedule

In this case, both sequence of matrices Lt and Mt are randomly
drawn at each t ∈ N. This is done such that the sequences (Mt),
(Lt), (wt), (vt) and x0 are mutually independent. The models de-
scribing the statistics of Lt and Mt are stationary and either finite-
order proper Markov or Gaussian hidden Markov. This clearly
leads to γt = (Ct , Et) satisfying the conditions of Proposition 18.
Theorem 14 thus holds.

7.3. Example

In this sectionwe use Theorem14 and Corollary 26 to assess the
stability of an example system.We consider a systemwhose state-
transitionmatrixA is non-diagonalizable andwhosemeasurement
equation has statistics which are not finite-order Markov. Notice
that, as mentioned in points 1 and 3 in the introduction, none of
the results available in the literature could be used to assess the
stability of a system with any of these two properties.

Consider a system whose dynamics is given by (4), with

A = diag {A1,A2} , A1 =

[
α1 1
0 α1

]
, A2 = [α2] ,

for some α1 > α2 > 0. There are two sensors. For i ∈ {1, 2}, the
measurement equation of sensor i is given by (24), with

H(1)
=

[
2 1 0
0 1 0

]
and H(2)

=

[
0 0 1
0 0 2

]
,

Due to communication constraints, the measurements from both
sensors are alternatively transmitted, i.e.,

Mt =

⎧⎪⎨⎪⎩
[
I 0

]
t even,[

0 I
]

t odd.

We assume that the communication channel has a packet loss
model given by Lt = lt ∈ {0, 1}, where lt is Gaussian hidden
Markov. Hence, we have a time-based schedule, as described in
Section 7.1. Thus,we can use the result of Theorem14 to determine
the stability of the Kalman filter.

We have

Bt =

⎧⎪⎨⎪⎩
[
lt I 0

]
t even,[

0 lt I
]

t odd.

Hence, the measurement equation of the aggregated system is
given by (5), with Ct given by

Ct =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
lt

⎡⎣2 1 0

0 1 0

⎤⎦ t even,

lt

⎡⎣0 0 1

0 0 2

⎤⎦ t odd.

(26)

From Definition 8 the FMO blocks of the above system are
(A1, C1) and (A2, C2)where

Ck =

{
C(1)
k , C

(2)
k

}
, k = 1, 2,

with

C(1)
1 =

[
0 0
0 0

]
, C(2)

1 =

[
2 1
0 1

]
,

C(1)
2 =

[
0
0

]
, C(2)

2 =

[
1
2

]
.

Clearly, both FMO blocks satisfy the conditions of Corollary 26.
Hence, we can apply this result to each block. Let

λ = P (lt = 0|l2s = 0, s < t) .

We have

P
(
Ct,1 = C(0)

1 |Cs,1 = C(0)
1 , s < t

)
=

{
λ t even,
1 t odd,

P
(
Ct,2 = C(0)

2 |Cs,2 = C(0)
2 , s < t

)
=

{
1 t even,
λ t odd,

Then, from (22), since the cyclostationary period is τ = 2, we
obtain

Φ1 = Φ2 = λ1/2.

It then follows from Theorem 14 that

α4
1λ < 1 ⇒ G < ∞,

α4
1λ > 1 ⇒ G = ∞.

8. Proof of the main result

This section presents a formal proof of the necessary and the
sufficient conditions stated in Theorem14. In Section 8.1we derive
certain preliminary results.More precisely, in Section 8.1.1we pro-
vide lower and upper bounds on the growth rate of ∥Ψ

(
Pt ,Γt,T

)
∥,

and in Section 8.1.2we state a technical condition to guarantee that
the kernel ofO

(
Γt,T

)
has certain desired orientation. In Section 8.2

we show the necessary condition. In Section 8.3.1 we derive a first
sufficient condition, which differs from the desired one. This result
is used in Section 8.3.2 to provide a second sufficient condition,
seemingly stronger than the one in Theorem 14. We then show in
Section 8.3.3 that the latter condition is indeed equivalent to the
desired one.

8.1. Preliminary results

8.1.1. Bounds on the growth rate of ∥Ψ
(
Pt ,Γt,T

)
∥

It turns out that the growth rate of ∥Ψ
(
Pt ,Γt,T

)
∥ is determined

by the location of the kernel of O
(
Γt,T

)
. Recall from (12) that

zT = O
(
Γt,T

)
xt + ft

(
Γt,T

)
(27)

xT = AT−txt + qt,T (28)

qt,T =

t+T−1∑
j=t

At+T−1−jwj. (29)

From Anderson and Moore (1979, Ch. 5, Theorem 2.1), we have

Ψ
(
Pt ,Γt,T

)
= Σx − Σx,zΣ

†
zΣ

∗

x,z, (30)

where † is the Moore–Penrose pseudo-inverse (Ben-Israel & Gre-
ville, 2003) and

Σx = ATPtA∗T
+ E

(
qt,Tq∗

t,T

)
,

Σz = O
(
Γt,T

)
PtO

(
Γt,T

)∗
+ E

(
ft
(
Γt,T

)
f
(
Γt,T

)∗)
,

Σx,z = ATPtO
(
Γt,T

)∗
+ E

(
qt,T ft

(
Γt,T

)∗)
.
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Lemma27. Let A be a Jordan block of order J with eigenvalueα. Then,
there exist c1, c2 ∈ R such that

∥At
∥ ≤ |α|

tc1t J−1 (31)A−t
−1

≥ |α|
tc2t1−J (32)

for all t ∈ N.

Proof. The proof is divided in two steps.
Proof of (31): Notice that

At
= αtM(t)

where

M(t) =

⎡⎢⎢⎢⎢⎣
1 p1(t) · · · pJ−1(t)

0 1
. . . pJ−2(t)

...
. . .

. . .
...

0 0 · · · 1

⎤⎥⎥⎥⎥⎦ ,
and pj(t) is a polynomial in t of order j given by

pj(t) =

(
t
j

)
α−j.

We then haveAt
 = |α|

t
∥M(t)∥

(a)
≤ |α|

t

⎛⎝1 +

J−1∑
j=1

|pj(t)|

⎞⎠
≤ |α|

tc1t J−1,

for some c1 ∈ R, where (a) follows from Young’s inequality
(Katznelson, 2004, p. 115).

Proof of (32): Consider the matrix

M̃(t) =

⎡⎢⎢⎢⎢⎣
1 p̃1(t) · · · p̃J−1(t)

0 1
. . . p̃J−2(t)

...
. . .

. . .
...

0 0 · · · 1

⎤⎥⎥⎥⎥⎦ ,
where p̃j(t) are polynomials in t of order j such that M̃(t) = M−1(t).
This is always possible, since

M(t)M̃(t) =

⎡⎢⎢⎢⎢⎣
1 p̂1(t) · · · p̂J−1(t)

0 1
. . . p̂J−2(t)

...
. . .

. . .
...

0 0 · · · 1

⎤⎥⎥⎥⎥⎦ ,
with

p̂j(t) = pj(t) + p̃j(t) +

j−1∑
i=1

pj−i(t)p̃i(t).

From the above, by making

p̃j(t) = −pj(t) −

j−1∑
i=1

pj−i(t)p̃i(t),

we haveM(t)M̃(t) = I. Then,A−t
 = ∥α−tM−1(t)∥ (33)

= |α|
−t

∥M̃(t)∥ (34)

≤ |α|
−t

⎛⎝1 +

J−1∑
j=1

|p̃j(t)|

⎞⎠ (35)

≤ |α|
−tc3t J−1, (36)

for some c3 ∈ R. Hence,A−t
−1

≥ |α|
tc−1

3 t1−J .

The result follows by making c2 = c−1
3 .

The following two lemmas state bounds on the growth rate of
∥Ψ

(
Pt ,Γt,T

)
∥. Firstly, some notation is introduced. Let ek,j be the

column vector with a 1 in one entry and zeros otherwise, such that
e⊤

k,jAek,j equals the jth diagonal entry of the kth block Ak of A. Let
also Ek = {ek,1, . . . , ek,Kk}. The following lemma states an upper
bound on the growth rate of ∥Ψ

(
Pt ,Γt,T

)
∥.

Lemma 28. Consider the system (4)–(5). If ker
{
O
(
Γt,T

)}
⊆

span{Ek, . . ., EK } for some 1 ≤ k ≤ K , then, there exist lT > 0 and
c1 > 0, such that, for any Pt ,

∥Ψ
(
Pt ,Γt,T

)
∥ ≤ |αk|

2tc1T 2(J̄−1)
∥Pt∥ + lT . (37)

Also, if ker
{
O
(
Γt,T

)}
= {0}, then

∥Ψ
(
Pt ,Γt,T

)
∥ ≤ lT . (38)

Proof. Following the steps of the proof of Rohr et al. (2014, Lemma
20), we obtain (38) and

Ψ
(
Pt ,Γt,T

)
≤ Mt,T + lT I, (39)

where Mt,T = ΠATPtA∗TΠ and

Π = diag(01, . . . , 0k−1,X),

with 0j being a square matrix of zeros with the same dimension of
Aj and X is a non-zero matrix with appropriate dimensions. Also,

lT = sup
t∈Z

max
Γt,T∈AT

ϑt
(
Γt,T

)
,

with

ϑt
(
Γt,T

)
=
E (Ut

(
Γt,T

)
U∗

t

(
Γt,T

) ⏐⏐Γt,T
) ,

Ut
(
Γt,T

)
= qt,T −

(
O
(
Γt,T

)
A−T )†ft (Γt,T

)
.

Notice that the map ϑt : AT
→ R is independent of t ∈ Z.

Hence, lT is the result of a maximization over the finite setAT . This
guarantees that lT is finite. Hence, (38) clearly holds.

LetMt,T = N∗

t,TNt,T , withNt,T = P1/2
t A∗TΠ and Ã = diag{0, . . . ,

0,Ak, . . . ,AK }. Then,

∥Mt,T∥ = ∥Nt,T∥
2

≤ ∥Pt∥∥A∗TΠ∥
2

= ∥Pt∥∥Ã∗TΠ∥
2

≤ ∥Pt∥∥Ã∗T
∥
2
∥Π∥

2.

Notice that ∥Ã∗T
∥ = maxj≥k∥AT

j ∥. Using Lemma 27, we obtain

∥Mt,T∥ ≤ ∥Pt∥ |αk|
2T c1T 2(J̄−1),

for some c1 ∈ R and the result follows from (39).

The next lemma states a lower bound on the growth rate of
∥Ψ

(
Pt ,Γt,T

)
∥.

Lemma29. Consider the system (4)–(5). If ker
{
O
(
Γt,T

)}
∩span{Ek}

̸= {0}, then, there exists c2 > 0 such that for all Pt ,Ψ (Pt ,Γt,T
) ≥ |αk|

2T c2T 2(1−J̄)
P−1

t

−1
.

Proof. Following the steps of the proof of Rohr et al. (2014, Lemma
21), we obtainΨ (Pt ,Γt,T

) ≥
P−1

t

−1 ATΠ
2 , (40)
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where Π =

[
I − O

(
Γt,T

)†O (Γt,T
)]

. Now, let x ∈ ker
{
O
(
Γt,T

)}
∩

span{Ek}. Since Π is the projection onto the kernel of O
(
Γt,T

)
, we

haveATΠx
 =

ATx
 .

Since x ∈ span(Ek), we have that

∥ATx∥ = ∥AT
kv∥ ≥ ∥A−T

k ∥
−1

∥v∥ = ∥A−T
k ∥

−1
∥x∥,

for some v ∈ CNk . From Lemma 27, and the above, it follows that

∥ATΠx∥ ≥ c2|αk|
TT 1−J̄

∥x∥,

hence

∥ATΠ∥ ≥ |αk|
TT 1−J̄ . (41)

The result then follows by substituting (41) into (40).

8.1.2. A condition to guarantee that ker{O(Γt,T )} is orthogonal to
span{Ek}

Definition 30. A matrix M is said to have full column rank with
strength q ∈ N0 (N0 = N ∪ {0}), denoted by FCR(q), if M has more
than q rows and the matrix obtained after removing any q rows
fromM still has FCR.

The main goal of this section is to show the following lemma.

Lemma 31. There exists Q ∈ N0 such that, for any 1 ≤ k ≤ K, if
Ok(Γt,T ) has FCR(Q ), then ker{O(Γt,T )} ⊥ span{Ek}.

Proof. See the full version (Marelli et al., 2018, Proof of Lemma 31).

8.2. Proof of the necessary condition in Theorem 14

Following the steps of the proof in Rohr et al. (2014, SectionV-B)
we obtainE (Ψ (Pt ,Γt,T

)) ≥

max
1≤k≤K

1
n

∑
Γt,T∈N t,T

k

P
(
Γt,T

) Ψ (Pt ,Γt,T
) .

From Lemma 29, we have that, for all k = 1, . . . , K and t ∈ N,E (Ψ (Pt ,Γt,T
))

≥
1
n

∑
Γt,T∈N t,T

k

P
(
Γt,T

)
|αk|

2T c2T 2(1−J̄)
P−1

t

−1

=
1
n
|αk|

2T c2T 2(1−J̄)
P−1

t

−1
P
(
N t,T

k

)
=

(
|αk|

2P
(
N t,T

k

)1/T
T 2(1−J̄)/T

)T

c2

P−1
t

−1

n
.

For any t ∈ N, put Pt = P0. Then,

max
0≤t<τ

lim sup
T→∞

E (Ψ (Pt ,Γt,T
))

≥ max
0≤t<τ

lim sup
T→∞

(
|αk|

2P
(
N t,T

k

)1/T
T 2(1−J̄)/T

)T

× c2

P−1
0

−1

n

=c2

P−1
0

−1

n
max
0≤t<τ

lim sup
T→∞

aTt,T ,

where

at,T = |αk|
2P
(
N t,T

k

)1/T
T 2(1−J̄)/T .

Choose k = 1, . . . , K satisfying (19). Then

max
0≤t<τ

lim sup
T→∞

at,T

= max
0≤t<τ

lim sup
T→∞

|αk|
2P
(
N t,T

k

)1/T
T 2(1−J̄)/T

=|αk|
2 max
0≤t<τ

lim sup
T→∞

P
(
N t,T

k

)1/T
lim
T→∞

T 2(1−J̄)/T

=|αk|
2Φk

(
lim
T→∞

T 1/T
)2(J̄−1)

= |αk|
2Φk > 1.

Hence, if we choose
P−1

0

−1
> 0, then

G = max
0≤t<τ

lim sup
T→∞

E (Ψ (Pt ,Γt,T
)) = ∞,

and the result follows.

8.3. Proof of the sufficient condition in Theorem 14

8.3.1. First step
Define the map ξt,T : R+

0 → R+

0 by

ξt,T (x) = sup
ϱt−1∈E

∑
Γt,T∈AT

P
(
Γt,T |ϱt−1

)
×Tr

{
Ψ(xI,Γt,T )

}
. (42)

Lemma 32. Let T , S ∈ N and x, y > 0. Then

(1) if x ≥ y, then ξt,T (x) ≥ ξt,T (y);
(2) ξt,T+S(x) ≤ ξt+T ,S ◦ ξt,T (x).

Proof. Proof of (1) From Sinopoli et al. (2004, Lemma 1c),

x ≥ y ⇒ Ψ(xI,Γt,T ) ≥ Ψ(yI,Γt,T ). (43)

Then

ξt,T (y) = sup
ϱt−1

∑
Γt,T

P
(
Γt,T |ϱt−1

)
Tr
{
Ψ(yI,Γt,T )

}
≤ sup

ϱt−1

∑
Γt,T

P
(
Γt,T |ϱt−1

)
Tr
{
Ψ(xI,Γt,T )

}
= ξt,T (x).

Proof of (2) We have

ξt,T+S(x)

= sup
ϱt−1

∑
Γt,T+S

P
(
Γt,T+S |ϱt−1

)
× Tr

{
Ψ
(
xI,Γt,T+S

)}
= sup
ϱt−1

∑
Γt,T

∑
Γt+T ,S

P
(
Γt+T ,S |Γt,T , ϱt−1

)
×

P
(
Γt,T |ϱt−1

)
Tr
{
Ψ
(
Ψ
(
xI,Γt,T

)
,Γt+T ,S

)}
≤ sup

ϱt+T−1
ϱt−1

∑
Γt,T

∑
Γt+T ,S

P
(
Γt+T ,S |ϱt+T−1

)
×

P
(
Γt,T |ϱt

)
Tr
{
Ψ
(
Ψ
(
xI,Γt,T

)
,Γt+T ,S

)}
.
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Using (43) and the concavity of Ψ(·,Γt+T ,S) (Sinopoli et al., 2004,
Lemma 1e), we have

ξt,T+S(x)

≤ sup
ϱt+T−1

∑
Γt+T ,S

P
(
Γt+T ,S |ϱt+T−1

)
×Tr

{
Ψ
(
Ξ (x),Γt+T ,S

)}
,

with

Ξ (x) = sup
ϱt−1

∑
Γt,T

P
(
Γt,T |ϱt−1

)
Ψ
(
xI,Γt,T

)
.

Now, since Ψ(xI,Γt,T ) ≥ 0,

Ξ (x) ≤ sup
ϱt−1

∑
Γt,T

P
(
Γt,T |ϱt−1

)
Tr
{
Ψ
(
xI,Γt,T

)}
I

= ξt,T (x)I.

Then, using (43), it follows that

ξt,T+S(x) ≤ sup
ϱt+T−1

∑
Γt+T ,S

P
(
Γt+T ,S |ϱt+T−1

)
× Tr

{
Ψ
(
ξt,T (x)I,Γt+T ,S

)}
= ξt+T ,S

(
ξt,T (x)

)
= ξt+T ,S ◦ ξt,T (x).

The reasonwhy themap ξt,T (x) is particularly important for our
analysis is because of the following result, which states a sufficient
condition for G to be finite.

Lemma 33. If there exist T ∈ N and x̄ > 0 such that max0≤t<τ
lim supk→∞ξt,kT (x) ≤ x̄ < ∞, for all x > 0, then

G < ∞.

Proof. Following the steps in Rohr et al. (2014, Lemma 30), we can
show thatE (Ψ (Pt ,Γt,T

)) ≤ ξt,T (∥Pt∥). (44)

Now, from (44) Lemmas 28 and 32E (Ψ (Pt ,Γt,kT+S
))

≤ξt,kT+S(∥Pt∥)
≤ξt+kT ,S ◦ ξt,kT (∥Pt∥)

= sup
ϱs−1

∑
Γs,S

P
(
Γs,S |ϱs−1

)
Tr
{
Ψ
(
ξt,kT (∥Pt∥)I,Γs,S

)}
≤n sup

ϱs−1

∑
Γs,S

P
(
Γs,S |ϱs−1

) Ψ (ξt,kT (∥Pt∥)I,Γs,S
)

≤n sup
ϱs−1

∑
Γs,S

P
(
Γs,S |ϱs−1

)
×

(
ξt,kT (∥Pt∥)|α1|

2Sc1s2(J̄−1)
+ lS

)
=nξt,kT (∥Pt∥)|α1|

2Sc1s2(J̄−1)
+ nlS .

Hence

max
0≤t<τ

lim sup
T→∞

E (Ψ (Pt ,Γt,T
))

≤ sup
0<S<T

n|α1|
2Sc1s2(J̄−1)

× max
0≤t<τ

lim sup
k→∞

ξt,kT (∥Pt∥) + nlS

≤ sup
0<S<T

n|α1|
2Sc1s2(J̄−1)x̄ + nlS .

Finally, since the above bound is independent of t and Pt ,

G ≤ sup
0<S<T

n|α1|
2Sc1s2(J̄−1)x̄ + nlS < ∞.

8.3.2. Second step
An alternative sufficient condition for the ANEEC G to be

bounded is now presented. It will be shown in Section 8.3.3 that
this condition is equivalent to the sufficient condition in Theo-
rem 14.

Notation 34. For k = 1, . . . , K , let

N t,T
k,Q = {Γt,T : Ok(Γt,T ) does not have FCR(Q )},

Notice that N t,T
k,0 = N t,T

k .

The following lemma presents a sufficient condition for the
ANEEC to be bounded.

Lemma 35. Under Assumption 12, there exists Q ∈ N0 such that, if

|αk|
2 max
0≤t<τ

lim sup
T→∞

P
(
N t,T

k,Q

)1/T
< 1 for all k = 1, . . ., K , (45)

then G < ∞.

Proof. The proof is divided into 5 steps.
(1) In view of Lemma 31, there exists Q such that if Ok

(
Γt,T

)
has FCR(Q ), for k = 1, . . . , K , then O

(
Γt,T

)
has FCR. Recall from

Notation 34 that N t,T
k,Q is the set of sequences Γt,T ∈ AT such that

Ok(Γt,T ) does not have FCR with strength Q . Define the set

Gt,T
k,Q ≜

⎧⎪⎨⎪⎩
N t,T

1,Q , k = 1,
k−1⋂
j=1

N t,T
j,Q ∩ N t,T

k,Q , k = 2, . . . , K ,
(46)

where X denotes the complement of the set X . Notice that Gt,T
k,Q is

the set of sequences Γt,T ∈ AT such that Oj(Γt,T ) has FCR(Q ) for
1 ≤ j ≤ k − 1 and Ok(Γt,T ) does not have FCR(Q ). Hence

Gt,T
k,Q ⊆ N t,T

k,Q . (47)

Let N t,T be the set of sequences Γt,T ∈ AT such that O(Γt,T ) does
not have FCR. From Lemma 31, we have

AT
= N t,T ∪

K⋃
k=1

Gt,T
k,Q , ∀t ∈ Z.

From Lemma 28, there exists c1 > 0 such that

Γt,T ∈ N t,T H⇒ ∥Ψ(xI,Γt,T )∥ ≤ lT
Γt,T ∈ Gt,T

k H⇒ ∥Ψ(xI,Γt,T )∥ ≤ |αk|
2T c1T 2(J̄−1)x + lT .

(2) Recall that Ψ(xI,Γt,T ) is a symmetric, positive-definite ma-
trix with dimension n. Hence

Tr
(
Ψ(xI,Γt,T )

)
≤ n

Ψ(xI,Γt,T )
 .

From (42) and the above, we have

ξt,T (x)

≤n sup
ϱt−1


∑
Γt,T

P
(
Γt,T |ϱt−1

)
Ψ(xI,Γt,T )


≤n sup

ϱt−1

∑
Γt,T∈N t,T

P
(
Γt,T |ϱt−1

) Ψ(xI,Γt,T )


+n
K∑

k=1

sup
ϱt−1

∑
Γt,T∈Gt,T

k

P
(
Γt,T |ϱt−1

) Ψ(xI,Γt,T )
 . (48)



400 D.E. Marelli, T. Sui, E.R. Rohr et al. / Automatica 99 (2019) 390–402

Let

At,T = sup
ϱt−1

∑
Γt,T∈N t,T

P
(
Γt,T |ϱt−1

)
,

Bt,T ,k = sup
ϱt−1

∑
Γt,T∈Gt,T

k

P
(
Γt,T |ϱt−1

)
,

Ct,T ,k = sup
ϱt−1

∑
Γt,T∈N t,T

k,Q

P
(
Γt,T |ϱt−1

)
.

From (47), Bt,T ,k ≤ Ct,T ,k. Then, from (48), Lemma28 and the above,
we have

ξt,T (x)

≤nlTAt,T + n
K∑

k=1

(
|αk|

2T c1T 2(J̄−1)x + lT
)
Bt,T ,k

≤nlTAt,T + n
K∑

k=1

(
|αk|

2T c1T 2(J̄−1)x + lT
)
Ct,T ,k

=n
K∑

k=1

(
|αk|

2C1/T
t,T ,k

)T
c1T 2(J̄−1)x

+nlT

(
At,T +

K∑
k=1

Ct,T ,k

)
=βt,T x + ϕt,T , (49)

with

βt,T = nc1T 2(J̄−1)
K∑

k=1

(
|αk|

2C1/T
t,T ,k

)T
,

ϕt,T = nlT

(
At,T +

K∑
k=1

Ct,T ,k

)
.

(3) Recall the definition of ζ from (15). We have

Ct,T ,k = sup
ϱt−1

∑
Γt,T∈N t,T

k,Q

P
(
Γt,T |ϱt−1

)

= sup
ϱt−1

∑
Γt,T ∈N t,T

k,Q
P(Γt,T )̸=0

P
(
Γt,T |ϱt−1

)
P
(
Γt,T

) P
(
Γt,T

)

≤ ζ
∑

Γt,T ∈N t,T
k,Q

P(Γt,T )̸=0

P
(
Γt,T

)
= ζP

(
N t,T

k,Q

)
.

Hence,

βt,T ≤ ζnc1T 2(J̄−1)
K∑

k=1

(
|αk|

2P
(
N t,T

k,Q

)1/T)T

. (50)

(4) From (45),

max
0≤t<τ

lim sup
T→∞

|αk|
2P
(
N t,T

k,Q

)1/T
< 1. (51)

In view of (51), there exists T̄ ∈ N such β̄ ≜ max0≤t<τβt,T̄ < 1. We
also have that, for all 0 ≤ t < τ ,

ϕt,T̄ ≤ ϕ̄ ≜ nlT̄ (1 + K ) . (52)

Let xk+1 = β̄xk + ϕ̄. We have that, for any x0,

lim
k→∞

xk ≤
ϕ̄

1 − β̄
.

Also, from (49), ξt,kT̄ (x0) ≤ xk, for all 0 ≤ t < τ . Hence

max
0≤t<τ

lim sup
k→∞

ξt,kT̄ (x0) ≤ lim
k→∞

xk ≤
ϕ̄

1 − β̄
< ∞,

and the result follows from Lemma 33.

8.3.3. Third step
The main goal of this section is to show that, for any q ∈ N0 and

k ∈ {1, . . . , K },

max
0≤t<τ

lim sup
T→∞

P
(
N t,T

k,q

)1/T
= max

0≤t<τ
lim sup
T→∞

P
(
N t,T

k

)1/T
.

Since in our analysis the value of k is fixed, we remove it from the
notation.

Lemma 36. For any Q ∈ N0 and t ∈ Z

lim sup
T→∞

P
(
N t,T

Q

)1/T
≤ max

0≤i<I
ρ(ς̆t (i, i))1/M ,

with equality holding when Q = 0.

Proof. See the full version (Marelli et al., 2018, Proof of Lemma 46).

Lemma 37. For any q ∈ N0 and t ∈ Z,

lim sup
T→∞

P
(
N t,T

q

)1/T
= lim sup

T→∞

P
(
N t,T )1/T .

Proof. We haveN t,T
⊆ N t,T

q . Hence, using Lemma 36 we obtain,

lim sup
T→∞

P
(
N t,T )1/T

≤ lim sup
T→∞

P
(
N t,T

q

)1/T
≤ ρ

1/M
t = lim sup

T→∞

P
(
N t,T )1/T ,

and the result follows.

We are now ready to prove the sufficient condition in Theo-
rem 14.

Proof of the sufficient condition in Theorem 14. The sufficient
condition in Theorem 14, i.e., (19), follows immediately from Lem-
mas 35 and 37.

9. Conclusion

We stated a necessary and sufficient condition for stability of a
Kalman filter under general assumptions on the linear system and
its randommeasurement equation.We also studied how tonumer-
ically compute this condition for a given system. Furthermore, we
used our result to assess the stability in a networked setting involv-
ing sensor scheduling and packet dropouts. This shows how our
stability condition is a rather general one that could be applied in a
widely range of applications, including those found in networked
control settings.
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