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a b s t r a c t

This work studies mean-square stabilizability via output feedback for a networked linear time invariant
(LTI) feedback system with a non-minimum phase plant. In the feedback system, the control signals are
transmitted to the plant over a set of parallel communication channels with possible packet dropout.
Our goal is to analytically describe intrinsic constraints among channel packet dropout probabilities
and the plant’s characteristics in the mean-square stabilizability of the system. It turns out that this
is a very hard problem. Here, we focus on the case in which the plant has relative degree one and
each non-minimum zero of the plant is only associated with one of control input channels. Then,
the admissible region of packet dropout probabilities in the mean-square stabilizability of the system
is obtained. Moreover, a set of hyper-rectangles in this region is presented in terms of the plant’s
non-minimum phase zeros, unstable poles and Wonham decomposition forms which is related to the
structure of controllable subspace of the plant. A numerical example is presented to illustrate the
fundamental constraints in the mean-square stabilizability of the networked system.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

In the last two decades, stabilization problems for networked
feedback systems have attracted a great amount of research in-
terests (for example, see Fu and Xie (2005), Ishii and Francis
(2003), Nair and Evans (2002), Nair, Fagnani, Zampieri, and Evans
(2007), Vargas, Chen, and Silva (2014) and the references therein).
These works mainly focus on coping with new challenges caused
by limited resources, uncertainties/unreliability in communica-
tion channels. Great success has been achieved in this research
area, in particular, for stabilization via state feedback. In Elia
(2005), networked multi-input multi-output (MIMO) LTI feed-
back systems are studied where control signals are transmitted
to actuators over fading channels. Uncertainties in the chan-
nels are modeled as multiplicative noises and a design scheme
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is presented for mean-square stabilization via state feedback.
Moreover, fundamental constraints in mean-square stabilizability
caused by channel uncertainties are studied for the networked
systems (Elia, 2005). It is shown for a networked single-input
feedback system that the minimum capacity required for mean-
square stabilization via state feedback is determined by the prod-
uct of all the unstable poles of the plant. In Xiao, Xie, and Qiu
(2009), this problem is studied for a networked MIMO system
where the total capacity of the feedback control channels is
given. It is found that the minimum total channel capacity for
the mean-square stabilization problem is also determined by the
product of all the unstable poles of the plant. Some new develop-
ments in stabilization and state estimation for networked systems
over packet dropping channels, where both actuators and sensors
are connected to controllers over communication channels, are
presented in Elia and Eisenbeis (2011).

In this work, we study the mean-square stabilizability via
output feedback for a networked MIMO LTI system where the
control signals are transmitted over packet dropping channels.
The channel uncertainties are also modeled as multiplicative
noises. The difficulties for mean-square stabilization with mul-
tiplicative noises are well recognized (see e.g. Lu and Skelton
(2002)), especially for the case with non-minimum phase zeros
(see e.g., Qi, Chen, Su, and Fu (2017)). Here, we attempt to explore

https://doi.org/10.1016/j.automatica.2019.03.001
0005-1098/© 2019 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.automatica.2019.03.001
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2019.03.001&domain=pdf
mailto:aujylu@scut.edu.cn
mailto:wzhsu@scut.edu.cn
mailto:lyw@gdei.edu.cn
mailto:minyue.fu@newcastle.edu.au
mailto:jichen@cityu.edu.hk
https://doi.org/10.1016/j.automatica.2019.03.001


J. Lu, W. Su, Y. Wu et al. / Automatica 105 (2019) 142–148 143

fundamental constraints among channel packet dropout proba-
bilities and plant’s characteristics and structure in mean-square
stabilizability of the networked system with a non-minimum
phase plant. With this purpose, our study focuses on the case
in which the plant is with relative degree one and each non-
minimum phase zero is associated with one of control input chan-
nels. The largest admissible region of packet dropout probabilities
for mean-square stabilizability of the system is presented. More-
over, a set of hyper-rectangles in this region is found in terms
of plant’s nonminimum phase zeros, unstable poles and Won-
ham decomposition forms (Wonham, 1967). The boundaries of
these hyper-rectangles describe the interactions between channel
packet dropout probabilities and the plant’s characteristics and
structure in this problem. Moreover, to explain the features of
this admissible region comprehensively, we introduce a concept,
blocking packet dropout probability with which data transmitted
over all channels are lost. An upper bound of this probability
allowed to the mean-square stabilizability is presented for the
non-minimum phase networked system.

The remainder of this paper is organized as follows. We pro-
ceed in Section 2 to formulate the problem under study. A use-
ful tool, upper triangular coprime factorization, is developed in
Section 3. Section 4 presents our main results on mean-square
stabilizability via output feedback for the networked systems.
Section 5 concludes the paper.

The notation used throughout this paper is fairly standard. For
any complex number z, we denote its complex conjugate by z̄. For
any vector u, we denote its transpose by uT , conjugate transpose
by u∗ and Euclidean norm by ∥u∥. For any matrix A, the transpose,
conjugate transpose, spectral radius and trace are denoted by AT ,
A∗, ρ(A) and Tr(A), respectively. Denote a state–space model of an

LTI system by
[

A B
C D

]
. For any real rational function matrix

G(z), z ∈ C, define G∼(z) = GT (1/z). Denote the expectation
operator by E{·}. Let the open unit disc be denoted by D := {z ∈

C : |z| < 1}, the closed unit disc by D̄ := {z ∈ C : |z| ≤ 1}, the
unit circle by ∂D, and the complements of D and D̄ by Dc and D̄c ,
respectively. The space L2 is a Hilbert space. For F ,G ∈ L2, the
inner product is defined as

⟨F ,G⟩ =
1
2π

∫ π

−π

Tr
[
F∗(ejθ )G(ejθ )

]
dθ (1)

and the induced norm is defined by ∥G∥2 =
√

⟨G,G⟩. It is well-
known that L2 admits an orthogonal decomposition into the
subspaces H2 and H ⊥

2 . Note that for any F ∈ H ⊥

2 and G ∈ H2,
⟨F ,G⟩ = 0 (see e.g. Zhou, Doyle, and Glover (1995)). Define
the Hardy space H∞ := {G : G(z) bounded and analytic in Dc}. A
subset of H∞, denoted by RH ∞, is the set of all proper stable
rational transfer function matrices in the discrete-time sense.
Note that we have used the same notation ∥ · ∥2 to denote the
corresponding norm for spaces L2, H2 and H ⊥

2 .

2. Problem formulation

The networked feedback system under study is depicted in
Fig. 1. The plant G in the system is a MIMO LTI system and
the signal y(k) is the measurement. The control signal u(k) for
the plant is generated by the feedback controller K . It includes
r entries u1(k), . . . , ur (k) which are sent to the plant G over r
parallel packet dropping channels, respectively. The signal v(k) =

[v1(k), . . . , vr (k)]T is the received control signal at the plant side.
Let

{
αj(k), k = 0, 1, 2, . . . ,∞

}
, j = 1, . . . , r be random pro-

cesses with independent identical Bernoulli probability distribu-
tions, respectively. It indicates the receipt of the control signal
u(k), i.e., αj(k) = 1 if uj(k) is received, otherwise αj(k) = 0. Let the

Fig. 1. A networked feedback system.

Fig. 2. An LTI system with a multiplicative noise.

probability of αj(k) = 0 be pj, pj ∈ (0, 1). The averaged receiving
rate of data packets is E{αj(k)} = 1 − pj in the jth channel. Let
ωj(k) = αj(k)− (1− pj). Subsequently, the received control signal
vj(k) is written as:

vj(k) = αj(k)uj(k) = (1 − pj)uj(k) + ωj(k)uj(k). (2)

It is clear that
{
ωj(k), k = 0, 1, 2, . . . ,∞

}
, j = 1, . . . , r have

independent identical probability distributions, referred to as
i.i.d random processes, respectively. The i.i.d random process{
ωj(k), k = 0, 1, 2, . . . ,∞

}
has zero mean and variance (1−pj)pj.

Now, it is assumed that {αj(k)}, j = 1, . . . , r are mutually
independent. Then, it holds for any i, j ∈ {1, . . . , r}, i ̸= j that
E{ωi(k1)ωj(k2)} = 0, ∀k1, k2 > 0.

Denote the averaged channel gain by µ = diag {1 − p1, . . . ,
1 − pr} and the multiplicative noise in the channels by

ω(k) = diag {ω1(k), . . . , ωr (k)} . (3)

It follows from the discussion above that E{ω(k)} = 0 and
E{ω(k)ωT (k)} = diag{p1(1 − p1), . . . , pr (1 − pr )}. Let ω̄(k) =

µ−1ω(k). From (2), the packet dropout channels in the system
shown in Fig. 1 are modeled as follows (also see Elia (2005)):

v(k) = µu(k) + µω̄(k)u(k). (4)

It is verified from mean and variance of ω(k), k = 0, 1, 2, . . . that

E{ω̄(k)} = 0, E{ω̄(k)ω̄T (k)} = Σ and Σ =

{
p1

1−p1
, . . . ,

pr
1−pr

}
.

Definition 1 (See Willems and Blankenship (1971)). For any ini-
tial state, if it holds for the control signal and the output that
limk→∞ E

{
u(k)uT (k)

}
= 0 and limk→∞ E

{
y(k)yT (k)

}
= 0, then

the feedback system in Fig. 1 is said to be mean-square stable.

To study the mean-square stability for the networked feedback
system in Fig. 1, it is re-diagrammed as an LTI system with a
multiplicative noise as shown in Fig. 2. Let ∆(k) = ω̄(k)u(k). The
channel model (4) is rewritten as v(k) = µu(k) + µ∆(k). Thus,
the transfer function T from ∆(k) to u(k) in the nominal system
is given by

T = (I − KGµ)−1KGµ (5)

where Gµ is considered as a new plant involved with the aver-
aged gain of the channel. Let Tij, i, j = 1, . . . , r be the {i, j}th entry
of the transfer function matrix T and

T̂ =

⎡⎣∥T11∥2
2 · · · ∥T1r∥2

2
· · ·

∥Tr1∥2
2 · · · ∥Trr∥2

2

⎤⎦ . (6)
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Lemma 1 (See Lu and Skelton (2002)). The LTI system with a
multiplicative noise in Fig. 2 is mean-square stable if and only it
holds that

ρ(T̂Σ) < 1. (7)

To design an output feedback controller K which stabilizes
the system in Fig. 2 in the mean-square sense is referred to as
mean-square stabilization via output feedback. If this problem is
solvable, the system is refereed to as mean-square stabilizable.
Denote the packet dropout probability vector by p = (p1, . . . , pr )
and the mean-square stabilizable region of p for the closed-
loop system by P , referred to as the admissible region of the
packet dropout probabilities. Here, we attempt to describe the
admissible region in terms of the characteristics of the plant G.

3. Upper triangular coprime factorization

To study the mean-square stabilizability of the networked
system in Fig. 2, we consider the set of all possible stabiliz-
ing controllers for the plant Gµ, which is described by Youla
parametrization in terms of its coprime factorizations. A useful
tool for the mean-square stabilization design, referred to as upper
triangular coprime factorization, is introduced in this section.

Suppose that the state–space model of the plant Gµ is given by

Gµ =

[
A B
C 0

]
, and {A, B} is controllable, {A, C} is detectable.

Let the right coprime factorization of the plant Gµ be NM−1,
where the factors N and M are from RH ∞. Moreover, N and M
are given by

M = I − F (zI − A + BF )−1B, (8)

N = C(zI − A + BF )−1B, (9)

where F is any stabilizing state feedback gain (for details, see
e.g. Zhou et al. (1995)).

It is shown in Wonham (1967) that, with certain state trans-
formation, the state–space model of Gµ can be transformed into

so-called Wonham decomposition form
[

Aw Bw

Cw 0

]
with

Aw =

⎡⎢⎢⎣
A1 ⋆ · · · ⋆

0 A2 · · · ⋆
...

...
. . .

...

0 0 · · · Ar

⎤⎥⎥⎦ , Bw =

⎡⎢⎢⎣
b1 ⋆ · · · ⋆

0 b2 · · · ⋆
...

...
. . .

...

0 0 · · · br

⎤⎥⎥⎦ ,

where

Aj =

⎡⎢⎢⎢⎣
0 1 0 · · · 0
0 0 1 · · · 0

· · · · · ·

0 0 0 · · · 1
−ajlj −aj(lj−1) −aj(lj−2) · · · −aj1

⎤⎥⎥⎥⎦ , bj =

⎡⎢⎢⎢⎢⎣
0
0
...

0
1

⎤⎥⎥⎥⎥⎦ .

Since the pairs {Aj, bj}, j = 1, . . . , r , are all controllable, it is
always possible to find row vectors fj such that Aj+bjfj is stable for
all j = 1, . . . , r . Now, we select a block diagonal state feedback
gain F = diag {f1, f2, . . . , fr}. Applying Wonham decomposition
forms and the state feedback gain F into (8) and (9) yields a
right coprime factorization Gµ = NM−1 in which the factor M
is an upper triangular matrix. In this work, this coprime factor-
ization is referred to as upper triangular coprime factorization. It is
summarized in the following result.

Lemma 2. For a given plant Gµ, there exist coprime matrices
N and M ∈ RH ∞ such that Gµ = NM−1 and the matrix M is
an upper triangular matrix. Furthermore, the diagonal elements mjj,
j = 1, . . . , r of M are given by

mjj = 1 − fj(zI − Aj + bjfj)−1bj, j = 1, . . . , r.

Taking account of the structures of Aj and bj, we can see that
the numerator polynomial of mjj is the characteristic polynomial
of Aj. Denote the unstable poles of Aj by λj1, . . . , λjlj . Note the
fact that

{
Aj, bj

}
is controllable. By selecting a proper fj, the poles

of mjj are assigned as 1/λj1, . . . , 1/λjlj and all stable poles of Aj.
This yields that the diagonal elements mjj are given by mjj =

(z−λj1)×···×(z−λjlj )

(λ∗
j1z−1)×···×(λ∗

jlj
z−1) . It is clear thatmjj is an inner, i.e.,m∼

jj (z)mjj(z) =

1 (for definition of an inner, see e.g. Zhou et al. (1995)). Denote
it by mj,in. For this particular upper triangular coprime factoriza-
tion, let Min = diag

{
m1,in · · · ,mr,in

}
be referred to as diagonal

inner. Moreover, a balanced realization of mj,in, which is used in
remainder of this work, is denoted by

mj,in =

[
Aj,in Bj,in
Cj,in Dj,in

]
. (10)

In general, for a given plant Gµ, there is a finite number
of Wonham decomposition forms to Gµ in which poles of the
plant could be assigned to different diagonal sub-matrixes in the
state matrix Aw , respectively. This gives a set of upper triangular
coprime factorizations and associated diagonal inners Min for the
plant, which depend on the unstable poles in the diagonal sub-
matrixes in the Wonham decomposition forms. It will be shown
in next section that the interaction between this feature and
non-minimum phase zeros of the plant leads to non-convexity
in analyzing the mean-square stabilizability for a non-minimum
phase system.

4. Mean-square stabilizability

In this section, the mean-square stabilizability via output feed-
back in terms of the admissible region of the packet dropout
probabilities is studied for the system in Fig. 1. In general, this is
a very hard problem since non-minimum phase zeros make the
mean-square stabilization via output feedback to be a non-convex
problem (see for, example Qi et al. (2017)). Our study focuses on
a non-minimum phase plant under Assumption 1.

Assumption 1. The plant G has non-minimum phase zeros
z1, . . . , zr . Each of them is associated with a column of G, i.e. G =

G0diag
{
1 − z1z−1, . . . , 1 − zrz−1

}
where G0 is a minimum phase

system and with relative degree one, i.e., lim|z|→∞ zG(z) is invert-
ible.

At first glance, this assumption is quite artificial. However,
due to multi-path transmission in wireless communication, mul-
tiple paths with different propagation lengths yield a channel
with finite impulse response (FIR) which may include a non-
minimum phase zero. In general, there is as called ‘‘common
sub-channel zero’’ induced by multi-path transmission which
is a difficult issue in channel identification and estimation (for
example see Liang and Ding (2003) and Tugnait (1995)). This is a
case which fits Assumption 1. On the other hand, we attempt to
analytically investigate inherent constraints on the mean-square
stabilizability imposed by interaction between Wonham decom-
position forms and non-minimum phase zeros of the plant for
the networked system. To seek simplicity, the plants under this
assumption are studied. However, the results in this work can
be extended to the case G = G0diag{z−τ1g1, . . . , z−τr gr} where
scale transfer functions gj, j = 1, . . . , r have more than one non-
minimum phase zeros and relative degree zero, τj, j = 1, . . . , r
are positive integers, G0 is a minimum phase system and with
relative degree one, as explained in Remark 2 later.

Now, we consider all stabilizing controllers for the nominal
closed-loop system T . Let NM−1 be a right coprime factorization
of the plant Gµ. And let M̃−1Ñ , with M̃ , Ñ ∈ RH ∞, be the left
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coprime factorization of the plant Gµ associated with NM−1. It is
well known (see Zhou et al., 1995 for details) that the factors N ,
M , Ñ , M̃ with some X , Y , X̃ , Ỹ ∈ RH ∞ satisfy the Bezout Identity
below:[
M Y
N X

][
X̃ −Ỹ

−Ñ M̃

]
= I. (11)

All stabilizing controllers for the nominal system are given

K = (X̃ − QÑ)−1(Ỹ − QM̃), (12)

where Q ∈ RH ∞ is a parameter to be designed. Applying the
controller (12) to the system in Fig. 2, we obtain the nominal
closed-loop system T in (5) as follows:

T = (Y − MQ )Ñ. (13)

According to Lemma 1, the system is mean-square stabilizable if
and only if there exists a Q satisfying the inequality ρ(T̂Σ) < 1.

To this end, we need the following result (see Horn and
Johnson (1985) for details),

Lemma 3. Suppose W is an r × r positive matrix and wij is the
{i, j}th entry of W. Then, it holds that

ρ(W ) = inf
Γ

max
j

r∑
i=1

γ 2
i

γ 2
j

wij

where Γ = diag
{
γ 2
1 , . . . , γ 2

r

}
, with γi > 0, i = 1, . . . , r.

It holds from Lemma 3 and the definition of L2-norm that

ρ(T̂Σ) = inf
Γ

max
j

Γ 1/2Tjγ −1
j

2

2

pj
1 − pj

(14)

where Tj is the jth column of T . According to Lemma 1 and the
spectral radius given in (14), we have the next result straightfor-
wardly.

Lemma 4. The closed-loop system in Fig. 2 is mean-square stabi-
lizable if and only if it holds for some Γ and Q that

0 ≤ pj ≤
1

1 +
Γ 1/2Tjγ −1

j

2

2

, j = 1, . . . , r. (15)

For any given Γ and Q , the inequalities in (15) describe an
admissible hyper-rectangle of the probabilities p1, . . . , pr to the
mean-square stabilizability of the system. Denote this hyper-
rectangle by PΓ (Q ). Now, we study how to find the hyper-
rectangle for a given Γ with the largest volume.

LetMΓ = Γ 1/2MΓ −1/2, ÑΓ = Γ 1/2ÑΓ −1/2, X̃Γ = Γ 1/2X̃Γ −1/2,
and QΓ = Γ 1/2QΓ −1/2. Let the inner–outer factorization of MΓ

be given by MΓ = MΓ inMΓ out where MΓ in, MΓ out are inner and
outer, respectively (see e.g. Zhou et al., 1995).

Lemma 5. For a given Γ , it holds thatΓ 1/2Tjγ −1
j

2

2
=

[
MΓ out (X̃Γ − QΓ ÑΓ ) − M−1

Γ in(∞)
]
ej
2

2

+
[

M−1
Γ in − M−1

Γ in(∞)
]
ej
2
2 . (16)

Proof. From (13), it holds for the system that

Γ 1/2Tjγ −1
j = Γ 1/2(Y − MQ )ÑΓ −1/2ej (17)

where ej is the jth column of the r × r identity matrix I . Applying
Bezout identity (11) into (17) leads to

Γ 1/2Tjγ −1
j = Γ 1/2

[M(X̃ − QÑ) − I]Γ −1/2ej. (18)

We rewrite (18) as Γ 1/2Tjγ −1
j = [MΓ (X̃Γ − QΓ ÑΓ ) − I]ej. Noting

the identity M∼

Γ inMΓ in = I and the definition of L2 norm, we have
thatΓ 1/2Tjγ −1

j

2

2
=

[
MΓ out (X̃Γ − QΓ ÑΓ ) − M−1

Γ in

]
ej
2

2
. (19)

Due to the facts that M−1
Γ in − M−1

Γ in(∞) ∈ H ⊥

2 and MΓ out (X̃Γ −

QΓ ÑΓ ) − M−1
Γ in(∞) ∈ H2, it holds

⟨M−1
Γ in − M−1

Γ in(∞),MΓ out (X̃Γ − QΓ ÑΓ ) − M−1
Γ in(∞)⟩ = 0. (20)

Hence, (16) follows from (19) and (20).
For a non-minimum phase plant, ÑΓ is not invertible in RH ∞.

This leads to certain coupling among
Γ 1/2Tjγ −1

j

2

2
, j = 1, . . . , r ,

which makes maximizing the volume of PΓ (Q ) to be a very hard
problem. However, this problem is solvable under Assumption 1.

Lemma 6. Suppose that the plant G satisfies Assumption 1. For a
given Γ > 0, there exists an optimal QΓ to minimize

Γ 1/2TjΓ −1
j

2

2
,

j = 1, . . . , r, simultaneously. Moreover, it holds that

min
QΓ

Γ 1/2Tjγ −1
j

2

2
=

[
M−1

Γ in − M−1
Γ in(∞)

]
ej
2
2

+

[
MΓ out (zj)X̃Γ (zj) − M−1

Γ in(∞)
]
ej
1 − z∗

j zj
z − zj

2

2
. (21)

Proof. From Assumption 1, an inner–outer factorization of ÑΓ is
given by ÑΓ = ÑΓ outdiag

{
n1,in, . . . , nr,in

}
where ÑΓ out is an outer

of ÑΓ and nj,in =
z−zj
z∗j z−1 , j = 1, . . . , r are inner factors. Thus, from

n∼

j,innj,in = 1, we obtain that[
MΓ out (X̃Γ − QΓ ÑΓ ) − M−1

Γ in(∞)
]
ej
2

2

=

MΓ outQΓ ÑΓ outej −
[
MΓ out X̃Γ − M−1

Γ in(∞)
]
ejn−1

j,in

2

2
. (22)

Subsequently, it follows from fraction decomposition that[
MΓ out X̃Γ − M−1

Γ in(∞)
]
ejn−1

in,j

=

[
MΓ out (zj)X̃Γ (zj) − M−1

Γ in(∞)
]
ej
1 − z∗

j zj
z − zj

+ Lj, (23)

where Lj is the remainder part of this fraction decomposition
which belongs to H2. Note the fact that[
MΓ out (zj)X̃Γ (zj) − M−1

Γ in(∞)
]
ej
1 − z∗

j zj
z − zj

∈ H ⊥

2 .

Then, substituting (23) into (22) leads to[
MΓ out (X̃Γ − QΓ ÑΓ ) − M−1

Γ in(∞)
]
ej
2

2

=

MΓ outQΓ ÑΓ outej − Lj
2

2

+

[
MΓ out (zj)X̃Γ (zj) − M−1

Γ in(∞)
]
ej
1 − z∗

j zj
z − zj

2

2
. (24)

Let L = [L1 . . . Lr ]. Select QΓ = Q̂Γ = M−1
Γ outLÑ

−1
Γ out or Q =

Q̂ (Γ ) = Γ −1/2Q̂Γ Γ 1/2. It is clear from (16) and (24) that Q̂Γ

minimizes
Γ 1/2Tjγ −1

j

2

2
, j = 1, . . . , r simultaneously and (21)

holds.

Remark 1. For a given Γ , the optimal Q̂Γ (or Q̂ (Γ )) yields the
largest admissible hyper-rectangle. Denote this hyper-rectangle
by P̂Γ . It holds from (15) and Lemma 6 that for any Q ∈ RH ∞,
PΓ (Q ) ⊆ P̂Γ .
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Remark 2. The key to the proof for Lemma 6 is to decompose[
MΓ out X̃Γ − M−1

Γ in(∞)
]
ejn−1

in,j into two terms: One belongs to H2

and the other belongs to H ⊥

2 as shown by (23). This decompo-
sition also holds for the case when each channel has more than
one non-minimum phase zero and a relative degree greater than
one. Hence, the result in Lemma 6 can be extended to this case.

The following result is straightforwardly from Lemma 6.

Lemma 7. Suppose that the plant G satisfies Assumption 1. The
admissible region of the packet dropout probabilities is given by
P = ∪Γ P̂Γ . For given packet dropout probabilities p1, . . . , pr ,
the optimal solution Q ∗ in minimizing ρ(T̂Σ) belongs to the set{
Q̂ (Γ ) : Γ > 0

}
.

Now, we are ready to discuss the admissible region P in terms
of the plant’s characteristics. Denote a balanced realization of

MΓ in by MΓ in =

[
AΓ in BΓ in
CΓ in DΓ in

]
.

Theorem 1. Suppose that the plant G satisfies Assumption 1. The
system in Fig. 1 is mean-square stabilizable if and only if the packet
dropout probability vector p = (p1, . . . , pr ) ∈ P and P is given by

P =

{
p = (p1, . . . , pr )

⏐⏐⏐pj <
(
eTj ΦΓ ,jej + 1

)−1

j = 1, . . . , r, Γ > 0
}

(25)

where ΦΓ ,j = D∗−1
Γ in B

∗

Γ inN
∗

j,in(A
∗−1
Γ in )Nj,in(A∗−1

Γ in )BΓ inD−1
Γ in and Nj,in

(A∗−1
Γ in ) = (z∗

j A
∗−1
Γ in − I)(zjI − A∗−1

Γ in )
−1.

The proof of this theorem is given in Appendix.
With a given coprime factorization of the plant Gµ, Lemma 7

and Theorem 1 describe the admissible region P of the packet
dropout probabilities for mean-square stabilizability of the sys-
tem. Since for all individual coprime factorizations of the plant,
the controller sets given by (12) are equivalent up to an invert-
ible factor of Q , these results are independent of the coprime
factorization of the plant. In general, the admissible region P

is non-convex. Now, a convex sub-region of P is studied by
using the structural information of a particular upper triangular
coprime factorization of the plant Gµ. As studied in the preceding
section, this coprime factorization is generated from one of the
plant’s Wonham decomposition forms and its diagonal inner Min
describes the key features of the Wonham decomposition form.
With balanced realizations of Min’s components given in (10), this
subregion is described below.

Theorem 2. Suppose that the plant G satisfies Assumption 1. Then,
the system in Fig. 1 is mean-square stabilizable if, for all j = 1, . . . , r,
the packet dropout probability pj in jth channel satisfies:

pj ≤ p̂j (26)

where p̂−1
j = D∗−1

j,in B∗

j,inN
∗

j,in(A
∗−1
j,in )Nj,in(A∗−1

j,in )Bj,inD−1
j,in + 1.

The proof of this theorem is presented in Su, Lu, Wu, Fu, and
Chen (2018).

In general, there are more than one Wonham decomposition
form for the plant. Denote the diagonal inner associated with the
sth Wonham decomposition form by Ms,in and its diagonal en-
tries by ms1,in, . . . ,msr,in, i.e., Ms,in = diag{ms1,in, . . . ,msr,in}. Let[

Asj,in Bsj,in
Csj,in Dsj,in

]
be a balance realization of msj,in, j = 1, . . . , r .

Applying Theorem 2 with the diagonal inner yields an admissible
hyper-rectangle Ps ⊆ P for the packet dropout probabilities.

Corollary 1. If the packet dropout probability vector (p1, . . . , pr )
is in the union of all Ps, i.e.,

(p1, . . . , pr ) ∈ ∪
s
Ps, (27)

then the networked feedback system in Fig. 1 is mean-square stabi-
lizable.

Proof. Since the admissible region P is independent of coprime
factorization NM−1 of the plant, repeatedly applying Theorem 2
with balanced realizations of the diagonal inners yields a set
of hyper-rectangles. Each of these hyper-rectangles is associ-
ated with one of the plant’s Wonham decomposition forms and
belongs to P . So, the union of these hyper-rectangles belongs
to P .

If the plant G has only one Wonham decomposition form,
the mean-square stabilizable hyper-rectangles merge to one
hyper-rectangle. Eq. (27) becomes the necessary and sufficient
condition for the mean-square stabilizability of the system. In
particular, for a SIMO plant G, there is only one Wonham de-
composition form, the admissible region and hyper-rectangle
studied in Theorems 1 and 2, respectively, degrade to a com-
mon interval in one dimension space. In this case, Theorem 2
presents a necessary and sufficient condition for the mean-square
stabilizability of the system, i.e., p̂1 given by the theorem is
the supremum of the packet dropout probability which is al-
lowed for the mean-square stabilizability of the network feedback
system. For a SISO plant with one unstable pole λ1 and one
non-minimum phase zero z1, this supremum is given by p̂1 =[
(λ2

1 − 1)(z1λ1 − 1)2/(z1 − λ1)2 + 1
]−1

.

Notice the fact that the product
∏r

j=1 pj is the probability with
which data packets over all channels are dropped simultaneously.
In this work, it is referred to as the blocking packet dropout
probability. The volume of a hyper-rectangle Ps is the maximum
of the blocking packet dropout probability for all (p1, . . . , pr ) ∈

Ps. Thus, it leads to:

Corollary 2. If the blocking packet dropout probability
∏r

j=1 pj of
the channels satisfies the inequality

r∏
j=1

pj < max
s

⎧⎨⎩
r∏
j

p̂s,j

⎫⎬⎭ , (28)

then, there exists a set of data dropout probabilities p1, . . . , pr with
which the networked feedback system in Fig. 1 is mean-square
stabilizable.

Remark 3. For a minimum phase plant, Corollary 2 is a necessary
and sufficient condition and the upper bound of the blocking
packet dropout probability is determined by the product of the
plant’s unstable poles (see Su et al. (2018) for more details).

Example 1. Suppose that the plant in the networked feedback
system shown in Fig. 1. is a two-input two-output system. The
transfer function of the plant is given as below:

G =

⎡⎢⎢⎣
(z − 0.25)(z + 2)
z(z − 2)(z + 1.5)

z − 1.5
z(z + 1.5)

z + 2
z(z − 2)

(2z − 2.75)(z − 1.5)
z(z − 0.25)(z − 2.5)

⎤⎥⎥⎦ .
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Fig. 3. Mean-square stabilizable region for data dropout rate.

Let p1 and p2 be packet dropout probabilities of two channels, re-
spectively. Applying Theorem 1, we obtain the admissible region
of the packet dropout probabilities, enclosed by the blue curve
V11V1V2V22 and axes as shown in Fig. 3, numerically.

There are two Wonham decomposition forms for the plant.
Two diagonal inners associated with these forms are M1,in =

diag
{

z−2
2z−1 ,

(z+1.5)(z−2.5)
(−1.5z−1)(2.5z−1)

}
and M2,in = diag

{
(z−2)(z+1.5)

(2z−1)(−1.5z−1) ,

z−2.5
2.5z−1

}
, respectively. According to Theorem 2, the admissible

subregion of (p1, p2) is obtained from a balance realization ofM1,in
for p1 and p2, which is the rectangle OV11V1V12 shown in Fig. 3.
Similarly, from M2,in, the other admissible rectangle OV21V2V22
shown in Fig. 3 is obtained for the packet dropout probability
vector. Areas of these two rectangles are 2.50 × 10−3, 1.17 ×

10−3, respectively. It is worth noting that, all rectangles with area
2.50× 10−3 are bounded by the green curve p1p2 = 2.50× 10−3.
While, all rectangles with area 1.17 × 10−3 are bounded by the
green curve p1p2 = 1.17×10−3. The upper bound of the blocking
packet dropout probability for mean-square stabilizabilty of the
system is 2.50×10−3. If the plant had only one Wonham decom-
position form, these two green curves would merge to one curve
and the two rectangles would merge to one rectangle as well.

5. Conclusion

This work studies the mean-square stabilizability via output
feedback for a networked MIMO feedback system over several
parallel packet dropping communication channels. The admissi-
ble region of packet dropout probabilities is discussed for the
mean-square stabilizability of a non-minimum phase networked
system. The trade-off among these packet dropout probabilities,
plant’s characteristics and structure in the mean-square stabiliz-
ability of the system is presented by an upper bound of blocking
packet dropout probability in the region.

Appendix. Proof of Theorem 1

Taking account to (15) and Lemma 7, we can see that the
key in proving this theorem is to find the expression of minQΓΓ 1/2Tjγ −1

j

2

2
in terms of the balance realization of MΓ in and the

non-minimum phase zeros. Now, we consider the first term in
the right side of (21). Since MΓ in is an inner, it holds that[

M−1
Γ in − M−1

Γ in(∞)
]
ej
2
2 =

[
I − MΓ inM−1

Γ in(∞)
]
ej
2
2 .

Applying the balanced realization, we have [MΓ inM−1
Γ in(∞) −

I]ej = CΓ in (zI − AΓ in)
−1 BΓ inD−1

Γ inej. According to Corollary 21.19
and Remark 21.6 in Zhou et al. (1995), it holds that[

I − MΓ inM−1
Γ in(∞)

]
ej
2
2 = eTj D

∗−1
Γ in B

∗

Γ inBΓ inD−1
Γ inej. (A.1)

On the other hand, it follows from Bezout identity (11) and
Assumption 1 that MΓ (zj)X̃Γ (zj)ej = ej. Applying the inner–outer
factorization MΓ (zj) = MΓ in(zj)MΓ out (zj), we have MΓ out (zj)X̃Γ (zj)
ej = M−1

Γ in(zj)ej. Hence, the second term of the right hand side in
(21) is written as follows:[

M−1
Γ in(zj) − M−1

Γ in(∞)
]
ej
1 − z∗

j zj
z − zj

2

2

= (z∗

j zj − 1)
[

M−1
Γ in(zj) − M−1

Γ in(∞)
]
ej
2

. (A.2)

By applying Corollary 21.19 and Lemma 3.15 in Zhou et al. (1995),
we have that

M−1
Γ in(zj) − M−1

Γ in(∞) = −D−1
Γ inCΓ in(zjI − A∗−1

Γ in )
−1BΓ inD−1

Γ in. (A.3)

Substituting (A.1), (A.2), (A.3) into (21) leads to

min
QΓ

Γ 1/2Tjγ −1
j

2

2

=eTj D
∗−1
Γ in B

∗

Γ in(z
∗

j I − A−1
Γ in)

−1 [
(z∗

j zj − 1)C∗

Γ inD
∗−1
Γ in D

−1
Γ inCΓ in

+ (z∗

j I − A−1
Γ in)(zjI − A∗−1

Γ in )
]
(zjI − A∗−1

Γ in )
−1BΓ inD−1

Γ inej

It follows from Corollary 21.19 in Zhou et al. (1995) that C∗

Γ inD
∗−1
Γ in

D−1
Γ inCΓ in + I = A−1

Γ inA
∗−1
Γ in . This leads that

min
QΓ

Γ 1/2Tjγ −1
j

2

2
= eTj D

∗−1
Γ in B

∗

Γ in(z
∗

j I − A−1
Γ in)

−1(zjA−1
Γ in − I)

× (z∗

j A
∗−1
Γ in − I)(zjI − A∗−1

Γ in )
−1BΓ inD−1

Γ inej. (A.4)

Consequently, from (15) and (A.4), we obtain that the system is
mean-square stabilizable if and only if (p1, . . . , pr ) ∈ P .

References

Elia, N. (2005). Remote stabilization over fading channels. Systems & Control
Letters, 54(3), 237–249.

Elia, N., & Eisenbeis, J. N. (2011). Limitations of of linear control over packet
drop networks. IEEE Transactions on Automatic Control, 56(4), 826–841.

Fu, M., & Xie, L. (2005). The sector bound approach to quantized feedback
control. IEEE Transactions on Automatic Control, 50(11), 1698–1711.

Horn, R., & Johnson, C. (1985). Matrix analysis. Cambridge University Press.
Ishii, H., & Francis, B. (2003). Quadratic stabilization of sampled-data systems

with quantization. Automatica, 39(10), 1793–1800.
Liang, J., & Ding, Z. (2003). Nonminimum-phase fir channel estimation us-

ing cumulant matrix pencils. IEEE Transaction on Singal Processing, 51(9),
2310–2320.

Lu, J., & Skelton, R. E. (2002). Mean-square small gain theorem for stochastic
control: discrete-time case. IEEE Transactions on Automatic Control, 47(3),
490–494.

Nair, G., & Evans, R. (2002). Mean square stabilisability of stochastic linear
systems with data rate constraints. Proc. 41st IEEE conference on decision and
control, 1632–1637.

Nair, G., Fagnani, F., Zampieri, S., & Evans, R. (2007). Feedback control under
data rate constraints: an overview. Proceedings of the IEEE, 95(1), 108–137.

Qi, T., Chen, J., Su, W., & Fu, M. (2017). Control under stochastic multiplica-
tive uncertainties: Part I, fundamental conditions of stabilizability. IEEE
Transactions on Automatic Control, 62(3), 1269–1284.

Su, W., Lu, J., Wu, Y., Fu, M., & Chen, J. (2018). Mean-square Stabilizability via
Output Feedback for a Non-minimum Phase Networked Feedback System,
http://arxiv.org/abs/1810.12818.

Tugnait, J. K. (1995). On blind identifiability of multipath channels using frac-
tional sampling and second-order cyclostationary statistics. IEEE Transaction
on Information Theory, 41(1), 308–311.

Vargas, F. J., Chen, J., & Silva, E. I. (2014). On stabilizability of mimo systems over
parallel noisy channels. Proc. 53rd IEEE conference on decision and control,
6074–6079.

Willems, J., & Blankenship, G. (1971). Frequency domain stability criteria for
stochastic systems. IEEE Transactions on Automatic Control, 16(4), 292–299.

http://refhub.elsevier.com/S0005-1098(19)30122-0/sb1
http://refhub.elsevier.com/S0005-1098(19)30122-0/sb1
http://refhub.elsevier.com/S0005-1098(19)30122-0/sb1
http://refhub.elsevier.com/S0005-1098(19)30122-0/sb2
http://refhub.elsevier.com/S0005-1098(19)30122-0/sb2
http://refhub.elsevier.com/S0005-1098(19)30122-0/sb2
http://refhub.elsevier.com/S0005-1098(19)30122-0/sb3
http://refhub.elsevier.com/S0005-1098(19)30122-0/sb3
http://refhub.elsevier.com/S0005-1098(19)30122-0/sb3
http://refhub.elsevier.com/S0005-1098(19)30122-0/sb4
http://refhub.elsevier.com/S0005-1098(19)30122-0/sb5
http://refhub.elsevier.com/S0005-1098(19)30122-0/sb5
http://refhub.elsevier.com/S0005-1098(19)30122-0/sb5
http://refhub.elsevier.com/S0005-1098(19)30122-0/sb6
http://refhub.elsevier.com/S0005-1098(19)30122-0/sb6
http://refhub.elsevier.com/S0005-1098(19)30122-0/sb6
http://refhub.elsevier.com/S0005-1098(19)30122-0/sb6
http://refhub.elsevier.com/S0005-1098(19)30122-0/sb6
http://refhub.elsevier.com/S0005-1098(19)30122-0/sb7
http://refhub.elsevier.com/S0005-1098(19)30122-0/sb7
http://refhub.elsevier.com/S0005-1098(19)30122-0/sb7
http://refhub.elsevier.com/S0005-1098(19)30122-0/sb7
http://refhub.elsevier.com/S0005-1098(19)30122-0/sb7
http://refhub.elsevier.com/S0005-1098(19)30122-0/sb8
http://refhub.elsevier.com/S0005-1098(19)30122-0/sb8
http://refhub.elsevier.com/S0005-1098(19)30122-0/sb8
http://refhub.elsevier.com/S0005-1098(19)30122-0/sb8
http://refhub.elsevier.com/S0005-1098(19)30122-0/sb8
http://refhub.elsevier.com/S0005-1098(19)30122-0/sb9
http://refhub.elsevier.com/S0005-1098(19)30122-0/sb9
http://refhub.elsevier.com/S0005-1098(19)30122-0/sb9
http://refhub.elsevier.com/S0005-1098(19)30122-0/sb10
http://refhub.elsevier.com/S0005-1098(19)30122-0/sb10
http://refhub.elsevier.com/S0005-1098(19)30122-0/sb10
http://refhub.elsevier.com/S0005-1098(19)30122-0/sb10
http://refhub.elsevier.com/S0005-1098(19)30122-0/sb10
http://arxiv.org/abs/1810.12818
http://refhub.elsevier.com/S0005-1098(19)30122-0/sb12
http://refhub.elsevier.com/S0005-1098(19)30122-0/sb12
http://refhub.elsevier.com/S0005-1098(19)30122-0/sb12
http://refhub.elsevier.com/S0005-1098(19)30122-0/sb12
http://refhub.elsevier.com/S0005-1098(19)30122-0/sb12
http://refhub.elsevier.com/S0005-1098(19)30122-0/sb13
http://refhub.elsevier.com/S0005-1098(19)30122-0/sb13
http://refhub.elsevier.com/S0005-1098(19)30122-0/sb13
http://refhub.elsevier.com/S0005-1098(19)30122-0/sb13
http://refhub.elsevier.com/S0005-1098(19)30122-0/sb13
http://refhub.elsevier.com/S0005-1098(19)30122-0/sb14
http://refhub.elsevier.com/S0005-1098(19)30122-0/sb14
http://refhub.elsevier.com/S0005-1098(19)30122-0/sb14


148 J. Lu, W. Su, Y. Wu et al. / Automatica 105 (2019) 142–148

Wonham, W. M. (1967). On pole assignment in multi-input controllable linear
systems. IEEE Transactions on Automatic Control, 12(6), 660–665.

Xiao, N., Xie, L., & Qiu, L. (2009). Proceedings of the 28th IEEE conference on
decision and control, Mean square stabilization of multi-input systems over
stochastic multiplicative channels.

Zhou, K., Doyle, J., & Glover, K. (1995). Robust and optimal control. Prentice Hall.

Jieying Lu was born in Hunan, China. She received
the B.E. degree in Automation Engineering from South
China University of Technology (SCUT) in 2012 and M.E.
in Systems Engineering from SCUT in 2016, respec-
tively. Currently, she is a Ph.D. candidate in Control
Theory and Control Engineering at SCUT. Her areas
of research interest include networked control system,
robust and optimal control.

Weizhou Su received the B.Eng. and M.Eng. degrees
in automatic control engineering from the South-
east University, Nanjing, Jiangsu, China, in 1983 and
1986, respectively, the M.Eng. degree in electrical
and electronic engineering from Nanyang Technological
University, in 1996, and the Ph.D. degree in electrical
engineering from the University of Newcastle, Newcas-
tle, NSW, Australia, in 2000.

From 2000 to 2004, he held research positions in
the Department of Electrical and Electronic Engineer-
ing, Hong Kong University of Science and Technology,

Hong Kong, China; the School of QMMS, University of Western Sydney, Syd-
ney, Australia, respectively. He joined the School of Automation Science and
Engineering, South China University of Technology, Guangzhou, China, in 2004
where he is currently a full Professor. His research interests include networked
control system, robust control, fundamental performance limitation of feedback
control, and signal processing.

Yilin WU was born in Sichuan, China. He received the
B.S. degree in Mechanical engineering from University
of South China (USC) in 1992; the M.S. degree and the
Ph.D. degree from the College of Automation Science
and Engineering, South China University of Technology
(SCUT), China, in 2003 and 2016, respectively. He is
currently a professor with the Department of Computer
Science, Guangdong University of Education (GDEI). His
research interests include complex systems modeling,
networked control systems, fundamental performance
limitation of feedback control, and distributed signal

processing.

Minyue Fu received his Bachelor’s degree in electri-
cal engineering from the University of Science and
Technology of China, Hefei, China, in 1982, and M.S.
and Ph.D. degrees in electrical engineering from the
University of Wisconsin–Madison in 1983 and 1987,
respectively. From 1983 to 1987, he held a teaching
assistantship and a research assistantship at the Uni-
versity of Wisconsin–Madison. From 1987 to 1989, he
served as an Assistant Professor in the Department of
Electrical and Computer Engineering, Wayne State Uni-
versity, Detroit, Michigan. He joined the Department

of Electrical and Computer Engineering, University of Newcastle, Australia, in
1989. Currently, he is a Chair Professor in Electrical Engineering. In addition, he
has been a Visiting Professor at Nanyang Technological University, Singapore,
Changiang Professor at Shandong University, a Distinguished Scholar at Zhejiang
University and Guangdong University of Technology, China. He is a Fellow
of the IEEE, Fellow of Engineers Australia, and Fellow of Chinese Association
of Automation. His main research interests include control systems, signal
processing and communications. He has been an Associate Editor for the IEEE
Transactions on Automatic Control, IEEE Transactions on Signal Processing,
Automatica and Journal of Optimization and Engineering.

Jie Chen is a Chair Professor in the Department of
Electronic Engineering, City University of Hong Kong,
Hong Kong, China. He received the B.S. degree in
aerospace engineering from Northwestern Polytechnic
University, Xian, China in 1982, the M.S.E. degree in
electrical engineering, the M.A. degree in mathematics,
and the Ph.D. degree in electrical engineering, all from
The University of Michigan, Ann Arbor, Michigan, in
1985, 1987, and 1990, respectively.

Prior to joining City University, he was with Uni-
versity of California, Riverside, California from 1994 to

2014, where he was a Professor and served as Professor and Chair for the
Department of Electrical Engineering from 2001 to 2006. His main research
interests are in the areas of networked control, information theory, multi-
agent systems, linear multivariable systems theory, system identification, robust
control, and optimization. He is a Fellow of IEEE, a Fellow of AAAS, a Fellow
of IFAC, a Yangtze Scholar/Chair Professor of China, and a recipient of 1996 US
National Science Foundation CAREER Award, 2004 SICE International Award, and
2006 Natural Science Foundation of China Outstanding Overseas Young Scholar
Award. He served on a number of journal editorial boards, as an Associate
Editor and a Guest Editor. He was also the founding Editor-in-Chief for Journal
of Control Science and Engineering. He currently serves as an Associate Editor
for SIAM Journal on Control and Optimization, International Journal of Robust
and Nonlinear Control. He served as the Program Co-Chair for the 2016 Chinese
Control Conference and presently as the General Chair for 2019 IEEE Conference
on Control Technology and Applications. He was an IEEE Control Systems Society
(CSS) Distinguished Lecturer, a member on IEEE CSS Board of Governors and
served as IEEE CSS Chapter Activities Chair.

http://refhub.elsevier.com/S0005-1098(19)30122-0/sb15
http://refhub.elsevier.com/S0005-1098(19)30122-0/sb15
http://refhub.elsevier.com/S0005-1098(19)30122-0/sb15
http://refhub.elsevier.com/S0005-1098(19)30122-0/sb16
http://refhub.elsevier.com/S0005-1098(19)30122-0/sb16
http://refhub.elsevier.com/S0005-1098(19)30122-0/sb16
http://refhub.elsevier.com/S0005-1098(19)30122-0/sb16
http://refhub.elsevier.com/S0005-1098(19)30122-0/sb16
http://refhub.elsevier.com/S0005-1098(19)30122-0/sb17

	Mean-square stabilizability via output feedback for a non-minimum phase networked feedback system
	Introduction
	Problem formulation
	Upper triangular coprime factorization
	Mean-square stabilizability
	Conclusion
	Appendix Proof of Theorem 1
	References


