
Automatica 111 (2020) 108561

Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Multi-sensor state estimation over lossy channels using coded
measurements✩

Tianju Sui a, Damian Marelli b,d,∗, Ximing Sun a, Minyue Fu c,b

a School of Control Science and Engineering, Dalian University of Technology, Dalian, China
b School of Automation, Guangdong University of Technology, Guangzhou, China
c School of Electrical Engineering and Computer Science, The University of Newcastle, NSW 2308, Australia
d French Argentine International Center for Information and Systems Sciences, National Scientific and Technical Research Council, Argentina

a r t i c l e i n f o

Article history:
Received 13 November 2018
Received in revised form 29 May 2019
Accepted 12 August 2019
Available online 9 October 2019

Keywords:
Networked state estimation
Sensor fusion
Packet loss
Minimummean-square error

a b s t r a c t

This paper focuses on a networked state estimation problem for a spatially large linear system with
a distributed array of sensors, each of which offers partial state measurements, and the transmission
is lossy. We propose a measurement coding scheme with two goals. Firstly, it permits adjusting the
communication requirements by controlling the dimension of the vector transmitted by each sensor
to the central estimator. Secondly, for a given communication requirement, the scheme is optimal,
within the family of linear causal coders, in the sense that the weakest channel condition is required
to guarantee the stability of the estimator. For this coding scheme, we derive the minimum mean-
square error (MMSE) state estimator, and state a necessary and sufficient condition with a trivial gap,
for its stability. We also derive a sufficient but easily verifiable stability condition, and quantify the
advantage offered by the proposed coding scheme. Finally, simulations results are presented to confirm
our claims.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

This work is concerned with the sensor fusion problem over
lossy channels. Each sensor obtains a partial state measurement
subject to some additive noise, and transmits it to a remote
(central) estimator through a communication network involving
packet loss. The estimator computes a minimum mean-square
error (MMSE) estimate of the system state using the received
measurements. The configuration is illustrated in Fig. 1. This
setup is motivated by a wide range of applications including net-
worked control systems, multi-agent systems, smart electricity
networks and sensor networks (Gupta, Chung, Hassibi, & Murray,
2006; Liu & Goldsmith, 2004).

The problem of networked state estimation, based on MMSE
estimation, has received significant attention in recent years
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(Hespanha, Naghshtabrizi, & Xu, 2007; Plarre & Bullo, 2009;
Schenato, Sinopoli, Franceschetti, Poolla, & Sastry, 2007; Sinop-
oli et al., 2004). One of the major difficulties comes from the
packet loss occurring while transmitting sensor measurements. A
central problem consists in determining the packet loss statistics
required to guarantee the stability of the MMSE estimator. This
was done in Sinopoli et al. (2004) for the case in which the packet
loss is independent and identically distributed. This result has
been generalized to different packet loss models and algebraic
system’s structure in Huang and Dey (2007), Mo and Sinopoli
(2008, 2010, 2012), Rohr, Marelli, and Fu (2011, 2014), Xie and
Xie (2007) and You, Fu, and Xie (2011). The most general result
within this line was recently reported in Marelli, Sui, Rohr, and
Fu (2019), where the authors state a conceptional necessary and
sufficient condition with a trivial gap, for general packet loss
statistics and system structure.

The above works assume that raw measurements without
preprocessing are transmitted to the estimator. It turns out that
the use of preprocessing can relax the channel requirements, in
terms of channel statistics, needed to guarantee stability (Okano
& Ishii, 2017; Smarra, Benedetto, & Innocenzo, 2018). For ex-
ample, in Schenato (2008), the sensor locally obtains a MMSE
estimate and transmits it instead of its measurement. A drawback
of this approach is that this increases the amount of communica-
tions, because the estimated state needs to be transmitted, which
typically has a higher dimension than the raw measurement. To
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Fig. 1. Networked state estimation using raw measurements.

rectify this, a coded measurement (Erez, Kim, Xu, E., & Medard,
2014; Koetter & Medard, 2003) is built by using a linear combi-
nation of the most recent measurements within a coding window,
and this is transmitted instead of the raw measurement (He, Han,
Wang, & Shi, 2013; Sui, You, Fu and Marelli, 2015).

The works described so far consider the case in which a single
sensor transmits over a single channel. In many applications,
the system whose state needs to be estimated covers a wide
geographical area. Such a large-scale system is typically equipped
with multiple sensors for measurements. The state estimation
problem resulting from this setup has been studied in a number
of works (Deshmukh, Natarajan, & Pahwa, 2014; Gatsis, Pajic,
Ribeiro, & Pappas, 2015; He, Wang, Wang, & Zhou, 2014; Hu,
Wang, & Gao, 2013; Hu, Wang, Gao, & Stergioulas, 2012; Quevedo,
Ahlén, & Johansson, 2013; Wei, Wang, & Shu, 2009). In a sensor
network setup, all the sensors can transmit their measurements
to a central estimator over different channels, each with its own
packet loss statistics. Conditions for guaranteeing stability in this
network setup can be very complex, and may be very strong for
certain systems, as reported in Deshmukh et al. (2014), Quevedo
et al. (2013), Sui, You and Fu (2015) and Wei et al. (2009).

In Marelli et al. (2019), the authors derived a necessary and
sufficient condition, having a trivial gap, for the stability of a
MMSE estimator. This condition is stated in very general terms,
so it can be applied in a wide range of settings. In the present
work, we make use of this result to design a MMSE estima-
tor for a multi-sensor network problem. Our contributions are
the following: (1) In the context of this work, the stability of
the estimator depends on how reliable are the communication
channels between each sensor and the estimator. We propose a
coding scheme that, while reducing the amount of transmitted
data, i.e., the dimension of the coded vector transmitted by each
sensor at each time step, achieves the weakest requirement on
the channel reliability required to guarantee stability. (2) While
the aforementioned condition is necessary and sufficient, its com-
putation can be mathematically involved is some cases. To go
around this, we also provide a sufficient condition for easier com-
putation. (3) We quantify the gain, in terms of channel reliability,
offered by the proposed coding scheme, when compared with the
scheme using raw measurements.

The rest of the paper is organized as follows. In Section 2 we
describe the system, channel and coding models. In
Section 3, we derive the expression of the state estimator using
coded measurements. In Section 4.1 we provide a necessary and
sufficient condition with a trivial gap for the stability of the
MMSE estimator. In Section 4.2 we derive a simpler sufficient
condition for its stability. In Section 5 we derive a necessary and
sufficient condition with a trivial gap for the stability of the MMSE
estimator using raw measurements, and quantify the advantage

offered by the proposed coding scheme. We give simulation
results illustrating our claims in Section 6, and give concluding
remarks in Section 7. To improve readability, some proofs are
given in Appendix.

Notation 1. The sets of real and natural numbers are denoted by R
and N, respectively. We use P(S) to denote the probability of the set
S and E(x) to denote the expected value of the random variable x.
For a vector or matrix x we use x⊤ to denote its transpose. We use
Id to denote the d-dimensional identity matrix and I to denote the
same matrix when the dimension is clear from the context.

2. Problem statement

Consider a discrete-time stochastic system

xt+1 = Axt + wt , (1)

where xt ∈ Rn is the system state and wt ∼ N (0,Q ) is white
Gaussian noise with Q ≥ 0. The initial time is t0 and the initial
state is xt0 ∼ N

(
x̄t0 , Pt0

)
, with Pt0 ≥ 0. A sensor network with

I nodes, as depicted in Fig. 1, is used to measure the state in a
distributed manner. For each i ∈ {1, . . . , I}, the measurement
yit ∈ Rmi obtained at sensor i is given by

yit = C ixt + vi
t , (2)

where vi
t ∼ N

(
0, Ri

)
is mi-dimensional white Gaussian noise

with Ri > 0. Let m =
∑I

i=1 mi and C⊤
=
[
C1⊤, . . . , C I⊤

]
∈ Rn×m.

We assume that (A, C) is detectable and x0, wt , v
i
t are jointly

independent.
We are concerned with a networked estimation system, where

each sensor is linked to the central estimator through a communi-
cation network. Due to the channel unreliability, the transmitted
packets may be randomly lost. We use a binary random process
γ i
t to describe the packet loss process. That is, γ i

t = 1 indicates
that the packet from sensor i is successfully delivered to the
estimator at time t , and γ i

t = 0 indicates that the packet is lost.
We assume that the random variables γ i

t , t ∈ N, i ∈ {1, . . . , I}
are independent and identically distributed (i.i.d.). Also, for each
i ∈ {1, . . . , I}, pi = E

[
γ i
t

]
.

As a consequence of packet loss, the estimator may fail to gen-
erate a stable state estimate. To improve the stability, instead of
transmitting the raw measurements from each sensor, we encode
them before transmission, as depicted in Fig. 2. More precisely, for
a given coding window length L ∈ N, the coded measurement of
sensor i at time t , after going through the channel, is given by

z it =

L∑
l=1

γ i
tH

i
t,ly

i
t−l+1 ∈ Rci , (3)

for some coding weight matrices H i
t,l ∈ Rci×mi , l ∈ {1, . . . , L}, with

ci ≤ mi, and the convention that yt = 0 for t ≤ t0.

Remark 2. The coding scheme described in (3) allows reducing
the dimension of the transmitted information from mi to ci, to
the extent to which even a scalar (ci = 1) can be transmitted.
This obviously reduces the communication load. We will show in
Section 5 that the coding scheme can improve the stability of the
state estimator with any choice of 1 ≤ ci ≤ mi.

To represent the packet loss process for all sensors at time t ,
we introduce

Γt = diag
{
Γ 1
t , . . . , Γ I

t

}
∈ D,

Γ i
t = γ i

t Ici ,
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Fig. 2. Networked state estimation using coded sensor measurements.

where D consists of the 2I matrices resulting from all possible
values of γ i

t . The information available to the estimator from time
t0 to t is then given by

Ft0,t =
{(

Γt0 , Γt0zt0
)
, . . . , (Γt , Γtzt)

}
,

where z⊤
t =

[
z1⊤t , . . . , z I⊤t

]
. Using this information, the MMSE

estimator computes

x̂t|t−1
(
Ft0,t

)
= E

[
xt |Ft0,t

]
.

Its prediction error covariance is defined by

Pt|t−1
(
Ft0,t

)
= E

[(
xt − x̂t|t−1

) (
xt − x̂t|t−1

)⊤
|Ft0,t

]
.

Definition 3. We say that the estimator is stable if (Sinopoli et al.,
2004)

sup
t0 ∈ Z
Pt0 ≥ 0

lim sup
t→∞

E (Pt+1|t
(
Ft0,t

)) < ∞.

As it is known (Rohr et al., 2014; Schenato, 2008; Sinopoli
et al., 2004), when the spectral radius of A is greater than one,
the packet loss can lead to an unstable estimator. Our goal is to
design L and Ht , t ∈ N, to make the stability condition as weak as
possible. In doing so, we also provide expressions for x̂t|t−1 and
Pt|t−1. Notice that, to simplify the notation, we use x̂t|t−1 and Pt|t−1
in place of x̂t|t−1

(
Ft0,t

)
and Pt|t−1

(
Ft0,t

)
. We will use this notation

in the rest of the paper.

3. The MMSE state estimation

In this section we assume that L and H i
t,l, ∀t, l, i are given, and

derive the expressions of x̂t|t−1 and Pt|t−1.
Recall that C⊤

=
[
C1⊤, . . . , C I⊤

]
∈ Rn×m and define y⊤

t =[
y1⊤t , . . . , yI⊤t

]
∈ R1×m and v⊤

t =
[
v1⊤
t , . . . , vI⊤

t

]
∈ R1×m. We can

then rewrite (2) as

yt = Cxt + vt .

Let c =
∑I

i=1 ci, Ht,l = diag
(
H1

t,l · · · H I
t,l

)
∈ Rc×m and

Ht =
[
Ht,1, . . . ,Ht,L

]
∈ Rc×mL. Let also Γ i

t = γ i
t Ici and Γt =

diag
{
Γ 1
t , . . . , Γ I

t

}
, and recall that z⊤

t =
[
z1⊤t , . . . , z I⊤t

]
∈ R1×c .

We can then rewrite (3) as

zt = ΓtHt
[
y⊤

t , . . . , y⊤

t−L+1

]⊤
.

Let u⊤
t =

[
x⊤
t , y⊤

t , . . . , y⊤

t−L+1

]
∈ R1×(n+mL). We can obtain a

state–space representation of (3) as follows

ut+1 = Āut + ϵt , (4)

zt = D̄tut , (5)

where

Ā =

[ A 0 0
CA 0 0
0 I 0

]
, ϵt =

[
wt

Cwt + vt+1
0

]
,

D̄t = Γt
[
0 Ht

]
=
[
D̄1
t , . . . , D̄

I
t

]
.

Thus, the expressions of x̂t|t−1 and Pt|t−1 can be derived by
running a Kalman filter (Anderson & Moore, 1979; Sinopoli et al.,
2004) on (4)–(5). The resulting estimator is given by the following
recursions

x̂t|t−1 = [I, 0] ût|t−1,

Pt|t−1 = [I, 0]Σt|t−1 [I, 0]⊤ ,

where

ût+1|t = Āût|t ,

ût|t = ût|t−1 +

I∑
i=1

γ i
kK

i
t

(
z it − D̄i

t ût|t−1
)
,

Σt+1|t = ĀΣt|t Ā⊤
+ Q̄ ,

Σt|t =

(
I −

I∑
i=1

γ i
kK

i
t D̄

i
t

)
Σt|t−1,

with

K i
t = Σt|t−1D̄i⊤ (D̄iΣt|t−1D̄i⊤)† ,

Q̄ =

⎡⎣ Q QC⊤ 0
CQ CQC⊤

+ R 0
0 0 0

⎤⎦ ,

and initialized by

ût0+1|t0 = 0, Σt0+1|t0 =

⎡⎣ Pt0 Pt0 D̄
⊤
t0 0

D̄t0Pt0 D̄t0Pt0 D̄
⊤
t0 0

0 0 0

⎤⎦ .

4. Stability analysis for the MMSE estimator

In this section we provide conditions for the stability of the
MMSE estimator derived in Section 3. In Section 4.1 we provide
a necessary and sufficient condition with a trivial gap, and give
the values of the design parameters L and Ht , t ∈ N, making
this condition as weak as possible. In Section 4.2 we provide a
sufficient condition for stability which is easier to verify.

4.1. Necessary and sufficient condition

In this section we state a necessary and sufficient condition,
having a trivial gap, for the stability of the MMSE estimator using
coded measurements. We then design L and Ht , t ∈ N to make
this condition as weak as possible.

Let Ā = T̄ J̄ T̄−1 be the Jordan normal form of Ā. We can then
write (4)–(5) in Jordan canonical form as

ũt+1 = J̄ ũt + ϵ̃t , (6)

zt = D̃t ũt , (7)

where ũt = T̄−1ut , ϵ̃t = T̄−1ϵt and D̃t = D̄t T̄ .

Lemma 4. Let A = TJT−1 be the Jordan normal form of A. Then

J̄ = diag (J, Z1, . . . , ZL) , (8)

where Zl, l ∈ {1, . . . , L} are m-dimensional Jordan blocks with zero
eigenvalues, and there exist matrices U and V such that

T̄ =

[
T 0
U V

]
. (9)
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Proof. Let t̄ =
[
0, v⊤

]⊤ with v⊤
=
[
v⊤

1 , . . . , v⊤

L

]
. We then have

Āt̄ = Ā
[
0, v⊤

]⊤
=
[
0, 0, v⊤

1 , . . . , v⊤

L−1

]⊤
.

It follows that Ā has m generalized eigenvectors of rank L with
zero associated eigenvalue. Now, suppose that t is an eigenvector
of A with eigenvalue λ. Let

t̄ =
[
t⊤, (Ct)⊤, λ−1(Ct)⊤, . . . , λ−L+2(Ct)⊤

]⊤
It is straightforward to show that Āt̄ = λt̄ . Hence, t̄ is an
eigenvector of Ā with eigenvalue λ. Using a similar but somehow
more tedious argument, we can show that, for any generalized
eigenvector t of A, there will be a generalized eigenvector t̄ of
Ā, with the same order and eigenvalue. Hence, the whole set of
generalized eigenvectors of Ā is formed by either t̄ =

[
0, v⊤

]⊤ for
some v or t̄ =

[
t⊤, u⊤

]⊤, for some u and t being a generalized
eigenvector of A. Thus, (9) follows. Also, the first n eigenvalues
of Ā equal those of A, and the remaining are all zero. Hence, (8)
follows.

Definition 5. A set of complex numbers xi ∈ C, i = 1, . . . , I , is
said to have a common finite multiplicative order ι ∈ N up to a
constant a ∈ C, if xι

i = aι, for all i = 1, . . . , I . If there do not exist
ι and a satisfying the above, the set is said not to have common
finite multiplicative order.1

It is straightforward to see that there is a unique partition of
J in diagonal blocks of the form

J = diag (J1, . . . , JK ) , (10)

such that, for every k = 1, . . . , K , the diagonal entries of the sub-
matrices Jk have a common finite multiplicative order ιk up to ak,
and for any k ̸= l, the diagonal entries of the matrix diag(Jk, Jl) do
not have common finite multiplicative order. Let dk denote the
dimension of Jk and ak its magnitude. For each t ∈ N, let

D̃t =

[
D̃t,1, . . . , D̃t,K , D̃t,∗

]
,

be the partition of D̃t defined such that, for every k = 1, . . . , K ,
the number of columns of D̃t,k equals the dimension of Jk. Let

Ot,T ,k =

⎡⎢⎣ D̃t,kJ tk
...

D̃t+T−1,kJ t+T−1
k

⎤⎥⎦ .

Our next step is to state a necessary and sufficient condition
for the stability of (6)–(7). To this end, we aim to use the result
in Marelli et al. (2019, Theorem 14). This result is stated under
assumptions which are very general, but technically involved.
Fortunately, we have a way around this technical difficulty. We
have that {D̃t : t ∈ N} is a sequence of random matrices, with
discrete distribution, such that {D̃t : t ∈ N} is a statistically
independent set, and whose statistics are cyclostationary with
period M . Hence, it follows from Marelli et al. (2019, Proposition
18) that the conditions for Marelli et al. (2019, Theorem 14) are
guaranteed. Also, these conditions consider all FMO blocks of
(6)–(7). In view of Lemma 4, this system has K + 1 blocks.
However, the eigenvalue of the last FMO block equals zero. Hence,
the conditions need only consider the first K blocks.

1 For example, e
π
2 ȷ and eπ ȷ have a common finite multiplicative order for

that (e
π
2 ȷ)4 = (eπ ȷ)4 = 1. While, e

π√
2
ȷ
and eπ ȷ do not have a common finite

multiplicative order since there does not exist k ∈ N such that (e
π√
2
ȷ
)k = (eπ ȷ)k =

1.

Let FCR denote the set of matrices having full column rank,
we then obtain the following result.

Theorem 6 (Combination of Marelli et al. (2019, Proposition 18)
and Marelli et al. (2019, Theorem 14)). Suppose that the sequence
of coding matrices {Ht : t ∈ N} is P-periodic, i.e., Ht+P = Ht , for
all t ∈ N. Then, the MMSE estimator using coded measurements is
stable if

max
1≤k≤K

|ak|2Φk < 1,

and unstable if

max
1≤k≤K

|ak|2Φk > 1,

where the channel unreliability measure Φk with respect to block
k is defined by

Φk = max
0≤t<M

lim sup
T→∞

P
(
Ot,T ,k does not have FCR

)1/T
,

and M is the least common multiple of P and ιk, k ∈ {1, . . . , K }.

Remark 7. The result above is inconclusive for the case of
max1≤k≤K |ak|2Φk = 1. For this reason, we say that the necessary
and sufficient condition in Theorem 6 has a trivial gap.

In order to evaluate the condition in Theorem 6, we need to
compute the channel unreliability measure Φk with respect to
each block k. This measure depends on the design parameters
L and Ht , t ∈ N. Our next goal is to provide an expression of
Φk, together with the choices of L and Ht , t ∈ N, so that we can
minimize Φk.

The measure Φk is defined in terms of the probability that the
matrix Ot,T ,k does not have full column rank (FCR). Our first step
towards the computation of Φk is to replace Ot,T ,k by a different
matrix, which we denote by Õt,T ,k, for which the aforementioned
probability is easier to compute.

For each i ∈ {1, . . . , I}, let C̃ i
= C iT and

C̃ i
=

[
C̃ i
1, . . . , C̃

i
K

]
, (11)

be the partition of C̃ i defined such that, for every k = 1, . . . , K ,
the number of columns of C̃ i

k equals the dimension of Jk. Let
H i

t =
[
H i

t,1, . . . ,H
i
t,L

]
and define, for each k ∈ {1, . . . , K } and

t, T ∈ N, the following matrix

Õt,T ,k =

⎡⎢⎣Õ1
t,T ,k
...

ÕI
t,T ,k

⎤⎥⎦ , with Õi
t,T ,k =

⎡⎢⎣ õik,t
...

õik,t+T−1

⎤⎥⎦ ,

õik,t = Γ i
t H

i
tG

i
kJ

t
k, and Gi

k =

⎡⎢⎣ C̃ i
k
...

C̃ i
kJ

−L+1
k

⎤⎥⎦ .

We have the following result.

Lemma 8. For each k ∈ {1, . . . , K },

Φk = max
0≤t<M

lim sup
T→∞

P
(
Õt,T ,k does not have FCR

)1/T
.

Proof. Due to space limitations, the proof is omitted. It however
appears in the full version (Sui, Marelli, Sun, & Fu, 2019).

Our next step is to use Lemma 8 to provide an expression for
Φk, together with the choices of L and Ht , t ∈ N, minimizing its
value.
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Recall that the packet arrival at time t is represented by the
diagonal matrix Γt . Let D denote the set of all possible values of
Γt . We use Γt,T = {Γt , . . . , Γt+T−1} ∈ DT to represent the packet
arrivals in the past-time horizon of length T starting from t . For
given packet-arrival pattern S ∈ DM , we use ν i(S) to denote the
number of measurements from node i included in S.

Let Gi
k denote the row span of

Ω i
k =

⎡⎢⎣ Gi
k
...

Gi
kJ

dk−1
k

⎤⎥⎦ . (12)

Definition 9. We say that set L ⊆ {1, . . . , I} of nodes is
insufficient for block k if

span

(⋃
i∈L

Gi
k

)
̸= Rdk .

An insufficient set L is maximal if either L = {1, . . . , I} or, for all
i /∈ L, the set L∪{i} is not insufficient. Let Lk denote the collection
of all maximal insufficient sets for block k.

Recall that ci is the dimension of z ik. For each L ∈ Lk, we say
that a set of measurement counts M =

{
0 ≤ M i

≤ M : i /∈ L
}
is

insufficient for L and k if, for any choice of ciM i vectors vi
j ∈ Gi

k,
i /∈ L, j ∈ {1, . . . , ciM i

}, we have

span

⎛⎜⎜⎝⋃
i∈L

Gi
k ∪

⋃
i̸=L

j∈{1,...,ciMi}

vi
j

⎞⎟⎟⎠ ̸= Rdk . (13)

An insufficient set of counts M =
{
0 ≤ M i

≤ M : i /∈ L
}
is max-

imal if for any i /∈ L for which M i < M , the set obtained by
replacing M i by M i

+ 1 is not insufficient. Let Mk (L) denote the
collection of all maximal insufficient sets of counts for L and k.
Recall that pi = E

[
γ i
t

]
, i ∈ {1, . . . , I}, denotes the packet receival

rate for sensor i. We have the following result.

Assumption 10. The sequence of coding matrices {Ht : t ∈ N} is
P-periodic and generated using a pseudo-random sequence with
absolutely continuous distribution.

Theorem 11. Under Assumption 10, if L ≥ dk for all k ∈ {1, . . . , K },
then w.p.1 over the random outcomes of Ht , the resulting value of
Φk is minimized w.r.t. L and Ht , t ∈ N. Furthermore, its value is

Φk = max
L∈Lk

max
M∈Mk(L)

∏
i/∈L

(1 − pi)1−
Mi
M , (14)

where M is the least common multiple of P and ιk for any k ∈

{1, . . . , K }.

Proof. See Appendix A.

Remark 12. We point out that, while Theorem 11 asserts that
the coding matrix design the stated in Assumption 10 is optimal
for the purpose of estimator stability, the same design may not
be optimal for the purpose of minimizing the estimation error
covariance.

Remark 13. For a given FMO block k ∈ {1, . . . , K }, maximal
insufficient set L ∈ Lk and node i /∈ L, the vectors vi

j , j ∈

{1, . . . , ciM i
} belong to the subspace Gi

k ⊂ Rdk . Suppose that
the FMO block k is observable, i.e., span

(⋃I
i=1 G

i
k

)
= Rdk . Let

M =
{
0 ≤ M i

≤ M : i /∈ L
}

∈ Mk(L) be a maximal insufficient

set of counts for L. Then, since (13) needs to hold for any choice
of vi

j ’s, it follows that an increment in the dimension ci of the
data transmitted by sensor i would lead to a reduction of the
measurement count M i for that sensor. In view of (14), this
will in turn reduce Φk. Hence, there is a tradeoff between the
communication load (i.e., the value of ci for all i ∈ {1, . . . , I}) and
the robustness to packet losses (i.e., the value of Φk).

The above expression of Φk greatly simplifies in the limit case
as the period P of the pseudo-random sequence used to generate
Ht , t ∈ N tends to infinity. This is stated in the following corollary
of Theorem 11. This result represents most practical situations, as
periods of pseudo-random sequences are typically very large.

Corollary 14. Under the assumptions of Theorem 11,

lim
P→∞

Φk = max
L∈Lk

∏
i/∈L

(1 − pi) . (15)

Proof. Notice that, in view of the choices of L and Ht , if rank(
Õi
t,T ,k

)
< rank

(
Gi
k

)
, then every new measurement from node i

yields rank
(
Õi
t,T+1,k

)
≥ rank

(
Õi
t,T ,k

)
+ 1. Hence, for any L ∈ Lk

and M ∈ Mk(L), we must have that M i < rank
(
Gi
k

)
, for all i /∈ L.

Since M tends to infinity as so does P , we have

lim
P→∞

Φk = lim
P→∞

max
L∈Lk

max
M∈Mk(L)

∏
i/∈L

(1 − pi)1−
Mi
M

= max
L∈Lk

max
M∈Mk(L)

∏
i/∈L

(1 − pi)

= max
L∈Lk

∏
i/∈L

(1 − pi) .

Remark 15. Corollary 14 shows that, when the period P of
the pseudo-random sequence used to generate coding matrices
is sufficiently large, the stability condition is no longer affected
by the dimension ci of coded measurements. Nevertheless, a
larger value of ci is still helpful to improve the accuracy of the
estimation.

4.2. An easily verifiable sufficient condition

The necessary and sufficient condition stated in Theorem 11
requires splitting the system in K blocks. In this section we derive
a condition which is only sufficient, but simpler to compute as it
does not require the aforementioned splitting.

Let

Ξk =

⎡⎢⎣ Γ(k−1)PH(k−1)PF
...

ΓkP−1HkP−1FAP−1

⎤⎥⎦ ,

with

F =

⎡⎢⎣ C
...

CAL−1

⎤⎥⎦ .

We have the following result.

Lemma 16. If Ξk does not have full column rank,

PkP|kP−1 ≤ ρ(A)2P
ρ(A)2

ρ(A)2 − 1
P(k−1)P|(k−1)P−1, (16)

where ρ (A) denotes the spectral radius of A.
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If Ξk has full column rank, there exists 0 < P̄ ∈ Rn×n indepen-
dent of P(k−1)P|(k−1)P−1, such that

PkP|kP−1 ≤ P̄ . (17)

Proof. For the pages limit, the proof is moved to Sui et al. (2019).

For each i ∈ {1, . . . , I}, let

F i
=

⎡⎢⎣ C i

...

C iAL−1

⎤⎥⎦ .

Definition 17. A set Q =
{
qi ∈ N : i = 1, . . . , I

}
of integers is

called feasible if, for each i ∈ {1, . . . , I}, there exist qi indexes r ij ,
j ∈ {1, . . . , qi}, such that the matrix

span

⎛⎝ I⋃
i=1

qi⋃
j=1

rowr ij

(
F i)⎞⎠ = Rn,

where rowr (X) denotes the vector formed by the rth row of
matrix X . We use Q to denote the collection of all feasible sets.

We now state the main result of this subsection.

Theorem 18. Under Assumption 10, if P, L ≥ n, then, w.p.1
over the random outcomes of Ht , the MMSE estimator using coded
measurements is stable if

|ρ(A)|2 π
1/P
P < 1, (18)

where

πP =

(
ρ(A)2

ρ(A)2 − 1

)∑
Q/∈Q

I∏
i=1

(
P
qi

)
pqii (1 − pi)P−qi ,

with
(P
qi
)
denoting the binomial coefficient P choose qi.

Moreover, if the coding P is sufficient large and (A, C i) is ob-
servable for each i = 1, 2, . . . , I , then the estimator is unstable
if

|ρ(A)|2 π
1/P
P > 1.

Proof. See Appendix B.

5. State estimation comparison using raw and coded measure-
ments

In this section we derive the stability condition using raw
measurements to compare with that using coded measurements.

Consider the system described in Section 2. Suppose that the
raw measurements yt , as opposite to the coded ones zt , are
transmitted to the estimator, using the same channel described
in Section 2. The MMSE estimator then becomes a Kalman filter,
having the following information available at time t:

F̆t = {(Γ1, Γ1y1) , . . . , (Γt , Γtyt)} .

Recall that, for block k, ιk denotes its finite multiplicative order
and Lk denotes the collection of all maximal insufficient sets. For
L ∈ Lk, we say that a set I(L) =

{
0 ≤ qij < ιk : i /∈ L, j = 1, . . . ,

M̌i

}
of indexes is insufficient for block k if

Ω̆k =

⎡⎢⎣Ω̆1
k
...

Ω̆ I
k

⎤⎥⎦ does not have full column rank,

where,

Ω̆ i
k =

⎡⎢⎣ C̃ i
k
...

C̃ i
kJ

ιk
k

⎤⎥⎦ if i ∈ L and

⎡⎢⎢⎢⎣
C̃ i
kJ

qi1
k
...

C̃ i
kJ

qi
M̌i

k

⎤⎥⎥⎥⎦ otherwise,

with C̃ i
k defined in (11). We say that an insufficient set of index is

maximal if the set obtained by adding any extra index is not in-
sufficient. Let Ik(L) denote the collection of maximal insufficient
index sets for block k and set L. For I ∈ Ik(L) we use ν i(I) to
denote the number of indexes from node i included in I.

The following result then states the desired stability condition.

Proposition 19. The MMSE estimator using raw measurements is
stable if

max
1≤k≤K

|ak|2Φ̆k < 1,

and unstable if

max
1≤k≤K

|ak|2Φ̆k > 1,

where

Φ̆k = max
L∈Lk

max
I∈Ik(L)

∏
i/∈L

(1 − pi)
1− νi(I)

ιk . (19)

Proof. Due to space limitations, the proof is omitted. It however
appears in the full version (Sui et al., 2019).

We now compare the stability conditions resulting from using
coded and raw measurements. To this end, for the coded case,
since the period P of pseudo-random measurements is typically
very large, we use the asymptotic result given in Corollary 14.

Let Lc denote the argument which maximizes (15). We have

lim
P→∞

Φk =

∏
i/∈Lc

(1 − pi) ,

Let also Lr be the one maximizing (19). We then have

Φ̆k = max
I∈Ik(Lr)

∏
i/∈Lr

(1 − pi)
1− νi(I)

ιk

≥ max
I∈Ik(Lc)

∏
i/∈Lc

(1 − pi)
1− νi(I)

ιk

=

∏
i/∈Lc

(1 − pi) × max
I∈Ik(Lc)

∏
i/∈Lc

(1 − pi)
−

νi(I)
ιk .

We then obtain

limP→∞ Φk

Φ̆k
≤

(
max

I∈Ik(Lc)

∏
i/∈Lc

(1 − pi)
−

νi(I)
ιk

)−1

= max
I∈Ik(Lc)

∏
i/∈Lc

(1 − pi)
νi(I)

ιk

< 1, (20)

which clearly shows the stability improvement offered by the
proposed coding scheme.

6. Example

In this section we use an example to illustrate the improve-
ment, in terms of the stability of the MMSE estimator, given by
the proposed coding scheme. To this end, we compare the stabil-
ity of the estimator in the cases of raw and coded measurements.
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We use a system as described in Section 2, with

A =

⎡⎢⎣2 −4 −4.5 3
0 −2 −3.5 3
0 0 1.5 0
0 0 0 1

⎤⎥⎦
=

⎡⎢⎣1 1 1 1
0 1 −1 1
0 0 1 0
0 0 0 1

⎤⎥⎦
  

T

⎡⎢⎣2 0 0 0
0 −2 0 0
0 0 1.5 0
0 0 0 1

⎤⎥⎦
  

J

×

⎡⎢⎣1 −1 −2 0
0 1 1 −1
0 0 1 0
0 0 0 1

⎤⎥⎦
  

T−1

(21)

and Q = diag{1, 1, 1, 1}. There are I=4 sensors, with C1
=[

1 1 1 1
]
, C2

=
[
1 −1 1 1

]
, C3

=
[
1 1 1 −1

]
,

C4
=
[
1 −1 1 −1

]
and R1

= R2
= R3

= R4
= 1. Also, the

communication channels used to transmit sensor measurements,
either raw or coded ones, have packet receival rates p1 = p2 =

p3 = p4 = 0.4.
For the coding parameters, we let L = 4 and P = 500. For all

t ∈ {1, . . . , P}, l ∈ {1, . . . , L} and i ∈ {1, . . . , I}, we randomly
generate the entries of H i

t,l by drawing them from a standard
normal distribution. Since the period P = 500 is much larger than
the state dimension n = 4, we assess the stability of the MMSE
estimator using Corollary 14.

It follows from (21) that the system is formed by K = 3 FMO
blocks. The magnitude of these blocks is a1 = 2, a2 = 1.5 and
a3 = 1, and their finite multiplicative orders are ι1 = 2, ι2 = 1
and ι3 = 1. Also, the blocks are observable from all nodes, hence
L1 = L2 = L3 = ∅. We then have

Φ1 = Φ2 = Φ3 =

4∏
i=1

(1 − pi) = (1 − 0.4)4 = 0.1296.

Hence, the filter is stable since

|a3|2Φ3 < |a2|2Φ2 < |a1|2Φ1 = 22
× 0.1296 < 1.

Since the coding period P is sufficient large and (A, C i) is ob-
servable for each i = 1, 2, 3, we have that the sufficient condition
in Theorem 18 is equivalent to the necessary and sufficient one
given in Theorem 11. We then have

(πP )1/P = 0.1296.

For the uncoded case, we start by analyzing the first FMO
block. We have

C̃1
1 = C̃3

1 = [1, 2], C̃2
1 = C̃4

1 = [1, 0],
C̃1
1 J1 = C̃3

1 J1 = [2, −4], C̃2
1 J1 = C̃4

1 J1 = [2, 0].

Hence, the collection I1(∅) = {I1,1, I1,2, I1,3} of maximal insuffi-
cient index sets contains three sets. Set I1,1 contains index 0 from
node 1 and index 0 from node 3, the set I1,2 contains index 1 from
node 1 and index 1 from node 3 and set I1,3 contains indexes 0
and 1 from nodes 2 and 4. From Proposition 19, we have

Φ̆1 = max
I∈I1(∅)

4∏
i=1

(1 − pi)
1− νi(I)

ι1 .

Now,
4∏

i=1

(1 − pi)
1−

νi(I1,1)
ι1 = 0.216,

Fig. 3. Norm of prediction error covariance using coded and raw measurements.

4∏
i=1

(1 − pi)
1−

νi(I1,2)
ι2 = 0.216,

4∏
i=1

(1 − pi)
1−

νi(I1,3)
ι2 = 0.36.

Hence, Φ̆1 = 0.36, and for the first FMO block we obtain

|a1|2Φ̆1 = 22
× 0.36 > 1.

We therefore do not need to evaluate Φ̆2 and Φ̆3, since the above
inequality in enough to assert that the estimator is unstable.

The above claims are illustrated in Fig. 3. The figure shows
the time evolution of the norm of the prediction error covari-
ance yield by the MMSE estimator using both, raw and coded
measurements. To this end we average over 2× 104 Monte Carlo
runs. The figure clearly shows that the MMSE estimator is stable
when using coded measurements, while unstable when using raw
ones.

7. Conclusion

We studied the networked MMSE state estimation problem for
a linear system with a distributed set of sensors. We proposed
a measurement coding scheme which permits both, controlling
the load of communication used for estimation, and maximizing,
within the family of linear causal coders, the robustness of the re-
sulting estimator against packet losses. We derived the resulting
MMSE estimator, and state a necessary and sufficient condition,
having a trivial gap, for its stability. We quantified the robustness
gain offered by the proposed scheme, by comparing the stability
condition to the one resulting from the use of raw measurements.
We presented simulation results to confirm our claims.

Appendix A. Proofs of Theorem 11

Let

Et,k = Γt

⎡⎢⎣H1
t G

1
k

...

H I
tG

I
k

⎤⎥⎦ .

Clearly,

rank
(
Õt,T ,k

)
= rank

⎛⎜⎝
⎡⎢⎣ Et,kJ tk

...

Et+T−1,kJ t+T−1
k

⎤⎥⎦
⎞⎟⎠ .
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It then follows from Lemma 8 that, for the purposes of computing
Φk, the pair

(
Jk, D̃t,k

)
is equivalent to

(
Jk, Et,k

)
. For S ∈ DM we use

Õt,M,k(S) to denote the value of Õt,M,k resulting when Γt,M = S.
Let Zt,k ⊂ DM be the set of all S ∈ DM such that Õt,M,k(S) /∈ FCR.

In order to compute Φk, we make use of the result in Marelli
et al. (2019, Proposition 24). As with Marelli et al. (2019,
Theorem 14), this result is stated under very general assump-
tions, which are guaranteed by the simpler assumptions given
in Marelli et al. (2019, Proposition 18). Again, by combining these
two results we obtain the following lemma.

Lemma 20 (Combination of Marelli et al. (2019, Proposition 18)
and Marelli et al. (2019, Proposition 24)). Consider a FMO block(
Jk, Et,k

)
. If Et,k is a statistically independent sequence of random

matrices with discrete distribution and cyclostationary statistics,
then

Φk = max
0≤t<P

max
S∈Zt,k

ςt,k(S)1/M (A.1)

where M is defined in Theorem 6 and

ςt,k(S) = P
{
ker

(
Õt,M,k

(
Γt,M

))
⊇ ker

(
Õt,M,k (S)

)}
.

Clearly, the pair
(
Jk, Et,k

)
satisfies the conditions in Lemma 20.

Hence we can use the result.
We say that node i ∈ {1, . . . , I} is complete with respect to

S ∈ DM and k ∈ {1, . . . , K } if S includes rk =
⌈
rank

(
Ω i

k

)
/ci
⌉

measurements from node i. Let C(S) denote the set of complete
nodes in S. We have that ker

(
Õt,M,k

(
S̃
))

⊇ ker
(
Õt,M,k (S)

)
if S̃

misses the same measurements on all nodes not in C(S). We then
have

ςt,k(S) ≥

∏
i/∈C(S)

(1 − pi)M−νi(S) . (A.2)

Let N (S) =
{
0 ≤ ν i(S) ≤ M : i /∈ C(S)

}
. If C(S) is an insufficient

set and N (S) are insufficient counts, then S ∈ Zt,k. Combining
this with (A.1) and (A.2) we obtain

Φk ≥ max
0≤t<P

max
L insufficient

max
M insufficient

∏
i/∈L

(1 − pi)1−
Mi
M

= max
L∈Lk

max
M∈Mk(L)

∏
i/∈L

(1 − pi)1−
Mi
M . (A.3)

Suppose that L ≥ dk, k ∈ {1, . . . , K } and Ht , t ∈ N, are
generated as in Assumption 10. Let S ∈ DM be such that C(S) ∈ Lk
and N (S) ∈ Mk(C(S)). Then, w.p.1 over the outcomes of Ht , any
sequence S̃ obtained by adding to S a new measurement from
any node i /∈ C(S) will yield Õt,M,k

(
S̃
)

∈ FCR. It then follows

that ker
(
Õt,M,k

(
S̃
))

⊇ ker
(
Õt,M,k (S)

)
if and only if S̃ misses

the same measurements on all nodes which are incomplete with
respect to S. We then have that (A.2) and (A.3) hold with equality,
completing the proof.

Appendix B. Proofs of Theorem 18

Let qik, k ∈ N, i ∈ {1, . . . , I} denote the number of mea-
surements received from sensor i during the time interval [(k −

1)P, kP]. Let Qk =
{
qik : i = 1, . . . , I

}
. For 0 ≤ l ≤ k, let El,k denote

the event in which Ql ∈ Q and Qm /∈ Q, for all m ∈ {l+1, . . . , k}.
In particular, notice that E0,k denotes the event in which Qm /∈ Q,
for all intervals up to [(k − 1)P, kP].

Since Ht , t ∈ N, is pseudo-randomly generated with period
P ≥ n, and L ≥ n, it is straightforward to see that, with probability

one over the outcomes of Ht , the matrix Ql has full column rank
if Ql is feasible. It then follows from Lemma 16 that

E
[
PkP|kP−1

]
=

k∑
l=0

E
[
PkP|kP−1|El,k

]
P
[
El,k
]

≤

k∑
l=0

κk−lE[PlP|lP−1|El,k]P
[
El,k
]

≤

k∑
l=0

κk−lP
[
El,k
]
P̄, (B.1)

where

κ = ρ(A)2P
ρ(A)2

ρ(A)2 − 1
.

Let

ϖP = P [Ql /∈ Q] .

We have

P
[
El,k
]

= ϖ k−l
P (1 − ϖP) .

By listing all the possibilities of the event Ql /∈ Q, it follows that

P [Ql /∈ Q] =

∑
Q/∈Q

I∏
i=1

(
P
qi

)
pqii (1 − pi)P−qi .

Putting the above into (B.1) yields

E
[
PkP|kP−1

]
< (1 − ϖP) P̄

k∑
l=0

(κϖP)
k−l .

Hence, supk∈N E
[
PkP|kP−1

]
< ∞ if

1 ≥ (κϖP)
1/P

= ρ(A)2
(

ρ(A)2

ρ(A)2 − 1

)1/P

ϖ
1/P
P

= ρ(A)2π1/P
P ,

and the sufficient result follows.
Suppose that (A, C i) is observable for each i = 1, 2, . . . , I ,

the condition Q /∈ Q will then lead to that qi ≤ n for all
i = 1, 2, . . . , I .

Thus, we have

lim
P→∞

π
1/P
P =

I∏
i=1

(1 − pi).

Revisit the analysis in Section 4.1, for each k = 1, . . . , K , the
collection of all maximal insufficient sets is given by Lk = ∅.
From Corollary 14, we have

lim
P→∞

Φk =

I∏
i=1

(1 − pi)

for all k = 1, . . . , K .
Combining with the necessary and sufficient condition in

Theorem 6, the proof is done.

References

Anderson, B., & Moore, B. (1979). Prentice-hall & systems sciences series, Optimal
filtering. New Jersey.

Deshmukh, S., Natarajan, B., & Pahwa, A. (2014). State estimation over a lossy
network in spatially distributed cyber-physical systems. IEEE Transactions on
Signal Processing, 62(15), 3911–3923.

http://refhub.elsevier.com/S0005-1098(19)30422-4/sb1
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb1
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb1
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb2
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb2
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb2
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb2
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb2


T. Sui, D. Marelli, X. Sun et al. / Automatica 111 (2020) 108561 9

Erez, E., Kim, M., Xu, Y., E., Y., & Medard, M. (2014). Deterministic network
model revisited: An algebraic network coding approach. IEEE Transactions on
Information Theory, 60(8), 4867–4879.

Gatsis, K., Pajic, M., Ribeiro, A., & Pappas, G. (2015). Opportunistic control over
shared wireless channels. IEEE Transactions on Automatic Control, 60(12),
3140–3155.

Gupta, V., Chung, T., Hassibi, B., & Murray, R. (2006). On a stochastic sensor selec-
tion algorithm with applications in sensor scheduling and sensor coverage.
Automatica, 42(2), 251–260.

He, L., Han, D., Wang, X., & Shi, L. (2013). Optimal linear state estimation over
a packet-dropping network using linear temporal coding. Automatica, 49(4),
1075–1082.

He, X., Wang, Z., Wang, X., & Zhou, D. (2014). Networked strong tracking filtering
with multiple packet dropouts: algorithms and applications. IEEE Transactions
on Industrial Electronics, 61(3), 1454–1463.

Hespanha, J., Naghshtabrizi, P., & Xu, Y. (2007). A survey of recent results in
networked control systems. Proceedings of the IEEE, 95(1), 138–162.

Hu, J., Wang, Z., & Gao, H. (2013). Recursive filtering with random parameter
matrices, multiple fading measurements and correlated noises. Automatica,
49(11), 3440–3448.

Hu, J., Wang, Z., Gao, H., & Stergioulas, L. (2012). Extended kalman filtering with
stochastic nonlinearities and multiple missing measurements. Automatica,
48(9), 2007–2015.

Huang, M., & Dey, S. (2007). Stability of Kalman filtering with Markovian packet
losses. Automatica, 43(4), 598–607.

Koetter, R., & Medard, M. (2003). An algebraic approach to network coding.
IEEE/ACM Transactions on Networking, 11(5), 782–795.

Liu, X., & Goldsmith, A. (2004). Kalman filtering with partial observation losses.
In Proceedings of 43th IEEE conference on decision and control (pp. 4180–4186).
IEEE.

Marelli, D., Sui, T., Rohr, E., & Fu, M. (2019). Stability of Kalman Filtering with
a random measurement equation: application to sensor scheduling with
intermittent observations. Automatica, 99, 390–402.

Mo, Y., & Sinopoli, B. (2008). A characterization of the critical value for Kalman
filtering with intermittent observations. In 47th IEEE conference on decision
and control (pp. 2692–2697).

Mo, Y., & Sinopoli, B. (2010). Towards finding the critical value for Kalman
filtering with intermittent observations, http://arxiv.org/abs/1005.2442.

Mo, Y., & Sinopoli, B. (2012). Kalman filtering with intermittent observations:
Tail distribution and critical value. IEEE Transactions on Automatic Control,
57(3), 677–689.

Okano, K., & Ishii, H. (2017). Stabilization of uncertain systems using quan-
tized and lossy observations and uncertain control inputs. Automatica, 81,
261–269.

Plarre, K., & Bullo, F. (2009). On kalman filtering for detectable systems with
intermittent observations. IEEE Transactions on Automatic Control, 54(2),
386–390.

Quevedo, D., Ahlén, A., & Johansson, K. (2013). State estimation over sensor
networks with correlated wireless fading channels. IEEE Transactions on
Automatic Control, 58(3), 581–593.

Rohr, E., Marelli, D., & Fu, M. (2011). Kalman filtering for a class of degenerate
systems with intermittent observations. In 50th IEEE conference on decision
and control and european control conference. Orlando, Florida.

Rohr, E., Marelli, D., & Fu, M. (2014). Kalman filtering with intermittent
observations: On the boundedness of the expected error covariance. IEEE
Transactions on Automatic Control, 59(10), 2724–2738.

Schenato, L. (2008). Optimal estimation in networked control systems subject to
random delay and packet drop. IEEE Transactions on Automatic Control, 53(5),
1311–1317.

Schenato, L., Sinopoli, B., Franceschetti, M., Poolla, K., & Sastry, S. (2007).
Foundations of control and estimation over lossy networks. Proceedings of
the IEEE, 95(1), 163–187.

Sinopoli, B., Schenato, L., Franceschetti, M., Poolla, K., Jordan, M., & Sastry, S.
(2004). Kalman filtering with intermittent observations. IEEE Transactions on
Automatic Control, 49(9), 1453–1464.

Smarra, F., Benedetto, M., & Innocenzo, A. (2018). Efficient routing redundancy
design over lossy networks. International Journal of Robust and Nonlinear
Control, 28(6), 2574–2597.

Sui, T., Marelli, D., Sun, X., & Fu, M. (2019). Multi-sensor State Estimation over
Lossy Channels using Coded Measurements http://arxiv.org/abs/1905.11477.

Sui, T., You, K., & Fu, M. (2015). Stability conditions for multi-sensor state
estimation over a lossy network. Automatica, 53(3), 1–9.

Sui, T., You, K., Fu, M., & Marelli, D. (2015). Stability of MMSE state estimators
over lossy networks using linear coding. Automatica, 51(1), 167–174.

Wei, G., Wang, Z., & Shu, H. (2009). Robust filtering with stochastic nonlinearities
and multiple missing measurements. Automatica, 45(3), 836–841.

Xie, L., & Xie, L. (2007). Peak covariance stability of a random Riccati equation
arising from Kalman filtering with observation losses. Journal of Systems
Science and Complexity, 20(2), 262–272.

You, K., Fu, M., & Xie, L. (2011). Mean square stability for Kalman filtering with
Markovian packet losses. Automatica, 47(12), 2647–2657.

Tianju Sui received B.S. and Ph.D. degrees from Zhe-
jiang University, Hangzhou, China. in 2012 and 2017,
respectively. He is currently serving as an Asso-
ciate Professor in Dalian University of Technology. His
main research area includes networked estimation, dis-
tributed estimation and the security of Cyber–Physical
systems.

Damian Marelli received his Bachelors Degree in Elec-
tronics Engineering from the Universidad Nacional de
Rosario, Argentina in 1995. He also received his Bach-
elor (Honous) degree in Mathematics and Ph.D. degree
in Electrical Engineering, both from the University of
Newcastle, Australia in 2003. From 2004 to 2005 he
was postdoc at the Laboratoire d Analyse Topologie
et Probabilites, CNRS/Universite de Provence, France.
From 2005 to 2015 he was Research Academic at the
Centre for Complex Dynamic Systems and Control, the
University of Newcastle, Australia. In 2007 he received

a Marie Curie Postdoctoral Fellowship, hosted at the University of Vienna, and
in 2011 he received a Lise Meitner Senior Fellowship, hosted at the Austrian
Academy of Sciences. Since 2016, he is Professor at the School of Automation,
Guangdong University of Technology, China and Independent Researcher ap-
pointment at the French-Argentinean International Center for Information and
Systems Sciences, National Scientific and Technical Research Council, Argentina.
His main research interests include system theory, statistical signal processing
and distributed processing.

Ximing Sun received the Ph.D. degree in Control The-
ory and Control Engineering from the Northeastern
University, China, in 2006. From August 2006 to De-
cember 2008, he worked as a Research Fellow in the
Faculty of Advanced Technology, University of Glamor-
gan, UK. He then visited the School of Electrical and
Electronic Engineering, Melbourne University, Australia
in 2009, and Polytechnic Institute of New York Univer-
sity in 2011, respectively. He is IEEE Senior Member.
He serves as Associate Editor for IEEE Transactions on
Cybernetics. He is currently a Professor in the School of

Control Science and Engineering, Dalian University of Technology, China. He was
awarded the Most Cited Article 2006–2010 from the Journal of Automatica in
2011. His research interests include hybrid systems, networked control systems,
and nonlinear systems.

Minyue Fu (F’ 03) received the B.Sc. degree in electrical
engineering from the University of Science and Tech-
nology of China, Hefei, China, in 1982, and the M.S. and
Ph.D. degrees in electrical engineering from the Univer-
sity of Wisconsin-Madison, Madison, WI, USA in 1983
and 1987, respectively. From 1987 to 1989, he was an
Assistant Professor in the Department of Electrical and
Computer Engineering, Wayne State University, USA.
He joined the Department of Electrical and Computer
Engineering at the University of Newcastle, Australia,
in 1989. Currently, he is a Chair Professor of Electrical

Engineering. He has been a Visiting Associate Professor at the University of Iowa,
USA, Nanyang Technological University, Singapore and Tokyo University, Tokyo,
Japan. He has held a ChangJiang Visiting Professorship at Shandong University,
Jinan, China, a Qian-ren Professorship at Zhejiang University, China, and a Qian-
ren Professorship at Guangdong University of Technology, China. He has been
an Associate Editor for the IEEE Transactions on Automatic Control, Automatica,
IEEE Transactions on Signal Processing, and the Journal of Optimization and Engi-
neering. His main research interests include control systems, signal processing,
and communications. His current research projects include networked control
systems, smart electricity networks, and super-precision positioning control
systems.

http://refhub.elsevier.com/S0005-1098(19)30422-4/sb3
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb3
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb3
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb3
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb3
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb4
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb4
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb4
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb4
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb4
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb5
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb5
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb5
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb5
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb5
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb6
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb6
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb6
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb6
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb6
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb7
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb7
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb7
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb7
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb7
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb8
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb8
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb8
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb9
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb9
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb9
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb9
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb9
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb10
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb10
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb10
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb10
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb10
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb11
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb11
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb11
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb12
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb12
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb12
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb13
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb13
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb13
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb13
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb13
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb14
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb14
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb14
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb14
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb14
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb15
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb15
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb15
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb15
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb15
http://arxiv.org/abs/1005.2442
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb17
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb17
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb17
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb17
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb17
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb18
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb18
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb18
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb18
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb18
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb19
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb19
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb19
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb19
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb19
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb20
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb20
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb20
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb20
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb20
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb21
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb21
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb21
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb21
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb21
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb22
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb22
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb22
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb22
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb22
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb23
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb23
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb23
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb23
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb23
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb24
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb24
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb24
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb24
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb24
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb25
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb25
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb25
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb25
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb25
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb26
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb26
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb26
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb26
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb26
http://arxiv.org/abs/1905.11477
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb28
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb28
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb28
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb29
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb29
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb29
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb30
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb30
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb30
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb31
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb31
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb31
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb31
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb31
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb32
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb32
http://refhub.elsevier.com/S0005-1098(19)30422-4/sb32

	Multi-sensor state estimation over lossy channels using coded measurements
	Introduction
	Problem statement
	The MMSE state estimation
	Stability analysis for the MMSE estimator
	Necessary and sufficient condition
	An easily verifiable sufficient condition

	State estimation comparison using raw and coded measurements
	Example
	Conclusion
	Appendix A. Proofs of Theorem 11
	Appendix B. Proofs of Theorem 18
	References


