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Abstract

This paper is concerned with the problem of robust filtering for uncertain linear discrete-time descriptor systems. The matrices of the system
state-space model are uncertain, belonging to a given polytope. A linear matrix inequality based method is proposed for designing a linear
stationary filter that guarantees the asymptotic stability of the estimation error and gives an optimized upper bound on the asymptotic error
variance, irrespective of the parameter uncertainty. The proposed robust filter design is based on a parameter-dependent Lyapunov function,
which is shown to outperform parameter-independent ones.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Descriptor systems (also known as singular, implicit or
differential-/difference-algebraic systems) are an important
class of dynamic systems from both a theoretical and practical
points of view due to their capacity to describe algebraic con-
straints between physical variables (see, e.g., Xu & Lam, 2006
and the reference therein).

A great deal of interest has been devoted in the last decade
or so to Kalman filtering methods for linear discrete-time de-
scriptor systems; see, for instance, Bianco, Ishihara, and Terra
(2005), Dai (1989), Deng and Liu (1999), Ishihara, Terra,
and Campos (2005), Nikoukhah, Willsky, and Levy (1992),
Nikoukhah, Campbell, and Delebecque (1999) and Zhang,
Xie, and Soh (1999). The aforementioned methods rely on the
knowledge of a perfect system model and they may fail to
provide a guaranteed error variance when only an approximate
model is available. In the context of robust Kalman filtering,
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only very recently this problem was addressed in Ishihara,
Terra, and Campos (2004) for descriptor systems with norm-
bounded parameter uncertainties, where a Riccati equation ap-
proach was proposed. Although norm-bounded parameter un-
certainties are important to consider, most uncertain system
models are much better described by polytopic structures; see,
e.g., Boyd, El Ghaoui, Feron, and Balakrishnan (1994). Indeed,
polytopic structures arise naturally when there are multiple real-
valued uncertain parameters. Using norm-bounded structures
typically over-estimates the uncertainties in the system. To the
best of the authors’ knowledge, the problem of robust Kalman
filtering for linear discrete-time descriptor systems with poly-
topic uncertainty has not yet been investigated.

This paper addresses the problem of robust filter design for
linear discrete-time descriptor systems with polytopic-type un-
certainties, namely the matrices in the system state-space model
are uncertain and assumed to belong to a given polytopic set.
We develop a linear matrix inequality (LMI) method for de-
signing a linear stationary filter that provides the asymptotic
stability of the estimation error and an optimized upper bound
on the asymptotic error variance, irrespective of the parame-
ter uncertainty. The proposed robust filter design is based on a
parameter-dependent Lyapunov function to achieve improved
performance. An example is presented in the paper to illustrate
this feature.

http://www.elsevier.com/locate/automatica
mailto:csouza@lncc.br
mailto:karinab@lncc.br
mailto:minyue.fu@newcastle.edu.au


C.E. de Souza et al. / Automatica 44 (2008) 792–798 793

Notation. Rn and Rn×m are the set of n-dimensional real
vectors and n×m real matrices, In is the n×n identity matrix, 0n

is the n×n matrix of zeros, Tr[·] denotes matrix trace, diag{· · ·}
denotes block-diagonal matrix, and ⊗ is the Kronecker product.
For a real matrix S, ST denotes its transpose, Her{S} stands
for S + ST and S > 0 means that S is symmetric and positive
definite. For a symmetric block matrix, the symbol � denotes
the transpose of the blocks outside the main diagonal block and
E{·} stands for mathematical expectation.

2. Problem formulation

Consider a linear descriptor system in the following singular
value decomposition (SVD) normal form:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x(k + 1) = A1x(k) + A2�(k) + Bw(k),

0 = H1x(k) + H2�(k) + H3w(k),

y(k) = C1x(k) + C2�(k) + Dw(k),

s(k) = L1x(k) + L2�(k),

(1)

where x(k) ∈ Rn is the dynamic state, �(k) ∈ Rn� is the al-
gebraic state, w(k) ∈ Rnw is a zero-mean white noise signal
(including process and measurement noises) with an identity
covariance matrix and uncorrelated with x(0) and �(0), y(k) ∈
Rny is the measurement, s(k) ∈ Rns is the signal to be esti-
mated, Ai, Ci, Hi, Li, i = 1, 2, B, H3 and D are real matrices
with H2 being a square matrix.

It is assumed that the matrices of system (1) are unknown
but they are bounded by the following polytope:

� =
{

� : � =
�∑

i=1

�i�i , �i �0 :
�∑

i=1

�i = 1

}
, (2)

where

� =

⎡
⎢⎢⎢⎢⎣

A1 A2 B

H1 H2 H3

C1 C2 D

L1 L2 0

⎤
⎥⎥⎥⎥⎦ , �i =

⎡
⎢⎢⎢⎢⎣

A1i A2i Bi

H1i H2i H3i

C1i C2i Di

L1i L2i 0

⎤
⎥⎥⎥⎥⎦ (3)

and Aki, Cki, Hki, Lki, k = 1, 2, Bi , H3i and Di are given real
constant matrices.

This paper is aimed at designing a stationary asymptotically
stable linear filter F which provides an estimate ŝ of the sig-
nal s with a guaranteed performance bound for the asymptotic
variance of the estimation error, irrespective of the uncertainty.
We seek a filter of order n with a state-space realization{
F : x̂(k + 1) = Af x̂(k) + Bf y(k), x̂(0) = 0,

ŝ(k) = Cf x̂(k),
(4)

where x̂ ∈ Rn and the matrices Af , Bf and Cf are to be
designed. Given a performance bound � > 0, the design task is
to find, if possible, a filter F in (4) such that

max
�

{var{e}}��, (5)

where var{e} : =limk→∞E{[s(k) − ŝ(k)]T[s(k) − ŝ(k)]}.

Observe that considering (1) and (4), the dynamics of the
estimation error e := s − ŝ can be described by the following
state-space model:⎧⎪⎨
⎪⎩

�(k + 1) = Ã1�(k) + Ã2�(k) + B̃w(k),

0 = H̃1�(k) + H2�(k) + H3w(k),

e(k) = L̃1�(k) + L2�(k),

(6)

where

� =
[
x

x̂

]
, Ã1 =

[
A1 0

Bf C1 Af

]
, Ã2 =

[
A2

Bf C2

]
, (7)

B̃ =
[

B

Bf D

]
, H̃1 = [H1 0 ] , L̃1 = [L1 −Cf ] . (8)

Next, we recall a version of Finsler’s lemma needed in the
next section.

Lemma 1 (Boyd et al., 1994). Given matrices �i=�T
i ∈ Rn×n

and Ni ∈ Rm×n, i = 1, . . . , 	, then

xT
i �ixi < 0, ∀xi ∈ Rn : Nixi = 0, xi �= 0; i = 1, . . . , 	

iff there exist matrices Ki, i = 1, . . . , 	, such that

�i + KiNi + NT
i KT

i < 0, i = 1, . . . , 	. (9)

In the next remark we comment on the generality of the
problem formulation given above.

Remark 1. We claim that the above problem formulation can
be applied to a seemingly more general class of uncertain causal
descriptor systems represented by⎧⎪⎨
⎪⎩

J(
)�(k + 1) = A(
)�(k) + B(
)w(k),

y(k) = C(
)�(k) + D(
)w(k),

s(k) = L(
)�(k),

(10)

where � ∈ Rn� is the state, s(k), w(k) and y(k) are as before,

 ∈ Rp is a vector of uncertain constant parameters belonging
to a given polytope, J(
), A(
), B(
), C(
), D(
) and L(
) are
real matrices affine in 
, and

min



rank{J(
)} = n < n�.

Since the matrix J(
) is uncertain, an SVD transformation can-
not be directly used to obtain an equivalent system in the SVD
normal form of (1) (Bender & Laub, 1987). However, intro-
ducing the following decompositions1 :

A(
) = A0 + A(
 ⊗ In), A = [A1 . . . Ap],
J(
) = J0 + J(
 ⊗ In), J = [J1 . . . Jp]
and defining the augmented state vector:

xa = [�T �T]T, � = 
 ⊗ �

1 As the matrices A(
) and J(
) are affine functions of 
, it is always
possible to find such decompositions.
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system (10) can be rewritten as⎧⎪⎨
⎪⎩

Jxa(k + 1) = Aa(
)xa(k) + Ba(
)w(k),

y(k) = Ca(
)xa(k) + Da(
)w(k),

s(k) = La(
)xa(k),

(11)

where

J =
[J0 J

0 0

]
, Aa(
) =

[ A0 A


 ⊗ In −I

]
,

Ba(
) =
[B(
)

0

]
,

Ca(
) = [C(
) 0 ] , La(
) = [L(
) 0 ] , Da(
) = D(
).

Now, since in system (11) the matrix J does not depend on

, this system can be transformed, via an SVD of the matrix
J, into an equivalent system of the form of (1). It should be
noted that although the state vector xa of (11) is of dimension
n� + pn�, the matrix J as above has rank equal to n. This im-
plies that the dynamic state in the resulting difference-algebraic
model (1) is of dimension n, which is also the dimension of the
dynamic state in the original system (10). This is an important
fact because the order of the filter to be developed in this paper
is identical to the dimension of the dynamic state in (1).

Remark 2. Note that although system (1) could be transformed
into a linear system without algebraic constraints (when the
matrix H2 is nonsingular over the polytope �), such a trans-
formation destroys the polytopic uncertainty structure, i.e., the
transformed system will not be a polytopic uncertain linear sys-
tem.

3. Filter performance analysis

This section is concerned with the problem of filter perfor-
mance analysis. More specifically, given an uncertain system
(1), a filter (4) and a scalar � > 0, we want to know how to check
if the asymptotic variance of the estimation error is bounded by
� for all admissible uncertainties. The solution to this problem
will be useful in developing conditions for the synthesis of a
robust filter.

We first give necessary and sufficient conditions for the filter
performance analysis for the case where the system matrix �
is perfectly known.

Theorem 1. Consider system (1) with known matrices. Given
a filter (4) and a scalar � > 0, the estimation error system (6)
is asymptotically stable, causal and var{e} < � if and only if
either of the equivalent conditions below holds:

(a) There exist matrices P > 0,  > 0, M and N satisfying
the following LMIs:⎡
⎢⎣

Her{MH1} − P̃ � �

P Ã −P �

L̃ 0 −I

⎤
⎥⎦ < 0, (12)

⎡
⎢⎣

̃ + Her{NH2} � �

P B̃a P �

L̃2 0 I

⎤
⎥⎦ > 0, (13)

� − Tr[] > 0, (14)

where

Ã = [ Ã1 Ã2 ] , B̃a = [ B̃ Ã2 ] , L̃ = [ L̃1 L2 ] , (15)

L̃2 = [0 L2 ] , H1 = [H̃1 H2] , H2 = [H3 H2 ] , (16)

P̃ = diag{P, 0n�}, ̃ = diag{, 0nw }. (17)

(b) There exist matrices P > 0,  > 0, G, M and N satisfying
the LMIs of (14) and

⎡
⎢⎣

Her{MH1} − P̃ � �

GÃ P − G − GT �

L̃ 0 −I

⎤
⎥⎦ < 0,

(18)⎡
⎢⎣

̃ + Her{NH2} � �

GB̃a G + GT − P �

L̃2 0 I

⎤
⎥⎦ > 0. (19)

Proof. (a) We first show the causality of system (6). Note that
if (12) holds, then Her{MH1} − P̃ < 0, which implies that
the matrix H2 is nonsingular and thus the causality of system
(6) follows (Xu & Lam, 2006). Since (6) is causal, it can be
rewritten in the form

�(k + 1) = Ā�(k) + B̄w(k),

e(k) = L̄�(k) + D̄w(k), (20)

where{
Ā = Ã1 − Ã2H

−1
2 H̃1, B̄ = B̃ − Ã2H

−1
2 H3,

L̄ = L̃1 − L2H
−1
2 H̃1, D̄ = −L2H

−1
2 H3.

(21)

It is well known that system (20) is asymptotically stable and
var{e} < � if and only if there exist matrices P > 0 and  > 0
satisfying the inequalities (Boyd et al., 1994):

ĀTP Ā − P + L̄TL̄ < 0, (22)

 − B̄TP B̄ − D̄TD̄ > 0, (23)

� − Tr[] > 0. (24)

In view of (21), it can be readily verified that (22) and (23)
are equivalent to, respectively,

�T�1� < 0, � = �1x, ∀x ∈ Rn, x �= 0, (25)

�T�2� > 0, � = �2w, ∀w ∈ Rnw , w �= 0, (26)
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where

�1 = ÃTP Ã− P̃ + L̃TL̃, �2 = ̃− B̃T
a P B̃a − L̃T

2 L̃2, (27)

�T
1 = [I −(H−1

2 H̃1)
T ] , �T

2 = [I −(H−1
2 H3)

T ] . (28)

Considering that

{� : � = �1x, ∀x ∈ Rn, x �= 0} = {� : H1� = 0, � �= 0},
{� : � = �2w, ∀w ∈ Rnw , w �= 0} = {� : H2� = 0, � �= 0}
it follows from (25) and (26) that (22) and (23) are also equiv-
alent to, respectively,

�T�1� < 0, ∀� ∈ Rn� : H1� = 0, � �= 0, (29)

�T�2� > 0, ∀� ∈ Rn� : H2� = 0, � �= 0. (30)

By Lemma 1, (29) and (30) hold if and only if there exist
matrices M and N of appropriate dimensions such that

�1 + Her{MH1} < 0, (31)

�2 + Her{NH2} > 0. (32)

Applying Schur’s complement, it follows that (31) and (32)
are identical to (12) and (13), respectively.

(b) The equivalence of conditions (a) and (b) will be estab-
lished.

(a) ⇒ (b): If there exist matrices P, , M and N satisfying
(12)–(14), then it follows that (18), (19) and (14) hold with
G = P and the same matrices , M, and N.

(b) ⇒ (a): Pre- and post-multiplying (18) by [I ÃT L̃T]
and its transpose, and (19) by [I B̃T

a L̃T
2 ] and its transpose,

respectively, leads to

Her{MH1} − P̃ + ÃTP Ã + L̃TL̃ < 0, (33)

̃ + Her{NH2} − B̃T
a P B̃a − L̃T

2 L̃2 > 0. (34)

Since P > 0, applying Schur’s complement to (33) and (34)
it follows that these inequalities are equivalent to (12) and (13),
respectively. �

It should be remarked that V (�)=�T(k)P�(k), with P satis-
fying part (a) or (b) of Theorem 1, is a Lyapunov function for
the unforced system of (6).

Since the inequalities (14), (18) and (19) are affine in the
system matrices, the result (b) in Theorem 1 can be readily ex-
tended to the case where the matrices of system (1) belong to
a polytope �. This robust filter performance analysis result is
presented in the next theorem. In this result, we allow the Lya-
punov matrix P and  to be polytopic, but the matrices G, M

and N are constrained to be fixed. Due to these constraints,
this result provides only a sufficient condition for robust per-
formance.

Theorem 2. Consider system (1) with uncertain matrices and
let � be a given polytope of admissible system matrices �.
Given a filter (4) and a scalar � > 0, the error system (6) is
asymptotically stable, causal and var{e} < � over � if there exist

matrices Pi > 0, i > 0, i = 1, . . . , �, G, M and N satisfying
the following LMIs:

�1i (Pi, G, M) < 0, i = 1, . . . , �, (35)

�2i (Pi, i , G, N) > 0, i = 1, . . . , �, (36)

� − Tr[i] > 0, i = 1, . . . , �, (37)

where �1i (·) and �2i (·) denote the left-hand side of (18) and
(19), respectively, with the system matrices at the ith vertex of
�, and P and  replaced by Pi and i . Moreover, V (�) =
�T(k)P (�)�(k) is a Lyapunov function for the unforced system
of (6), where P(�) is a parameter-dependent Lyapunov matrix
given by P(�) = ∑�

i=1�iPi and where �i are the scalars as in
(2).

Remark 3. Note that, although the causality of a polytopic
uncertain descriptor system is not ensured by the causality of
the systems for the vertices of the uncertainty polytope, it turns
out that (35) ensures the causality of systems (1) and (6) for any
system matrix � belonging to the polytope �. Indeed, as �1i (·)
is affine in �, by convexity, (35) implies that Her{MH1} < P̃

over � and thus the matrix H2 is nonsingular over �, which
implies the causality of systems (1) and (6) for any � in �.

4. Synthesis of robust filters

In this section, we develop an LMI based method to design
filters with an optimized asymptotic error variance for system
(1). Note that a direct application of Theorem 1(b) or Theorem
2 would lead to bilinear matrix inequalities (BMIs), which are,
in general, difficult to be solved numerically. However, it turns
out that, applying appropriate congruence transformations and
parameterization of the matrix G and the filter matrices, these
BMIs can be transformed into LMIs. The next theorem deals
with the case where the system matrix � is perfectly known
and is derived from part (b) of Theorem 1.

Theorem 3. Consider system (1) with known matrices. Given
a scalar � > 0, there exists a filter (4) such that the estima-
tion error system (6) is asymptotically stable, causal and
var{e} < � if and only if there exist matrices X > 0,  > 0,
F1, F2, N, Q, R, S, Z, Y and W satisfying the LMIs of (14) and

⎡
⎢⎢⎢⎣

Her{F1H̃1} − X � � �

F2H̃1 + HT
2 F T

1 Her{F2H2} � �

A1 A2 X − Υ − Υ T �

L1 L2 0 −I

⎤
⎥⎥⎥⎦ < 0,

(38)

⎡
⎢⎣

̃ + Her{NH2} � �

Ba Υ + Υ T − X �

L̃2 0 I

⎤
⎥⎦ > 0, (39)
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where L̃2,H2 and ̃ are as in (16) and (17), and

A1 =
[

RA1 0

SA1 + YC1 + Q Q

]
, Υ =

[
R WT

S W

]
,

BT
a =

[
BT

AT
2

]
, A2 =

[
RA2

SA2 + YC2

]
,

B =
[

RB

SB + YD

]
, LT

1 =
[
LT

1 − ZT

−ZT

]
.

If the LMIs above are satisfied, the desired filter (4) has the
following transfer function matrix:

HF(z) = Z(zI − W−1Q)−1W−1Y . (40)

Proof. We will establish the equivalence between the condi-
tions in Theorem 1(b) and those in Theorem 3.

Sufficiency: We will show that the LMIs (14), (38) and (39)
imply that the conditions (14), (18) and (19) of Theorem 1(b)
hold with the filter (40).

Since X > 0, (38) implies that Υ + Υ T > 0, and thus R and
W are nonsingular matrices. Parameterize G as follows:

G =
[
I −I

0 V −T

] [
R 0

S U

]
, (41)

where U and V are n × n nonsingular matrices with V being a
free parameter and U =WV −1. It is clear that G is nonsingular.

Next, we define

T = G−T
[
RT ST

0 UT

]
=

[
I 0

V V

]
(42)

and let the following realization for the filter (40):

Af = V W−1QV −1, Bf = V W−1Y, Cf = ZV −1.

By performing straightforward matrix manipulations, it can
be readily verified that

TTGÃ1T = A1, TTGÃ2 = A2, H̃1T = H̃1, (43)

L̃1T = L1, TTGB̃ = B, TT(G + GT)T = Υ + Υ T.

(44)

Take

P = T−TXT−1, M = diag{T−T, In�}[F T
1 F T

2 ]T, (45)

T1 = diag{T−1, In� ,T−1, Ins },
T2 = diag{Inw , In� ,T−1, Ins }.
Pre- and post-multiplying (38) by TT

1 and T1, respectively,
and using (43)–(45), we obtain (18). Similarly, pre- and post-
multiplying (39) by TT

2 and T2, respectively, and considering
(43)–(45) yields (19).

Necessity: Suppose there exist a filter with a state-space re-
alization (Af , Bf , Cf ) and matrices P > 0, G, , M and N sat-
isfying inequalities (14), (18) and (19). We will show that (14),

(38) and (39) also hold. First, (19) implies that the matrix G is
nonsingular. Let G−1 be partitioned as follows:

G−1 : =
[
G1 G2

G3 G4

]
,

where all the blocks are n × n matrices. Since the inequalities
(18) and (19) are strict, we may assume that Gi, i=1, . . . , 4, are
all nonsingular. Indeed, if this is not the case, we may perturb
the given G slightly to achieve so without violating (18) and
(19). The above assumption and the nonsingularity of G imply
that G4G

−1
2 G1 − G3 is also a nonsingular matrix. Define

R = G−1
1 , U = (G4G

−1
2 G1 − G3)

−1, V = G2G
−T
1 ,

W = UV , S = −UG3G
−1
1 , Q = UAf V ,

Y = UBf , Z = Cf V .

The above definitions imply that G can be written as in (41).
Taking T as in (42), it turns out that (38) and (39) can be
derived similarly to the sufficiency part by reversing the steps
there. �

The next result presents the robust filter design method. In
the light of Theorem 2 and considering that (38) and (39) are
affine in the matrices of system (1), the result follows directly
from Theorem 3 by convexity arguments.

Theorem 4. Let system (1) with uncertain matrices and a given
polytope � of admissible system matrices �. Given a scalar
� > 0, there exists a filter (4) such that the estimation error sys-
tem (6) is asymptotically stable, causal and var{e} < � over � if
there exist matrices Xi > 0, i > 0, i = 1, . . . , �, F1, F2, N, Q,
R, S, Z, Y and W satisfying the following LMIs:

�1i < 0, �2i > 0, � − Tr[i] > 0, i = 1, . . . , �, (46)

where �1i and �2i denote the left-hand side of (38) and (39),
respectively, with the system matrices at the ith vertex of �,
and X and  replaced by Xi and i . Moreover, the transfer
function of a suitable filter is as in (40).

Note that the feasibility of the LMIs of (46) requires the
nonsingularity of the matrix H2 over �.

5. An illustrative example

Let the uncertain descriptor system, which is adapted from
Ishihara et al. (2004), described by (10) with

J(
) = J0 + J1
, A(
) = A0 + A1
, C(
) = C0 + C1
,

L(
) = I3, B(
) = diag{√1.2,
√

1.6,
√

2}, D(
) = √
1.6,
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Fig. 1. Upper bound � for designs (A) and (Q) for |
|��.

where 
 is an uncertain parameter satisfying |
|�� and

J0 =
⎡
⎢⎣

1 0 0

0 1 0

0 0 0

⎤
⎥⎦ , J1 = 0.01

⎡
⎢⎣

5 5 5

5 5 5

0 0 0

⎤
⎥⎦ ,

A0 = 0.1

⎡
⎢⎣

9 0 10

0 8 0

2 2 2

⎤
⎥⎦ , A1 = 0.01

⎡
⎢⎣

5 10 10

5 10 10

0 0 0

⎤
⎥⎦ ,

C0 =
⎡
⎢⎣

1.4

0.8

1

⎤
⎥⎦

T

, C1 = 0.8

⎡
⎢⎣

0.659

5.931

0.659

⎤
⎥⎦

T

.

Robust filters are designed for the system with different values
of � using Theorem 4. To this end, this system needs to be
rewritten in the difference-algebraic form of (1). This can be
achieved by first using the procedure outlined in Remark 1 to
get an equivalent model of the form (11) and then apply an SVD
transformation. Note that the dynamic state of the resulting
model (1) is of dimension 2, which will be the order of the
robust filter.

Theorem 4 is applied using two types of Lyapunov func-
tions: (i) parameter-dependent Lyapunov function affine in 
;
(ii) parameter-independent Lyapunov function, which are re-
ferred to as methods (A) and (Q), respectively. The method (Q)
is obtained from Theorem 4 by setting the matrices Xi to a com-
mon matrix X. Fig. 1 displays the minimum upper bound � on
the asymptotic error variance versus � for both methods. Note
that, for this example, both methods can solve the problem as
long as the system is asymptotically stable, namely for ��5.5.
The method (A) gives a significant performance improvement
compared with (Q) for � > 2.

To further illustrate the behaviors of the designed filters, the
actual asymptotic variance of the estimation error is calculated
for each method as a function of 
 and for �=1. In addition, we
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Fig. 2. Actual error variance for the filters of methods (A), (Q) and (K) and
upper bounds �A and �Q for |
|�1.

also compare the later results with the asymptotic error variance
produced by the Kalman filter designed for the nominal system
with 
 = 0 and when applied to the system for different values
of 
—referred to as (K). Fig. 2 shows these results along with
the error variance upper bounds �A and �Q given by the meth-
ods (A) and (Q), respectively. The robustness of the two robust
filters and the advantage of using parameter-dependent Lya-
punov function are clearly demonstrated in the figure. We also
observe that the upper bound given by (A), �A = 161.3359, is
close to the worst-case asymptotic variance of 155.9167, which
is achieved for 
 = 1.

6. Conclusions

This paper has addressed the design of minimum variance fil-
ters for uncertain linear discrete-time descriptor systems repre-
sented by a difference-algebraic state-space model. The matri-
ces of the system state-space model are uncertain and assumed
to belong to a given polytope. Our first main result, namely
Theorem 1, considers a filter performance analysis problem for
a known system model, namely without uncertainties, and gives
necessary and sufficient conditions for a linear stationary filter
to guarantee that the asymptotic variance of the estimation er-
ror is less than a given bound. The result is formulated in such
a way that it can be extended to uncertain systems. The ex-
tension is done in the second main result, Theorem 2, where a
polytopic uncertainty structure is considered for the descriptor
system and a sufficient condition is given for a linear filter to
guarantee a given performance bound in the worse case. These
two analysis results are then used to produce two filter synthe-
sis results, Theorems 3 and 4 for known systems and uncertain
systems, respectively. The proposed robust filter design method
is based on a parameter-dependent Lyapunov function.
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