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Abstract 

A novel approach is proposed to blindly identify 
an unknown IIR system. The methods presented 
are linear in parameters of the unknown system 
so that many standard recursive algorithms can 
readily apply. It is also shown in the paper that 
under a generic condition, any finite order IIR 
system is identifiable provided the over-sampling 
ratio is high enough. 

1 Introduction 
The blind system identification (BSI) and blind 
channel equalization (BCE) problems addressed 
in this paper can be formulated as follows: A 
sequence of input signal u[kh,] is transmitted at 
sampling rate f ,  = l /h,  to a continuous time sys- 
tem via a zero-order-hold (ZOH) or an impulse 
generator. The received signal y[nh,] is sam- 
pled at the rate f o  = l/h,. The BSI and BCE 
problems are to identify from y[nh,] both the 
system transfer function and the input u[kh,]. 
These problems have received a lot of attention 
in recent years for applications in digital image 
processing, speech coding and mobile communi- 
cations such as cellular and cordless telephony 
where communication channels drift constantly. 

A traditional way to solve the BSI problem is 
to use statistical properties of the unknown in- 
put signal, e.g., high order statistics. Although 
the method provides satisfactory results in many 
cases, it does require enough a priori statistical 
information on the unknown input, an assump- 
tion that may not be valid in certain applica- 
tions. An alternative approach is to use training 
signals. For example, in the GSM standard cur- 
rently adopted in Europe, every 28 bits in a 116- 
bit sequence are used for the receiver to identify 
the channel. This method, though being simple, 
significantly reduces the transmission efficiency. 

To overcome this difficulty, the so-called over- 
sampling (or multipath) approach has been pro- 
posed recently. It is shown that equalization can 
be achieved without training signals by using a 
multiple sampling rate for the receiver, or equiva- 
lently, using multi-channels. This new approach, 
however, has to assume that the channel trans- 
fer function is a finite-impulse-response (FIR). 
Although it may often be reasonable to approxi- 
mate a communication channel by an FIR func- 
tion, such approximation is often of very high 
order (up to 70th order FIRS are used. Further, 
the order of the filter tends to increase as the 
sampling rate increases. In contrast, infinite- 
impulse-response (IIR) representation often re- 
quires much less number of parameters. Also, 
the equalization part can be simpler. For in- 
stance, if the channel is modeled as an all-pole 
system, the equalizer becomes a FIR filter. Note 
that the equalizer is an all-pole filter if the chan- 
nel is modeled as a FIR system. An all-pole 
equalizer is not easy to construct, especially the 
identified FIR channel is unstable or has high 
order. 

In this paper, we present a novel approach to 
the BSI and BCE problems which allows us to 
develop efficient algorithms without the FIR as- 
sumption on the channel, any statistical infor- 
mation on the input signal, or training signals. 
We also use the idea of oversampling, i.e., ,fo is 
faster than f , .  The main results of the paper can 
be summarized as follows: 

1. First, we show that double sampling rate 
for the receiver is sufficient for BSI and BCE 
when the channel is an all-pole filter. An al- 
gorithm is presented for blind identification 
of these systems. The algorithm is least- 
squares or LMS based and is convergent if 
the input is sufficiently rich. 

2. Secondly, we show that BSI and BCE with 
an IIR channel can always be achieved when 
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f o / f i  2 n + 1, where n is the order of the 
channel transfer function. Since IIR mod- 
els of the channel can often be of low or- 
der, this result offers an attractive alterna- 
tive for the BSI and BCE problems. Again, 
least-squares and LMS based algorithms are 
given which guarantee convergence under 
some persistent excitation (PE) conditions. 
Finally, .we address a general identifiability 
issue and give some necessary and sufficient 
conditions for unique identification of both 
the channel transfer function and the input 
signal. We show that these conditions are 
actually generically satisfiable. 

Probllem Statement 
In this paper, two types of sampled data sys- 
tems are considered. The first one uses a Zero- 
Order-Hold (ZOH) as shown in Figure 1. This 
model is very common in the control literature. 
The second type of sampled data systems con- 
sists of an idleal impulse generator as shown in 
Figure 2. The input to the continuous time sys- 
tem is not piecewise constant but a sequence of 
&functions whose magnitudes vary according to 
the input sequence. This model is very common 
in digital signal processing and communication 
systems. The input to either of the systems is a 
discrete sequence u[mh,] with the time interval 
h, and the output y[kh,] is also a discrete se- 
quence with the sampling interval h,. The sam- 
pling intervals h, and h, are usually different. It 
is assumed in the paper that h, = h,/p for some 
positive integer p 2 1, referred to as the over- 
sampling ratio. The channel is assumed to be 
a linear timle-invariant continuous-time system 
with matrices A,B,C and possibly some delay 
r ,  known or unknown. The purpose of the pa- 
per is to present a novel approach to solving the 
BSI and BCE problems for an IIR system. To 
focus on this point, we do not include any noise 
at the channel outputs. However, analysis of the 
noise effect is standard and can be found in many 
control and :signal processing textbooks. By the 
same token, we will concentrate on the zero de- 
lay (r  = 0) case. Extensions to the case with 
unknown delay r will be discussed, but briefly. 
Now, if r = 0, it can be verified easily that the 
transfer function considered at the output sam- 
pling period h,, is given by an nth order rational 
transfer function: 

for some constants a,  and b,. In fact, the or- 
der of the system is independent of the sampling 
period h,, except in some pathological cases for 
which the degree reduces. Our goal is to iden- 
tify the parameters in (2.1) as well as the in- 
put signal U mh,] based on the output measure- 
ments y[kh, I with as little knowledge as possible 
on the unknown input sequence. Let Y ( z )  and 
U ( z )  be the z-transforms of output and input se- 
quences, respectively. Then Y ( z )  = G ( z ) U ( z )  = 
( a G ( z ) ) ( $ U ( z ) )  for any non-zero constant a. 
Therefore, the best we can do is to identify G ( z )  
and U ( z )  up to a scaling constant. The BSI and 
BCE problems are formally defined as: 

BSI and BCE: Consader the sampled data sys- 
tems an Fagures 1 anti 2, assumang that the anput 
as a n  unknown non-zero bounded sequence. Iden- 
tafy G ( z )  and U ( z ) ,  up to a constant, for some 
over-samplzng ratzo p 2 1 based only on the out- 
pu t  observataon y[kh,,]. 

Let Y ( z )  and U ( z )  denote the z-transforms of 
y[kh,] and ~ [ k h , ]  respectively. For h,/h, = p ,  
the input to the system in Figure 1 is held to be 
a constant for every p samples and thus U ( z )  can 
be written as 

where Uo(z) = ~ & , ~ [ k h i ] z - ’ .  That is, all the 
p-polyphase components of U ( z )  are identical. 
Consequently, 

Y ( z )  = G(z)UO(zP)(l + ... + z-ps.l 1. (2.3) 

Define Uo(zP) = Uo(zP)(l - i 9 )  and Y ( z )  = 
Y ( z ) ( l  - z - l ) ,  we have Y ( z )  = G(z)Uo(zP).  
Therefore, the BSI iind BCE problems hecome 
to identify both G ( z )  and Uo(z”) .  

Assumption 1: It is assumed through out the 
paper that the discrete time system correspond- 
ing to the system in Figure 2 is minimal when 
the over-sampling ratio p = 1, i.e. when hi = h,. 

3 All-Pole Systems 
We first consider a simple case of IIR sys- 

tems, namely an all-pole filter, to convey the 
idea. Let the over-sampling ratio p = 2, i.e., 
hi = 2h,. Suppose the resultant sampled data 
system is an all-pole system, in terms of the out- 
put sampling interval h,, i.e., 

(3.1) bl  G ( z )  = - 
1 - u1z-1 - .:. - 
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We have dropped the delay zpl in the numerator 
for notational simplicity. The result in this sec- 
tion remains valid with some minor notational 
changes if 2-l is present. The time domain ex- 
pression of (3.1) is 

Observe that p = 2 and the input u[kh,] to the 
impulse generator as shown in Figure 2 is zero 
for odd k .  It follows that 

for k = 21 + 1, 1 = 0,1,2, .  . . In other words, the 
coefficients ai's are the solution of the following 
linear equation 

* = \  ; 
(3.5) 

Thus, ai's can be uniquely solved by many 
standard methods if the matrix @ has full col- 
umn rank. ai's can also be calculated on-line 
recursively by employing recursive least squares 
or LMS algorithms. 

Theorem 3.1 Consider the system in Figure 2 
with p = 2 and G ( z )  given by (3.1). T h e n  (1) 
4 I ]  i s  PE if the spectral measure of the input 
U 1 khi] ( i n  hi not in h,, a weaker condition) is not 
concentrated on k < n points. (2) The recursive 
least squares (or LMS) estimates di  's of equation 
(3.3) converge asymptotically (or exponentially) 
t o  the true value ai's, if the PE condition in 1 
above is satisfied. 

It should be pointed out that Theorem 3.1 as- 
sumes that the input and the output are syn- 
chronized (i.e., the channel has zero delay). The 
case where synchronization is not achieved can 
be handled similarily by slightly modifying the 
above algorithm. 

4 IIR Systems 
We now consider arbitrary IIR systems cliar- 

acterized by (2 .1) .  Two algorithms will be pro- 
vided. The first algorithm requires p = 2(n + 1) 
and identifies a set of parameters a, and @, which 
are equivalent to a, and b,. The identification of 
a, and p, will be done separately with the ad- 
vantage that estimate errors of a, and @, are in- 
dependent. The second algorithm uses p = n + l .  
This algorithm identifies a, first, and then uses 
the estimate of a, to identify b,. With the lower 
oversampling ratio, the tradeoff of this algorithm 
is that estimation error in a, affects the estimate 
for b,. 

Algorithm 4.1. Let p = 2(n + 1). The input 
U ( x )  is given by U ( z )  = U0(x2("+l)) .  Decompose 
the output Y(x) = Y0(z2) + z- 'Y1(x2) and let 
the transfer functions Go(.) and G l ( z )  be the 
transfer functions from u~(z"+') to Yo(z) and 
Y l ( z )  , respectively. Then, we have 

Yo(.) = G o ( z ) U ~ ( Z " + ~ ) ;  Y ~ ( z )  = Gl(~)Uo(z"+l). 

Note that a ( x ) a ( - z )  is an even polynomial. 
Denote a ( z 2 )  = a ( z ) a ( - z )  and decompose 
b ( x ) a ( - z )  = Po(z2) + z - 'P l ( z2 )  we obtain the 
following equations: 

In fact, Go(.) and G l ( z )  are the transfer func- 
tions from U(.("+')) to the outputs Yo(z) and 
Y l ( s ) ,  respectively, in terms of the sampling pe- 
riod h = 2h,. Thus, G o ( x )  and G l ( x )  share 
the common nth order denominator. Also, as 
far as equalization is concerned, either Go(.) or 
G l ( z )  is sufficient to recover the input because 
U(X("+ ' ) )  = GO'(X)YO(Z) = Gll(z)Y1(z). 

Note that the equations are expressed in terms 
of the sampling interval h = 2h,. Its time do- 
main representation is given by 

n n 
~ [ k h ]  = aty[(k- i )h]+X /3,~[(&?)h].  (4.2) 

2 = 1  ,=I 

The input sequence u[kh] is non-zero only if k = 
l(n + I) ,  i.e., 

u[(l(n + 1) - l )h ]  = ' .  . = u[(l (n  + 1) - n>)rl] = 0 
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for all 1. Now consider equation (4.2) at the sam- 
pling interval h for k = 1(n + 1), 

n 

y o [ l ( n  + l )h]  = C o / , y o [ ( l ( n  + 1) - i )h] .  (4.3) 
z = 1  

This equation is linear in at and can be written 
as follows ( similar to (3.3)): 

qa1 a2 . . .  an]/ = q (4.4) 

for some appropriately defind q and a. Again 
any standard identification method applies for 
finding a i ’ s ,  e.g., least squares and LMS. 

( z ) ,  note the following: To identify Po ( z )  and 

Pl(Z)YO(Z) - PO(Z)Yl(Z) = 0. (4.5) 

Let Po(z) = P01z-l + . . + POnz-n and p l ( z )  = 
P l l z - l  + . . . + plnz-n.  Then, we have, in time 
domain, 

5[Pii i Pln Poi * . .  Pon]’= 0 (4.6) 

for some $. Again, poi and pli appear linearly 
in (4.6). The difference between this equation 
and equation (4.4) is that the solution to this 
equation is unique only up to a scaling constant, 
provided that 5 has full column rank. This is 
consistent with our goal of blind system iden- 
tification. There are many ways to solve this 
equation. T:he simpliest one is probably to nor- 
malize one ad the components of ,&(z) or ,&(z).  
For instance, let P11 = 1, then we have 

4[khI [P l2  . . * PlnPOl . * Don]’ = Y[kh+hOI (4.7) 

with 

@[kh] = ( y [ k h ] ,  ..., -y[(k - n + 1)h + h,] ) 
or in a compact form 

q P l 2  . . . PlnPl . . . ion]/ = 4 (4.8) 

where q ancl 6 are similarily defined as before. 
Thus, Poz arid can be solved in a similar way 
as for equation (4.4). 

Theorem 4.1 Consider the sampled data sys- 
t e m  zn Fzgure 2 wzth p = 2(n + 1). Let 
Go(.) and G l ( z )  be the transfer functzons de-  
scribed above. Then ,  (1)  The recurszve least 

squares (or LMS) estimates & i 7 s  f rom egua- 
tion (4.4) converge asymptotically (or exponen- 
tially) to a i ’ s  if the spectral measure of the in- 
put u [kh i ]  is not concentrated on  k < n points. 
(2) The recursive least squares (or LMS) esti- 
mate (,&I,. . . ,bo,,) and (bll,. . . ,,din) f rom equa- 
tion (4.8) converges asymptotically (or exponen- 

scaling constant, provided that the spectral mea- 
sure of the input u [ k h i ]  is not concentrated on  
k < 2n - 1 points and that the numerator of 
the transfer functions: G ( z )  has coprime even and 
odd components. 

Algorithm 4.2. Let p = n + 1. Our first step 
is to identify U ( . ) .  To this end, we note that 
u ( z ) Y ( z )  = b ( z ) U ( z T L + l ) .  The time domain ex- 
pression for the above is 

tially) to  (Po,, . . . , Pon) and ( P l l ,  . . . , P l n )  U P  t o  a 

n n-l 

y[kh0] C a i y [ ( k  -- i)h,] + b;u[(k - i)h,]. 
i= 1 i=O 

(4.9) 
Taking k = l p + n ,  w’e have u [ ( k - i ) h , ]  = 0,Vi = 
0 , .  . . n - 1. Hence, 

Once again, we have 

@[a1 a:? . . .  a,]’ = q (4.11) 

for some appropriately defined q and Cp. So, 
recursive least-square algorithms or LMS algo- 
rithms can be used to estimate ai with asymp- 
totic or exponential convergence, provided 
is PE. Once the estimate G(z )  of a(.) are ob- 
tained, our next step is to use them to fur- 
ther estimate bi. For this purpose, we compute 
V ( z )  = t i ( z ) Y ( z )  and decompose it into V ( z )  = 
Vo(9)  +z-lV,(zP)+...~-nVn(zP). Assume now 
tii = ai for all i. Then, V ( z )  = b(z)U~(zP), mean- 
ing Vo(2)  = O , % ( . z )  = biUo(z).  Normalizing 
bl = 1, the above becomes V(z)  = U o ( z )  and 
% ( z )  = biV;(z ) .  The time domain expression of 
the above gives a set of linear equations for bi: 

qlb; = q;, i = 2 , . . .  , n (4.12) 

Subsequently, bi = (q;ql)-lq;qi 

Theorem 4.2 Consider the sampled data sys- 
t em  in Figure 2 with p = n + 1. Then ,  (1)  The  
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recurszve least squares (or LMS) estamates 6,’s 
f r o m  equataon (4.11) converge asymptotacally (or 
exponentaally) to at’s af the spectral measure of 
the znput u[kh,] as not concentrated o n  k < 
2n - 1 poants. (2) Suppose the PE condztaon 
above holds. Then ,  the recursave least squares 
(or LMS) estamate iz f r o m  equataon (4.12) con- 
verges asymptotacally (or exponentaally) to b, up 
to U scalzng constant. 

5 Identifiability 
We have seen in the previous sections that 

p = 2 is sufficient for all-pole or FIR systems and 
p = n + 1 for IIR systems with order equal to n, 
provided that some very mild PE conditions are 
satisfied. In this section, we study a more gen- 
eral identifiability problem: Under what condi- 
tions can, G ( z )  be uniquely identified based on the 
observation of { y ( k h , ) } r  or equivalently i ts  z -  
transform Y ( z ) ,  regardless of the input sequence 
{ u ( k h i ) } r  ? Here, unique identifiability, or sim- 
ply identifiability, means the following: Suppose 
there exists G ( z ) ,  G ( z ) ,  Uo(zp) and uo(zp) such 
that the degree and relative degree of G ( z )  are 
the same as those of G ( z )  and that 

then 

for some a # 0. Implicitly assumed above is 
that Y ( z )  # 0 because otherwise the problem of 
identifiability can not be defined. 

The main results of this section provide nec- 
essary and sufficient conditions for the identifi- 
ability problem. Note that the setting of the 
identifiability problem requires the availability of 
the whole sequence of { y [ k h , ] ) c .  So the neces- 
sary and sufficient condition for the identifiabil- 
ity problem will become necessary only for the 
identifiability of G ( z )  when a finite sequence of 
yjkh,] is available. Nevertheless, the identifiabil- 
ity conditions will help us understand and pos- 
sibly generalize the results in previous sections. 

Since Y ( z )  = G (2) U, (9) , roughly speaking, 
G ( z )  can be identified if and only if G ( z )  is not 
confused with the input Uo(zp) and that the nu- 
merator b ( ~ )  and the denominator U(.) are co- 
prime. In the sequel, we will address these two 
issues separately. 

(p-factor and p-cofactor) A polynomial 
(resp. rational function) f ( z )  is called a p-factor 
if it can be written as g ( z P )  for some nontrivial 
polynomial (resp. rational function) g( . ) .  Given 
a polynomial f ( z )  which does not contain any 
p-factor, its p-cofactor, denoted by f C ( z ) ,  is a 
polynomial such that f “ ( z )  contains no p-factor, 
f ( z )  and f C ( z )  are coprime, and that f ( z ) f “ ( z )  
is a p-factor. 

Note that the p-cofactor is unique up to a con- 
stant. Also, ( f c ( z ) ) C  = f ( z ) .  

Theorem 5.1 Consider the system in Figure 2. 
(1) Suppose p = 2 and G ( z )  is  a n  all-pole system, 
i.e. G ( z )  = b l / a ( z ) .  T h e n  G ( z )  is  identifiable if 
and only i f  the even and odd components of U(.) 
are coprime. (2) Similarly, suppose p = 2 and 
G(z) i s  a n  FIR system, i.e. G ( z )  = b ( z ) .  T h e n  
G ( z )  is  identifiable if and only if the even and 
odd components of b(z)  are coprime. 

Unfortunately, it is not possible to identify 
a general nth order IIR system with the over- 
sampling ratio equal to 2. To illustrate this 
point, we consider the sampled data system in 
Figure 2 with p = 2 and G ( z )  = (1 - c ~ z - ~ ) / ( l -  
Pz-’)(l + yz-’), then 

(1 - az-1) 
Y ( z )  = U0 ( z 2  (1 - Pz-l)(l  + 72-1) 

(1 - c t 2 2 - 2 )  vo [ - (1 + 0z-l) 
- 

(1 + oz-1) (1 + 72-1) (1 - p2z-2) 
2 2 )  . 1 

Since the input is unknown, the transfer function 
G ( z )  is clearly not identifiable. 

To find out the necessary and sufficient condi- 
tions for the identifiability of a general IIR sys- 
tem, we define a notion of Q, set: 

(Q, set) For any over-sampling ratio p 2 2, let 
the set Q, be all nth order strictly proper and 
stable transfer functions G ( z )  = b ( z ) / a ( x ) ,  in 
terms of the output sampling interval Iz,, satis- 
fying: (1) a(.) and b ( z )  are coprime. (2) U(.) 
and b ( z )  do not contain any p-factor. (3) Given 
any G ( z )  = b ( z ) / a ( x )  and G ( z )  = b ( z ) / u ( z )  in 
Qp, express them as follows: 

b ( z )  = b 1 ( z ) b 2 ( z ) ; b ( z )  = b l ( Z ) b 2 ( Z )  

U(.) = q ( z ) u 2 ( z ) ;  a(z )  = a1(z)a2(z )  
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where bz ( z )  and &(,:) are coprime, and so are [2] C. R. Johnson, et. al., “On Fractionally- 
u 2 ( t )  and a z ( z ) .  Then, the following condition Spaced Equalizer Design for Digital Mi- 
is not satisfied: degu2(z) =deg&(z) and crowave Radio Channels,” submitted to 

29th Annual Asilomar Conference on Sig- 
nal, Systems and Computers. 

[3] Y. Li and Z. Ding, “Blind Channel Iden- 
tification Based on Second-Order Cvclosta- 

a2(z )  = b;(z ) ;  & ( z )  = a;(.) (5.1) 

modulo a constant. 

generator 

With the above definition, we have the follow- 
ing result. 

Theorem 5.2 Consider the systems in Figure 
2. We have the following: (1) For any over- 
sampling ratio p 2 2, G ( z )  is identifiable if and 
only i f G ( z )  E Q p .  (2) An  n-th order IIR G ( z )  is 
always identifiable fo rp  2 2n, provided that G ( z )  
as coprime. (3) A n  n-th order IIR G ( z )  is always 
identifiable for p 2 n. + 1, under Assumption 1. 

Note that the identifiability conditions above 
impose no assumptions on the input signal. If 
some a priori information on the input signal is 
available, i.e, the input signal is restricted to be 
in a certain class, then the result above can be 
made stronger. For example, p = 2 is sufficient 
provided that the input signal is such that it does 
not cancel the zeros and poles of the the channel 
transfer function. For p 2 3, the possibility that 
G ( z )  Qp (therefore the system being identifi- 
able) is pathological, i.e., basically p = 3 is suf- 
ficient for the identifiability condition, although 
we do not have a practical algorithm for it. To 
argue that G ( z )  $! Qp is pathological for p = 3, 
we note first that the possibility that G ( z )  is co- 
prime is generic. Similarly, the possibility that 
U ( . )  and b ( z )  contain a p-factor is also generic. 
Further, if Condition (3) in the definition of Qp is 
violated, then b$(z) == a z ( z )  in particular. Then, 
either bz ( z )  or az(z)  will have two roots with the 
same magnitude but phase separated by 27rIClp 
for some integer IC > 0. Such a chance is patho- 
logical. This means ithat p must be pathological 
if both G ( z )  and c(z) can be admitted as possi- 
ble transfer functions for the channel. Hence, the 
satisfaction of Condition (3) is also nonpatholog- 
ical for p 2 3. continuous t i ~ ~ y  

system 3 -  
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