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Blind System Identification and Channel Equalization
of IR Systems without Statistical Information

Erwei Bai and Minyue FuMember, IEEE

Abstract—A novel approach is proposed to blindly identify an

is shown that equalization can be achieved without training

unknown IIR system. The approach is based on faster sampling signals by using a multiple sampling rate for the receiver

at the system output and requires neithera priori statistical
information on the unknown input nor training signals. The
methods presented are linear in the parameters of the unknown

or, equivalently, using multichannels. This new approach,
however, has to assume that the channel transfer function

system so that many standard recursive algorithms can be readily has a finite impulse response (FIR). Although it may often

applied. It is also shown in the paper that under a generic
condition, any finite-order IIR system is identifiable, provided
the oversampling ratio is appropriately chosen.

Index Terms—Blind system identification, equalization, multi-

be reasonable to approximate a communication channel by
an FIR function, such an approximation is often of very high
order (up to 70th order FIR’s are used [10]). Further, the order
of the filter tends to increase as the sampling rate increases. In

rate systems, oversampling, system identification, wireless com-contrast, infinite impulse response (lIR) representation often
munications. requires far fewer parameters and, thus, leads to a simpler

equalizer in some applications.

I. INTRODUCTION

HE BLIND system identification (BSI) and blind channe

equalization (BCE) problems addressed in this paper ¢
be formulated as follows. A sequence of input signfi/;]
is transmitted at sampling rat§ = 1/h; to a continuous
time system via an impulse generator or a zero-order hol
The received output signaj[nh,] is sampled at the rate
fo = 1/h,. The BSI and BCE problems identify from{nh.,]
both the system transfer function and the inp[ith;]. These
problems have received a lot of attention in recent years
for applications in digital image processing, speech coding,
and mobile communications such as cellular and cordless
telephony, where communication channels drift constantly.

A traditional way to solve the BSI problem is to use
statistical properties of the unknown input signal, e.g., high-
order statistics [5], [8]. Although this method provides satis-
factory results in many cases, it does require encaghiori
statistical information on the unknown input, which is an
assumption that may not be valid in certain applications. An
alternative approach is to use training signals. For example,
in the GSM standard, every 28 bits in a 116-bit sequence ar
used for the receiver to identify the channel; see Goodman
[3]. This method, although it is simple, significantly reduces
the transmission efficiency. To overcome this difficulty, the
so-called oversampling (or multipath) approach has been pro-
posed recently by Tongt al. [11], Slock [9], Xu et al. [12],

In this paper, we present a novel approach to the BSI and
[BCE problems that allows us to develop efficient algorithms
without the FIR assumption on the channel, without any
tistical information on the input signal, and without training
signals. We also use the idea of oversampling, ifg.>> f;.

'Iane main results of the paper can be summarized as follows:

1) First, we show that doubling the sampling rate for

the receiver is sufficient for BSI and BCE when the
channel is an all-pole filter. An algorithm is presented
for blind identification of these systems. The algorithm
is least-squares based and is convergent if the input is
sufficiently rich.

2) Second, we show that BSI and BCE with an IIR channel

can always be achieved whefy/f; > n + 1, where

n is the order of the channel transfer function. Since
IIR models of the channel can often be of low order,
this result offers an attractive alternative for the BSI
and BCE problems. Again, least-squares-based algo-
rithms that guarantee convergence under some persistent
excitation (PE) conditions are given.

) Finally, we address a general identifiability issue and

give necessary and sufficient conditions for unique iden-
tification of both the channel transfer function and
the input signal. We show that these conditions are
generically satisfiable.

Simulations of the presented algorithms are provided to

Moulines et al. [7], Johnsonet al. [4], and many others. It demonstrate the potential ability of these algorithms in ap-
plications involving fast channel variations. The structure of
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ufm | - contimaons ylkh] We have the sampled system
generator St;:tlgm $[(I€ + 1)ho] = F.I[kho] + Fu[kho]

ylkho] = cx[kh,). (2.3)
Fig. 1. Sampled data system.
Accordingly, the transfer function from the inputto the

output, which is considered at the output sampling period
Il. PROBLEM STATEMENT AND PRELIMINARY h,, is given by annth-order rational transfer function

In this paper, the sampled data system consists of an ideal 1
impulse generator, as shown in Fig. 1. The input to the Glz) =zl - F)"T L
continuous time system is a sequencesdtinctions whose _WE) e A b (2.4)
magnitudes vary according to the input sequengeh;] a(z) l—azt—-—apz "
with the sampling intervah;. This model is very common 5 some constants; and b;.
for digital signal processing and communication Systems.Remark 2.3: From the derivation of the discrete time trans-
Although we focus on the sampled data systems representegeinfynction (), we see that the order of the sampled data
Fig. 1, it should be pointed out that with minor modificationssystem iss, which is the same as the order of the continuous
all the results derived in this paper apply to the sampled dajge system and is independent of the oversampling ratio
systems with a ze_ro-order hold, which is very common in tr}g except in some pathological cases for which pole-zero
control systems literature. _ _cancellation happens. This is one of the advantages to model

The outputy[kh,] is also a discrete sequence with thene channel as an IIR system. In contrast, if an FIR model is
sampling intervalh,. The sampling intervals; and 2, are ysed to approximate an IIR channel, the number of parameters

usually differe_nt. It_ is assumed in Fhis_paper that=hi/P in the model needs to increase as the oversampling fatio
for some positive integep > 1, which is referred to as the jcreases.

oversampling ratio. The continuous time system is assumed tqyyr goal is to identify the parameters in (2.4) as well as the
be represented by an unknown linear time-invariaiorder 5t signalu[mh;] based on the output measuremeyiish, |
state space equation with as little knowledge as possible on the unknown input
#() = Az(t) + bu(t — 1), wye R, A€ R>" sequence. Le¥(z) and U(z) b_e the z-transforms of output
and input sequences, respectively. Then
y =cx(t) (2.1)

1
where 7 is some possible unknown delay. Y(2) = G)U(z) = (aG(z))<E U(z)>
In general, if the output sampling frequency is differenr-[

from the input sampling frequency, the overall system is ti 8ri§1nr>]/tinon5ero (r:%n;tamt. Trlerefore,"t:e benSttWri C?E dg;
varying. However, because the output sampling frequen entify G(z) a (#) up to a scaling constant. The

f, = 1/h, is an integer multiple of the input samplinga d BCE problems are formally defined as follows.

frequencyf, = 1/h, = pfs, the resultant discrete time syste Th(_e B!ind System Identification _(BSI) and Blind Channel
is still linear and time invariant in terms of the output Samp“%quallzanon (BCE) ProblemsConsider the sampled data

interval ystems in Fig. 1, assuming that the input is an unknown
. npnzero bounded sequence. Identifyz) and U(z) up to a

Remark 2.1:Th_e purpose of the paper is to present & noVgonstant for some oversampling ratic> 1 based only on the
approach to solving the BSI and BCE problems for an I .
output observationy[kh,].

system. To focus on this point, we do not include any noise ]
at the channel outputs. However, analysis of the noise effe L;t Yr(e75) Zg? U;Z ) S:;ét: tE@’ tgiqu?r:?tiho;y%hog tintie
is standard and can be found in many control and sign o], respectively. i/ho =p, inpu

processing textbooks; see, e.g., [6]. In addition, noises as'%stem in Fig. 1 is nonzero only once for evergamples, i.e.,

added in the simulations. Y(2) = G(2)U(2) = G(z)Up(2). (2.5)
Remark 2.2: By the same token, we will concentrate on the ] ) ] ]
zero delay(r = 0) case. Extensions to the case with unknown Before closing this section, we make an assumption on the

delay ~ will be discussed, but only briefly. minimality (reachability and observability) of the discrete time
Now, if 7 = 0 and the input is a sequence of théunction, Systéems: _
the system equation (2.1) can be solved as Assumption 1:1t is assumed throughout the paper that

the sampled data system represented in Fig. 1 is minimal
AL reachable and observable) when the oversampling ratio
o[(k + 1)h,] :eA’»x[kho]Jr/M (1 e whenh — b ) Ping
- AAD =) b;(v) du The following lemma can be easily verified.
m " Lemma 2.1: Consider the sampled data system in Fig. 1.
= olkho] + e bulkho). (22)  Then, we have the following.
Thus, by defining 1) The discrete time.system is minimali (reachable_ and
observable) for a giveh, = h;/p,p > 1 if and only if
F=c¢the T =¢thp Im(\i — A\;) # (2mn/h,),m = £1,42,--- whenever

(k+1)h,
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Re(A; — A;) = 0, where);’s are the eigenvalues of theThe PE condition means that the condition below holds

continuous time system. uniformly in [y for some constanta,m > 0

2) The discrete time system is minimal for any oversam- lo-bm
pling ratiop = h;/h, > 1 if it is minimal for p = 1, Z olllP' 1] > ol > 0. 3.7)
i.e., h; = h,. I=lo+1

Proof: The proof is a straightforward extension of the

theorem in [2, p. 561]. Theorem 3.1:Consider the system in Fig. 1 with= 2 and

G(z) given by (3.1). Then, we have the following.

1) ¢[l] is PE if the spectral measure of the inpuft:h;]
(in A; not in h,, which is a weaker condition) is not
We first consider a simple case of IIR systems, namely, concentrated o < n points.

an all-pole filter, to convey the idea. Although all-pole filters 2) The recursive least squares estimatgs of (3.3) con-

rarely resembles the sampled-data system in Fig. 1 precisely, verge asymptotically to the true valug’s if the PE
they are often used to approximate IR models. condition in 1) is satisfied.

Let the oversampling ratip = 2, i.e., h; = 2h,. Suppose Proof: See Section VII. -
the resultant sampled data system is an all-pole system in termg o mark 3.1: It is important to point out that the idea of fast

of the output sampling interval,, i.e., sampling at the output is not new. It is a common practice in
Gl — b1 31 signal processing area to have several sampling rates. This idea
(2) = I 1) has also recently applied to blind system identification for the
' i FIR [11]. Leth; = 2h, and G4 (=) and Ga(z) be th
. . system . Leth; = 2h, and G1(z) and G2(z) be the
We hz_;\v_e dropped the _dela_yl n the numerator fo_r not_anonal transfer functions from the input{k7;] to the outputss[2kh,,]
simplicity. The result in this section remains valid with Somﬁndu[(% + 1)h,], respectively Dehote th& transforms of

minor notational changes #~! is present.
kh;], y[2kh,], andy[(2k+1)h,| by U(2), Yi(2), andY>(2),
The time domain expression of (3.1) is ?gs;(;cg\gelyl ll'hen Y2+ 1ho] by U(2), Yi(2) 2(2)

Ill. | DENTIFICATION OF ALL-POLE SYSTEMS

ylkhol = aiy[(k — i)ho] + brulkh,). Yi(z) = Gi(9)U(2), Ya(z) = G2(2)U(z)
=1 and this implies
Observe thatp = 2, and the inputulkh,] to the impulse
v putii.] P Ga(AMi(2) - Gal()Va(z) = 0.

generator as shown in Fig. 1 is zero for okdlt follows that

n If G1(z) andG2(z) are FIR systems, the coefficients can be
ylkho] = Z a;yl(k — )ho] (3.2) estimated from the above equation modulo a scaling constant.
i=1 If Gi(z) and Go(z) are IIR systems, however, they share
fork=2041,1=0,1,2, - In other words, the coefficientsthe same denominator, and the above equation does not
a;'s are the solution of the linear equation provide any information about the denominator at all. Thus, the
denominator cannot be identified in this way. This difficulty
Play ay -+ an] =g (3:3) s inherent in the scheme and cannot be easily removed.

Remark 3.2: The PE condition imposed in Theorem 3.1 is
very mild in most communications systems. For instawi¢g,
g = W2+ Dho), y[(2L +3)ho], y[(2L + 5)ho],---)' (3.4) is PE if u[kh;] is white or has at least/2 sinusoids.
) i To illustrate the result of Theorem 3.1, we give a simulation
and ¢ is shown in (3.5) at the bottom of the page. example here.
Thus, a;’s can be uniquely solved by many standard meth- g, jation Example 1:Suppose the (unknown) sampled

ods if the matrix¢ has full column rank. In fack,’s can also  ya44 system is represented by a third-order transfer function
be calculated on-line recursively by employing recursive least

where

squares or other recursive algorithms. In this case, to guarantee () = 1
. . (2) Fo—1 1 -1
the asymptotical convergence of the estimaigs to the true (1-052"")(1+0.227")(1-0.327")
but unknowna;’s, some persistent excitation (PE) condition _ 1
is required [6]. Define 1— gzl —ap2=2 — gz 3
o1l = [l(2 +n)ho] yl(2l+n —1)h,] where
y[(2L+ DAl (3.6) o =06, a =001, az=-0.03
y[(2Dh]  y[(20 — Dh,] -+ y[(20+1—n)h,]
o y[(2L+2)h,] Y2+ 1Dho] -+ y[(20+ 3 —n)h]
= | yl(

2 +4)h,] y[(21 +3)h,] - w[(20+5—n)h,] |- (3.5
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Fig. 4. NRMSE versus SNR.

signal. Fig. 4 shows the NRMSE versus SNR (in decibels) in
a series of 100 Monte Carlo runs for different SNR'’s.

Remark 3.3:1In reality, the order of the channel may be
unknown. In this case, the order can be estimated by using
some standard methods in the system identification literature.
For instance, if the order is overestimated, the madrixn
(3.5) is no longer full column rank. Thus, the order can be
estimated by testing the rank &f ®. For details, e.g., see [6].
Alternatively, the order can be estimated using the standard
subspace method.

It should be pointed out that Theorem 3.1 assumes that
the input and the output are synchronized (i.e., the channel
has zero delay). In reality, the input and the output are not
synchronized, and some unknown delay is always there. This
corresponds to the case wherez 0 in (2.1) or in the discrete
time domain, the transfer function is given by

-15 i L s L 1 L L s J del
5 10 15 20 25 30 35 40 45 50 blz_ €

G(z) =

l—azl— i —qguz ™

Fig. 3. Actual input (solid) and the sample mean of 100 estimates (dash-dot)
(SNR = 25 dB). )
for some unknown delay det 2d or 2d+ 1 for some integer

To obtain a performance measure of the blind channel ideh-However, the oversampling ratjp= 2 implies that one of
tification, the normalized root-mean-square error (NRMSE) §te following equations should hold:

the estimate is defined as n
— u2kho] =" agyl(2k - i)ho)
1 1M aq — i (%) i=1
NRMSE= —————— | — > || a2 — éa(i) n
[[(cer, az, a3)|| Al M = as — Gia(i) y[(2k + 1)h,] = Z a;y[(2k + 1 — )h,].
=1

where (&1 (2), &2(8), &3(¢)) is the estimate of o, ao, avz)’ : : . .
from thesth run, andAf is the number of Monte Carlo trials The problgm is that we do not know which one is the right
ne. To this end, let

and was set to be 100 in the simulation. Fifty symbols wef?

usgd in each trial Fo estima(ec}, az,az). The inp_ut signa_l is (11,610, a1,)'s  and  (Go1, dga, -+, d2n )

estimated by feeding the received output signal into the inverse . )

of the estimated transfer function. be the estimates of;’s by using the odd sample2k + 1)
For the simulation, both the input and the noise signals #8d the even samplegk), respectively. Define

assumed to be indgpendent rand_om var?ableslh L]. Fig. 2 vi[kho] = (1 — g1 27t — 1022 — - — gz )y[kho]

shows the 100 estimates of the input signal (SNR5 dB).

. i . 2 (3.8)
Fig. 3 shows the actual input signal (solid line) and the sample . o
mean of its 100 estimates (dash-dot line) with SNR5 dB.  v2lkhe] =(1 — G2127" — 227" — -+ — G2n 2™ " )y[kho].
We see that the sample mean is very close to the actual input (3.9
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Clearly,v; andwv, are the estimates of the inputby using the
estimateqdiy, - -, ad1,) and(da, - -, a2, )", respectively. In
the absence of noise, one @fkh,] recovers, up to a scaling
constant, exactly the message signgth,] modulo a delay
due to unknowndel in the transfer functiorz(z). Thus, this
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1+

signal will be zero for every alternative sample. The othergs
signal, however, does not have this property. Subsequently, if

I '
R BT
we have ok R I VR A E A
\ o o Ll " \ ARt A " \
o RN S TR e PR T L
: 2 2 . S o HETEEH B Ny H) 1
min vilkh vilkh i ' Yo I 2 !
k_z: 1[ o]vk;ld 1[ o] " v ’ .! lI i l‘ : ‘: .!
=even =0 o5kl l, e bl .'_1. O TR 4 : .
M ' TRRZEEER . N S
< min{ Z vakh,], Z vg[kho]} (3.10) '|J‘ 'K . A : ;‘
N : N i N N N
k=even k=odd J Y S . . BRA N 4
it implies that v [kh,] is u[kh,] modulo a delayd and, in : :
turn, that(éq1,d12,---,41,)" is the estimate of’s. On the : : ; ; : ; 3 ; ;
other hand, s 5 10 15 20 25 30 35 40 45 50
Fig. 5. Actual input (solid) and the sample mean of its estimates (dash-dot)
: 2 2
min Z vi[khol, Z Uh [kho]} when unknown del= 2.
{k:even k=odd
< min{ Z v3 [kho], Z vg[kho]} (3.11) o ! . T r T
k=even k=odd : : : :
042}

implies thatvs[kh,] is «[kh,] modulo a delay! and, in turn,
that the estimatéas;, ass, -~ -, G2, )’ IS correct.
Simulation Example 2:To illustrate the performance of the

above algorithm for an unknown delay del, we consider thess

system in Simulation Example 1 again with an unknown dela :
0.36F - o NG

del

Zfdel

G(z) = .
() = 10671 — 0,002 1 0.03:=3

All the setups are identical as in Simulation Example 1, exce§t| =~ &

the delay del is unknown. We first set the unknown €ep.
After 100 Monte Carlo trials with SNR= 30 dB, the sample
means of

04

0.34

03

0.28f----

026

10

15

20

[Z vilkh,], Z vi[kh,], Z v3[kh,]
k

=even k=odd k=even

Fig. 6. NRMSE versus SNR when del is unknown.
> 3 [kho]] = [3.8510,0.1101, 3.7333,1.9539].
k=odd
Clearly, 0.1101 is the minimum. According to the abov@bviously, the odd part of, recovers the input. Fig. 7 shows
discussion,v; recovers the input considered at the outpdbe actual input signat[kh;] (solid line) and the sample mean
sampling intervah,,, and in fact, the even part of recovers Of the odd part ofv, (dash-dot line). We see that again the
the input signak[kh;]. Fig. 5 shows the actual input signalProposed scheme estimates the input well except some delay.
u[kh;] (solid line) and the sample mean of the even part of
v1 (dash-dot line). We see that the even partvpfestimates Y,
the input well except for some delay due to the unknown '
del. Fig. 6 shows the NRMSE versus SNR in a series of 100VWe now consider arbitrary IIR systems characterized by
Monte Carlo runs. (2.4). Two algorithms will be provided. The first algorithm
We now change the unknown delay del3. After 100 runs fequiresp = 2(n + 1) and identifies a set of parameters
with SNR = 30 dB, the sample means of and 5;, which are equivalent ta; andb;, respectively. The
l identification of o; and 3; will be done separately with the

| DENTIFICATION OF IR SYSTEMS

Z vf[/fho], Z vf[kho], Z v%[kho] advantage that es_timation errorSchan_dﬁi are indgpeno_le_nt.

e The second algorithm usgs= n+ 1. This algorithm identifies
a; first and then uses the estimate @fto identify ;. With
the lower oversampling ratio, the tradeoff of this algorithm is
that the estimation error in; affects the estimate fdr;.

k=even k=even

> [kho]] = [2.4230,4.0469,0.4250, 4.2141].
k=odd
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15— , T r T T r T T Now, becausé?o(z) andG, () are the transfer functions from

S ’ : : : ' ' Up(2("t1D) to the outputsYs(z) and Yi(z), respectively, in
terms of the sampling period = 2h,, Go(z) and G1(z)
share the commonth-order denominator. In addition, as far as
equalization is concerned, eith€f(2) or G1(z) is sufficient
to recover the input because

U() = Ga(2)Yo(2) = GrH(2)Yi(e).

Note that the equations in (4.2) are expressed in terms of
the sampling intervak = 2h,. Its time domain representation
is given by

n

yilkh] = aiyl(k — )b+ > Buul(k — )bl (4.7)
=1

=1

The input sequence[kh] is nonzero only ift = I(n+1), i.e.,

. . . N u[(l(n +1) = D] =2u[(l(n + 1) — 2)A]
Fig. 7. Actual input (solid) and the sample mean of its estimates (dash-dot)
when unknown dek= 3. =---=u[(l(n+1)—n)h] =0

for all I. Now, consider (4.7) at the sampling intenv/alfor
Algorithm 4.1: Let p = 2(n + 1). The inputU(z) is given k = I(n + 1)
by n
U(z) = Up(22+D), (4.1) yilltn+ DR =" awy[(l(n + 1) = §)A].
=1

Decompose the output
Y(2) = Yo(#2) + Vi (22)

As this holds forj = 0, 1, we can write more generally that

l h] = yl(d 1) —)h]. 4.8
and letGy(z) and G1(=) be, respectively, the transfer func- yli(n+1)A] ; ayl(n+1) = i)kl (4.8)

tions from Uy (2" +1) to Yo(2) andY1(»), i.e., _ o _ _ o
. This equation is linear iny; and can be written as [similar
Yo(z) = Go(2)Uo(2" 1) to (3.3)]

Yi(z) = Gl(z)UO(zn-i—l)_ (4.2) Dlay oy o Oén]/ =q (4.9)

Th h
en, we have where we have (4.10) and (4.11), shown at the bottom of

Y (2) = Go(22)Up(Z2HD) 4 271G (22 Up (22 HY). the next page. Again, any standard identification method (e.g.,
least squares) can be used to estimats.

To identify 3y(z) and 51 (=), we have by substituting (4.6)
Y(z) _ G(Z)U'O(ZQ(n-l—l)) _ b(z)a(_z) U'O(ZQ(rH—l)) (43) into (42), that

alz)a(=2) B1(2)Yo(2) — fol2)Y1(2) = 0. (4.12)
wherea(z)a(—z) is an even polynomial. Denote

On the other hand

From the equation®o(z) = Borz™! + -+ + Bonz™" and

04(752) = a(z)a(—2) (4.4) Br(z) = P11 + -+ + Binz~ "L, we have in the time domain
wherea(z) =1 — a2~ —--- — a,, 27", and decompose B - Pin Por - Pon) =0 (4.13)
2 —1 2
b(z)a(=2) = Po(z") + 27 fu(z7) (45)  where we have (4.14), shown at the bottom of the next page.
with Again, 3y; and 3y, appear linearly in (4.13). The difference
1 . between this equation and (4.9) is that the solution to this
Po(z) = Porz™" + -+ Ponz equation is unique only up to a scaling constant, provided that
Br(z) =P+ -+ Pz @ has full column rank. This is consistent with our goal of
We obtain blind system identification, i.e., to find(z) up to a scaling
) ) constant. In fact, any vector in the null spacebok a solution.
Y(z) = /30(22) Uo(z2(n+1)) + 2—1/31(2’2) UO(ZQ(n-I—l)). There are many Ways_to solve this equation. The simpliest one
a(2?) a(2?) is probably to normalize one of the componentssgtz) or
Hence B1(z). For instance, lefdp; = 1. Then, we have
3oz 3 (= 'TeR] (B Bin Boz - Bon)
Go(z):/o(); Gl(z):/l(). (4.6) S'[ER](Brr- - Pin Boz -+ Pon)
a(2) a(z) =yl(k — )h + h,] (4.15)
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with The time domain expression for the above is
d)/[kh] :(y[kh],,y[(k—n—i—l)h] n n—1
—y[(k = 2)h +h],--- ylkho] =Y aiyl(k = o] + Y biul(k —i)ho]. (4.20)
=1 =0

—y[(k —n)h +he])
or, in a compact form
(P11 o P Boz o Pon) =4q (4.16) n
where we have ullp+m)ho] =D al(lp +n — i)h,]. (4.21)
q = (y[(k—=1Dh+ho], ylkh+ho), y[(k+1)h+h.], - ) (4.17) =t

Once again, we have

and (4.18), shown at the bottom of the page. Thiig,and
S1; can be solved in a similar way as for (4.9). Moreover, the ®lay ax - an] =q (4.22)
full rankness of® can be established in a similar way as for
allpole systems. We summarize the results for blind systejiere
identification of the lIR system in the following theorem (see _ _ _ Y.
Section VIl for proof) = (ul(lp+n)hol (= Dp+n)holul((l 2)p+n)ho](74.2;)

'Theorem 4.1:Consider the sampled data system in Fig. 1,4 ¢ is in (4.24), shown at the bottom of the next page.
with p = 2(n + 1). Let Go(z) and G1(z) be the transfer therefore, recursive least-square algorithms can be used to
functions described above. Then, we have the following. estimatea; with asymptotic convergence, providédis PE.

1) The recursive least squares estimate’s from (4.9)  Once the estimaté(z) of a(~) are obtained, our next step

converge asymptotically te;’s if the spectral measure s to use them to further estimatg. For this purpose, we
of the inputu[kh;] is not concentrated oh < n points. compute

2) The recursive least squares estimale . -+, 4p,) and )
(Bi1,+ -+, P1n) from (4.16) converges asymptotically to V(z) = a(2)Y (2) (4.25)
(Bo1,- -+, fPon) and (B11,---, 1) UP to a scaling con- oo
stant, provided that the spectral measure of the inp%?d decompose it into
ulkh;] is not concentrated ok < 2n — 1 points and V(2) = Vo(2P) + 27 Vi (2P) 4+ - 27"V, (2P).  (4.26)
that the numerator of the transfer functio6§~) has

Taking k = lp 4+ n, we haveu[(k — i)h,] =0,¥i =0, - -n—
1. Hence,

coprime even and odd components. Assume now that; = a, for all i. Then,V(z) = b(z)Uo(2"),
meaning that
Algorithm 4.2 Vo(2?) =0; Vi(z) = billg(z), i=1,---,n. (427)
Let p = n+ 1. Our first step is to identify:(z). To this
end, we note that Normalizingb, = 1, the above becomds, (z) = Up(z), and
a(2)Y (2) = b(2)Up(z" ). (4.19) Viiz) =bVi(z), i=2,---,n. (4.28)
g =(yli(n + DAL y[(l + (n+ DAL y[(1+2)(n + 1], ) (4.10)
y[(l(n +1) — 1)A] ylfn+1) =2 - y[(lln+1) —n)h]
y[(U+D(n+1) = DAl y[(I+1)(n+1)=2)] - y[((I+1)(n+1) —n)h]
=1l +2(n+1) - DA yl(((+2D+1)=2h] - y[((+2)n+1)=n)h] |- (4.11)
ylkh] o gl —n4 DA —ullk—Dh+ho] o —gyl(k —n)h+ h,]
_ yl(k+1h] - y[(k—n+2)h] —ylkh + Ny) <o —yllk —n+ DA+ h)
=\ ylk+2h] - yl(k—n+3)h] —y[(k+Dh+ho] - —y[(k—n+2h+h] | (4.14)
ylkh] o yllk—n+ DA —y[(k-2)h+h,] - —yl(k—n)h+ k]
5o yl(k+1)n] - yl(k—n+2)h] —y[(k = Dh+he] -+ —y[(k—n+1)h+h

y[(k+2)R] - yl(k—n+3)h]  —ykh+h)] - —yllk—n+2h+h,] |- (4.18)
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The time domain expression of the above gives a set of lineas ! T T T T T T T T
equations forb; : : ' : : : : : :
08 4
QIbi = 4, LI2,,7’L (429) 06 i
where 04 i
g =(v(lp — @), v((l = )p—4), ) ozt
i=1---,n. (4.30) o
Subsequently o2
b = (dhar) " qrai- (431) o4 1
Note thatb; contains a scalar factor as a result of normalizingpst- 1
by = 1. The inverse above exists becautg(z’) # 0 o8 )
(following from the assumptio”(z) # 0). . _ : : : | 5
Theorem 4.2:Consider the sampled data system in Fig. 1-1p—i—p—pbr———L—t———t——

with p = n+ 1. Then, we have the following. Fio 8. Actual e and th | dash-dof) of 100 esti
. . 1g. o. ctual input (solid) and the sample mean (dash-dot) o estimates
1) The recursive least squares estimatgs from (4.22) obgtained by app|$ing( A|go)rithm 41, P ¢ )

converge asymptotically ta;’s if the spectral measure
of the inputu[kh;] is not concentrated ok < 2n— 1
points.

2) Suppose the PE condition above holds. Then, the revs
cursive least squares estimatefrom (4.29) converges
asymptotically tob; up to a scaling constant.

Proof: See Section VII. o4t

Algorithm 4.1 needs a faster sampling rate than Algorithm

4.2 does. However, in Algorithm 4.2, the estimates bpf ¢
depend on the estimates @f Therefore, the estimation errors o} {
of a; can propagate to that éf. This implies that the overall
estimation accuracy of Algorithm 4.1 may be, in general, bette?*| : : : ;
than Algorithm 4.1. The following numerical simulations show_gaf-§. it oo o g
this fact. R , _
Simulation Example 3:Let the unknown continuous time [ [ ik W L T
channel be represented by a second-order transfer function_gg| .. \V,

s+ 10

Gls) = 1 — .
s24+3s+3

. . . . . Fig. 9. Actual input (solid) and the sample mean (dash-dot) of 100 estimates

In the simulation, the discretized channel model is taken #Btained by applying Algorithm 4.2.

be a second-order IIR system. Let the input sampling interval

h; = 0.3 be fixed for simulations. The input signal and noise K41 As in th ¢ all-nol h
are taken to be independent random variables-if, [1]. In Remark 4.1: As in the case of all-pole systems, Theorems

applying Algorithm 4.1,h, = h;/(2(2+ 1)) = 0.05, and in 4.1 an_d_4.2_ assume = Oin (2.0). If 7 # O "?md is unknown,
applying Algorithm 4.2)1, = A;/(2 + 1) = 0.1. Fig. 7 shows a moQ|f|cat|on similar to the all-pole case is needed. Nam_ely,
the actual input signal (solid line) and the sample mean of sestimators ShOUId_ pe used S|multaneously for all possible
estimates by 100 Monte Carlo runs (dash-dot line) that we glgys, and a decision maker is added to select the best
obtained by applying Algorithm 4.1. Similarly, Fig. 8 showEstimator.
the actual input signal (solid line) and the sample mean of its
estimates by 100 Monte Carlo runs (dash-dot line) that were
obtained by applying Algorithm 4.2 (see Fig. 9 as well). In We have seen in the previous sections thpat= 2 is
both figures, SNR= 30 dB and 50 transmitted output symbolsufficient for all-pole or FIR systems and that= n+ 1 for
are used to identify the channel and then to equalize the inplliR systems with order equal to, provided that some very

1 T T T T T T T T T

e1:] o

T

-1

0

V. |IDENTIFIABILITY

y[(lp +n — 1)h,] yllp+n—2)h] -+ —yllph]
o= |vll=Dp+n-1h] yl((-Dp+n—-2)h] -~ —y[(l—1)pho] |. (4.24)
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mild PE conditions are satisfied. In this section, we study~a~!). Then

more general identifiability problemJnder what conditions

can G(z) be uniquely identified based on the observation of . 2 5
{y(kh,)}g° or, equivalently, itsz transformY (=), regardless Y(z) =G)o(=") = (1-82"1)(14~z"1) Ho(=)
of the input sequencg:(kh;)}5°? Here, unique identifiability, (148271 (1-a2272) )
or simply identifiability, means the following. Suppose there = 1+ ar DI+~ | (1= 5222 Uo(27)
exists G(z), G(z), Up(2"), andUy(z") such that the degree B ) )

and relative degree ofi(z) are the same as those 6f(z) =G(2)Uo(2").

and that

(1—az1)

Since the input is unknown, the transfer functi6i(>) is
clearly not identifiable.

To find out the necessary and sufficient conditions for the
identifiability of a general IIR system, we define a notion of
Then Qp set.

Definition 5.2—€),, Set: For any oversampling ratip > 2,
G(2) = aG(2), Uy(#?) = Uy(2)/cx let the set,, be allnth-order strictly proper and stable transfer
functionsG(z) = b(z)/a(z) in terms of the output sampling

for somew« # 0. Implicitly assumed above is that(z) # interval i, satisfying the following.
0 because otherwise, the problem of identifiability cannot bel) «(z) and b(z) are coprime.
defined. 2) a(z) andb(z) do not contain any factor.
The main results of this section provide necessary and suf3) Given anyG(z) = b(z)/a(z) andG(z) = b(z)/a(z) in
ficient conditions for the identifiability problem. Note that the Qp, express them as
setting of the identifiability problem requires the availability

Y(2) = G(2)Up(2P) = G(2)Uo(2F).

of the whole sequence §f/[kh,]}5°. Therefore, the necessary b(z) =b1(2)ba(2);  b(z) = b1(2)ba2(2) (5.1)
and sufficient condition for the identifiability problem will a(z) =a1(z)az(2); al(z) = e (2)az(z) (5.2)
become necessary only for the identifiability 6%z) when _

a finite sequence of[kh,] is available. Nevertheless, the ~ Whereby(z) andby(z) are coprime, and so arg(z) and

identifiability conditions will help us understand and possibly ~ @2(2). Thendeg aa(z) = deg @2()is not satisfied, and
generalize the results in previous sections.

SinceY (2) = G(2)Up(=?), roughly speaking(7(z) can be
identified if and only ifG(z) is not confused with the input (5.3)

Uy(2?) and that the numeratd(~) and the denominatar(z)

are coprime. In the sequel, we will address these two issuedVith the above definition, we have the following result (see
separately. Section VIl for proof).

Definition 5.1— Factor andp Cofactor): A polynomial Theorem 5.2:Consider the systems in Fig. 1. We have the

(respectively, rational functionf(z) is called ap factor if following: _ _ o
it can be written asg(z") for some nontrivial polynomial 1) For any oversampling ratip > 2, G(z) is identifiable

Ta2(2) = b5(2);  bo(2) = a3(#) modulo a constant

(respectively, rational functiony(-). Given a polynomial if and only if G(2) € Qp.

f(z) that does not contain anyfactor, itsp cofactor, which ~ 2) Annth-order IIRG(z) is always identifiable fop > 2n,

is denoted byf¢(»), is a polynomial such thafc(~) contains provided thatG(z) is coprime.

no p factor, f(») and f¢(») are coprime, andf(z)f°(») is 3) Annth-order IIRG(z) is always identifiable fop > n+

a p factor. 1 under Assumption 1.
Note that thep cofactor is unique up to a constant. In Remark 5.1:Note that the identifiability conditions above

addition, (f°(2))° = f(2). impose no assumptions on the input signal. If scaneriori
Theorem 5.1:Consider the system in Fig. 1 with= 2. information on the input signal is available, i.e, the input signal
1) SupposeG(z) is an all-pole system, i.e.3(z) = s restricted to be in a certain class, then the result above can

b1/a(z). Then,G(z) is identifiable if and only if the odd be made stronger. For exampje= 2 is sufficient, provided
component ofa(z) is nonzero and shares no commothat the input signal is such that it does not cancel the zeros
factors with the even component afz). and poles of the the channel transfer function.

2) Similarly, suppos&7(z) is an FIR system, i.e(i(z) = Remark 5.2:For p > 3, the possibility thatG(z) ¢ Q,
b(z). Then, G(z) is identifiable if and only if the odd (therefore, the system being identifiable) is pathological, i.e.,
component ofb(z) is nonzero and shares no commoiasicallyp = 3 is sufficient for the identifiability condition,
factors with the even component bfz). although we do not have a practical algorithm for it. To argue
Proof: See Section VII. m that G(») ¢ @, is pathological forp = 3, we note first

Unfortunately, it is not possible to identify a genergh- that the possibility tha&(z) is coprime is generic. Similarly,

order IIR system with the oversampling ratio equal to 2. Tthe possibility thata(z) and b(z) contain ap factor is also
illustrate this point, we consider the sampled data systemgdeneric. Further, if condition (3) in the definition @}, is
Fig. 1 withp = 2 andG(z) = (1 — az71)/(1 — Bz71)(1 + Vviolated, therbs(z) = @a(z) in particular. Then, eithen () or
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a2(z) will have two roots with the same magnitude but phase Let

separated bgrk/p for some integek > 0. Such a chance is yl(2L + n)h,]
pathological. This means thatmust be pathological if both y[(2 +n — 1)h,]
G(») andG(z) can be admitted as possible transfer functions  ¢[l] = : [l = uf2lh,]
for the channel. Hence, the satisfaction of condition (3) is also '
nonpathological fopp > 3. yl(20 + 1)ho]
a a2 -+ QAp_-1 Qn by
VI. CONCLUDING REMARKS -/t ° - ° 0 e
In this paper, a novel approach has been proposed to blindly 0 0 - 1 0 0

identify an IIR system. The key is to sample the output
faster. We feel that the work reported in this paper is just follows that
a preliminary result on the problem of blind identification =2 7
of an arbitrary IR system, which we believe is largely an ol = A ol = 1]+ bull]. B
untouched field and deserves more work. For instance, A now show that the system(l] = A ¢l — 1] + bu[l] is
integer oversampling ratip is assumed in this paper. It isreachable for any > 1. Of course, this implies that when
interesting to see how this can be relaxed to allow anyp = 2, the system is reachable. Lat = _TZT*1 be the
and what the corresponding identification algorithms are. Oderdan form ofA and b = Tb. Since (A4,b) is reachable,
of the key motivations for this paper is to find a minimakach eigenvalue, including those repeated, can only have one
set of assumptions on the input signal for BSI and BCE. lfordan block. Now(A”, b) is reachables (A”,b) is reachable
reality, the input signal is much “richer” than simply beings rank Al — AP, b) = n, for all A = ePteA ... ePlodn,
PE. Further, the input signal is restricted to be in a speciahere);’s are the eigenvalues of the continuous time system
class, depending on the coding technique. Naturally, our nest c?™o?i £ ePhede § £ b o Im(\; — A\p) # (2ar/phy) =
task is to see how BSI and BCE can be done more effectivéBur/h;), o = £1,+2,--- when Ré\;, — A\x) = 0 < the
in these circumstances. discrete time system is minimal whem = 1. Therefore,
the system is reachable under Assumption 1. Now, the PE
PROOFS condition follows from the sufficient richness ef2/A,] [1].

. . . . This completes the proof.
Proof of Theorem 3.1:The key is to establish thag[l] is ) ' . .
PE whenu[kh;] has at least spectral lines. Then, the rest ofni Pror?tf tOf :;]heo:err} 4.f1_.|'_|'hhe frr?log Cif tLhe f|r_st plart IS 1rehm|-
the theorem follows from standard results on Least squaresSce 0 the proof of Theorem 3.1. Leff] = ufi(n + 1)h]

see [1] and [6]. To this end, note thaf(2! — 1)h,] = 0, and and

y[(21 + n)h,] oll] = (WlUn+1)=1)h], y[({(n+1)—=2)Aly[({(n+1)—n)A])".
y[(20+n — 1)k Then, by simple calculation, we have
: #ll] = A1 — 1] + Dufl — 1]
ul(2l + 1))
where
ap a2 v OGp-1 GOp
1 0 0 0 )
= : . Oél 062 Tt a'n,—l Oé’n,
o o0 - 1 0 A= 1o 0 0
y[(2L +n — 1)h,] by
y[(21 +n — 2)h,] 0 0 0 L0
: + | .| w[2lh]
. . and
yl(20ho] 0
ar Az v Ap—1 Qpn
1 0 0 0 JEa %2
= E :Zn—l Zn—Q
0 O 1 0 0 0
ai  ao Ap—1 Qpn
ﬁn—l ﬁn
Lo o9 | o 0
: : - : + + A . + .
0 O - 1 0
0 0
yl(2L+n — 2)h,] by
yl(2l +7n = 3)ho] 0 . _ _
. + | . | u2lh,] From Assumption 1 and Lemma 1, the discrete time system
: : is minimal and therefore, each eigenvalue of the mattix

y[(20 = 1)h,] 0 including those of repeated, can only have one Jordan block.
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Let (A,b) is reachable ift;, is not zero, andi = 1,2,---,4q.
AL O - 0 To show that thosef;,’s are not zero, observe that any

- 0 Ay -+ 0 eigenvaluec*~" of A is not zero, and moreover, #r "

TAT ' =A= . is an eigenvalue associated with theh Jordan blockA,,

: with multiplicity [,,, the corresponding eigenvector and
0 0 - A generalized eigenvectors are the columns of the matrix
where eachA; is a Jordan block with the dimensioh. 2w, shown at the bottom of the page (see, e.g., [2, p. 65]).
What we have to show is that the system is reachablote thatT~! = (73,T3,---,T,) and
therefore, sufficient richness of the input implies PE¢of| 4, ad{T 1 C
and, consequently, the convergence. From the proof of the r=T")"= de(7-1) - de(7-1)
previous theorem and Assumption 1, we know hat. o) is  \ith o7 the adjoint matrix formed by the cofactats. Thus,
reachable if( A, b) is reachable. Note thdt4, b) is reachable #, = cy, /de(T™1). ¢y, is the determinant of some nonsin-

(:]’MI(A’ Tblzjs reachabl§:> rank Al — A, Th) = nforall A= o jar matrix formed by deleting the first row afidcolumn of
"M . e where),’s are the eigenvalues of the contlnuT_1, and this implieg;, # 0 for all i = 1,2, - -, ¢. This com-

ous time system. Now, let the first column of the maffibe

pletes the proof. For the second part, we notice that the hypoth-

(F1y ottty ot oot ) esis i'mplies that the numeratgig(z) and3;(z) of the transfer

functionsGo(z) and G1(z) do not share any common zeros.

Therefore, the conclusion follows from the proof of [12, Th. 2].
Proof of Theorem 4.2:The proof of the first part is identical

to that of Theorem 4.1. The second part is a direct consequence

It follows that we havel’d, shown at the bottom of the page
Since et £ Al if ¢ £ m by Assumption 1,(A,Tb) is
reachables the last row of each

- tf _— tf of the first part.
Aj DAt A I Proof of Theorem 5.11t is clear that atp = 2, G(2)
iy, ty, contains g factor if and only if the even and odd components
t; t; of a(z) (for the all-pole case) d¥(>) (for the FIR case) are not
+ N B+ |8 coprime. Therefore, the coprimeness is a necessary condition
t f for identifiability (see the remark before Theorem 5.1). In the

1 i

Aln—l Al n—2 FIR case, this condition is also sufficient because the ratio of
=t (A" 4 Ba(e™) the even and odd componentsiofz) is exactly the ratio of the
+ oot PBaoreM + B) even and odd components &ffz). Subsequently}(z) can be
is not zero. The term inside the bracket is not zero; otherwigeiquely identified fromY(z) modulo a constant. Similarly,
e would be a zero of the discrete time system as well asrathe all-pole case, the ratio of the even and odd compo-
pole, and this contradicts Assumption 1 and Lemma 1. Thugnts ofY(z) is the ratio of the even and odd components

Ay Bo B 1 B
o |0 0 0
Tho=A"r| | +Aan?r| D |+ 4aT| L | 4T
0 0 0

P+ A2

to to
A§‘1<5 B+ A2 E>/32+---+A2

ti, ti,
tq tq tq tq
AP s )B4+ A2 Bt A Bt | B
th th th th
(n—1)Amh (n—2)Amh n—=1\ i 3)a.n =1\ 1, )amh
—e —(n—1e = 5 e =\ )¢
Trn = :
—ermh —1 0 0



BAI AND FU: BLIND SYSTEM IDENTIFICATION AND CHANNEL EQUALIZATION OF IIR SYSTEMS

1921

of a(—z)/a(z)a(—z). Once this function is identified from of b2(2)) = n— 1 andp > n+ 1. Thus,ax(z) and @ ()
Y(z), a(z) can be uniquely decomposed, provided that thaust contribute tg factors. Lete(*:+i%)% pe the roots of

coprimeness condition fog(z) holds.

a(z) = a1(#)az(z), where); + j3;’s are the continuous time

Proof of Part 1 of Theorem 5.20bviously, from the ex- system poles. Sincé(z)bs(z) is ap factor, at least two roots
ample given before the definition of thg, set, conditions e F7%) and eAmFifmlhe of ay(2) satisfy \; = A, and
(1)—(3) in the definition ofy,, set are necessary for the uniqué:,(3; — 5,,) = 2#l/p for some integei > 1. However, this
identification of G(z). Now, we show that they are sufficient.implies 3; — 3, = 2rl/h;, which is a contradiction to the
To this end, we suppos@(z) = (b(z)/a(z)) € Q,, and there minimality of the system ap = 1; see Assumption 1 and

exist someG(z) = (b(z)/a(z)) with the same degree & z)
such thatY (z) = G(2)U(2F) = G(2)U(=?) for someU(z?)

andU(z?). Then, leth;(z) be the greatest common divider of
b(z) and b(z). a1(2) and l/1(»?) are similarly defined. That

is, (5.1) and (5.2) hold, and
U(2P) = U (2P)Uy(2), U(2P) = U (zP)Uo ().

It is implied thatG(2)U(2?) = G(2)U(z?), and

Lemma 1. This completes the proof.
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