
1910 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 47, NO. 7, JULY 1999

Blind System Identification and Channel Equalization
of IIR Systems without Statistical Information

Erwei Bai and Minyue Fu,Member, IEEE

Abstract—A novel approach is proposed to blindly identify an
unknown IIR system. The approach is based on faster sampling
at the system output and requires neither a priori statistical
information on the unknown input nor training signals. The
methods presented are linear in the parameters of the unknown
system so that many standard recursive algorithms can be readily
applied. It is also shown in the paper that under a generic
condition, any finite-order IIR system is identifiable, provided
the oversampling ratio is appropriately chosen.

Index Terms—Blind system identification, equalization, multi-
rate systems, oversampling, system identification, wireless com-
munications.

I. INTRODUCTION

T HE BLIND system identification (BSI) and blind channel
equalization (BCE) problems addressed in this paper can

be formulated as follows. A sequence of input signal
is transmitted at sampling rate to a continuous
time system via an impulse generator or a zero-order hold.
The received output signal is sampled at the rate

The BSI and BCE problems identify from
both the system transfer function and the input These
problems have received a lot of attention in recent years
for applications in digital image processing, speech coding,
and mobile communications such as cellular and cordless
telephony, where communication channels drift constantly.

A traditional way to solve the BSI problem is to use
statistical properties of the unknown input signal, e.g., high-
order statistics [5], [8]. Although this method provides satis-
factory results in many cases, it does require enougha priori
statistical information on the unknown input, which is an
assumption that may not be valid in certain applications. An
alternative approach is to use training signals. For example,
in the GSM standard, every 28 bits in a 116-bit sequence are
used for the receiver to identify the channel; see Goodman
[3]. This method, although it is simple, significantly reduces
the transmission efficiency. To overcome this difficulty, the
so-called oversampling (or multipath) approach has been pro-
posed recently by Tonget al. [11], Slock [9], Xu et al. [12],
Moulines et al. [7], Johnsonet al. [4], and many others. It
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is shown that equalization can be achieved without training
signals by using a multiple sampling rate for the receiver
or, equivalently, using multichannels. This new approach,
however, has to assume that the channel transfer function
has a finite impulse response (FIR). Although it may often
be reasonable to approximate a communication channel by
an FIR function, such an approximation is often of very high
order (up to 70th order FIR’s are used [10]). Further, the order
of the filter tends to increase as the sampling rate increases. In
contrast, infinite impulse response (IIR) representation often
requires far fewer parameters and, thus, leads to a simpler
equalizer in some applications.

In this paper, we present a novel approach to the BSI and
BCE problems that allows us to develop efficient algorithms
without the FIR assumption on the channel, without any
statistical information on the input signal, and without training
signals. We also use the idea of oversampling, i.e.,
The main results of the paper can be summarized as follows:

1) First, we show that doubling the sampling rate for
the receiver is sufficient for BSI and BCE when the
channel is an all-pole filter. An algorithm is presented
for blind identification of these systems. The algorithm
is least-squares based and is convergent if the input is
sufficiently rich.

2) Second, we show that BSI and BCE with an IIR channel
can always be achieved when , where

is the order of the channel transfer function. Since
IIR models of the channel can often be of low order,
this result offers an attractive alternative for the BSI
and BCE problems. Again, least-squares-based algo-
rithms that guarantee convergence under some persistent
excitation (PE) conditions are given.

3) Finally, we address a general identifiability issue and
give necessary and sufficient conditions for unique iden-
tification of both the channel transfer function and
the input signal. We show that these conditions are
generically satisfiable.

Simulations of the presented algorithms are provided to
demonstrate the potential ability of these algorithms in ap-
plications involving fast channel variations. The structure of
the paper is as follows. In Section II, the problems of BSI
and BCE are formulated, and some preliminary results are
given. Section III deals with allpole systems. Identification al-
gorithms are presented along with their convergence analysis.
Section IV discusses identification algorithms for arbitrary IIR
systems. The identifiability problem is formulated and studied
in Section V. Finally, some remarks are given in Section VI.

1053–587X/99$10.00 1999 IEEE
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Fig. 1. Sampled data system.

II. PROBLEM STATEMENT AND PRELIMINARY

In this paper, the sampled data system consists of an ideal
impulse generator, as shown in Fig. 1. The input to the
continuous time system is a sequence of-functions whose
magnitudes vary according to the input sequence
with the sampling interval This model is very common
for digital signal processing and communication systems.
Although we focus on the sampled data systems represented in
Fig. 1, it should be pointed out that with minor modifications,
all the results derived in this paper apply to the sampled data
systems with a zero-order hold, which is very common in the
control systems literature.

The output is also a discrete sequence with the
sampling interval The sampling intervals and are
usually different. It is assumed in this paper that
for some positive integer 1, which is referred to as the
oversampling ratio. The continuous time system is assumed to
be represented by an unknown linear time-invariantth-order
state space equation

(2.1)

where is some possible unknown delay.
In general, if the output sampling frequency is different

from the input sampling frequency, the overall system is time
varying. However, because the output sampling frequency

is an integer multiple of the input sampling
frequency , the resultant discrete time system
is still linear and time invariant in terms of the output sampling
interval

Remark 2.1:The purpose of the paper is to present a novel
approach to solving the BSI and BCE problems for an IIR
system. To focus on this point, we do not include any noise
at the channel outputs. However, analysis of the noise effect
is standard and can be found in many control and signal
processing textbooks; see, e.g., [6]. In addition, noises are
added in the simulations.

Remark 2.2:By the same token, we will concentrate on the
zero delay case. Extensions to the case with unknown
delay will be discussed, but only briefly.

Now, if and the input is a sequence of thefunction,
the system equation (2.1) can be solved as

(2.2)

Thus, by defining

we have the sampled system

(2.3)

Accordingly, the transfer function from the input to the
output , which is considered at the output sampling period

, is given by an th-order rational transfer function

(2.4)

for some constants and
Remark 2.3:From the derivation of the discrete time trans-

fer function , we see that the order of the sampled data
system is , which is the same as the order of the continuous
time system and is independent of the oversampling ratio

, except in some pathological cases for which pole-zero
cancellation happens. This is one of the advantages to model
the channel as an IIR system. In contrast, if an FIR model is
used to approximate an IIR channel, the number of parameters
in the model needs to increase as the oversampling ratio
increases.

Our goal is to identify the parameters in (2.4) as well as the
input signal based on the output measurements
with as little knowledge as possible on the unknown input
sequence. Let and be the -transforms of output
and input sequences, respectively. Then

for any nonzero constant Therefore, the best we can do is
to identify and up to a scaling constant. The BSI
and BCE problems are formally defined as follows.

The Blind System Identification (BSI) and Blind Channel
Equalization (BCE) Problems:Consider the sampled data
systems in Fig. 1, assuming that the input is an unknown
nonzero bounded sequence. Identify and up to a
constant for some oversampling ratio 1 based only on the
output observation

Let and denote the transforms of and
, respectively. For , note that the input to the

system in Fig. 1 is nonzero only once for everysamples, i.e.,

(2.5)

Before closing this section, we make an assumption on the
minimality (reachability and observability) of the discrete time
systems:

Assumption 1:It is assumed throughout the paper that
the sampled data system represented in Fig. 1 is minimal
(reachable and observable) when the oversampling ratio
1, i.e. when

The following lemma can be easily verified.
Lemma 2.1:Consider the sampled data system in Fig. 1.

Then, we have the following.

1) The discrete time system is minimal (reachable and
observable) for a given 1 if and only if
Im whenever
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Re , where ’s are the eigenvalues of the
continuous time system.

2) The discrete time system is minimal for any oversam-
pling ratio 1 if it is minimal for 1,
i.e.,

Proof: The proof is a straightforward extension of the
theorem in [2, p. 561].

III. I DENTIFICATION OF ALL-POLE SYSTEMS

We first consider a simple case of IIR systems, namely,
an all-pole filter, to convey the idea. Although all-pole filters
rarely resembles the sampled-data system in Fig. 1 precisely,
they are often used to approximate IIR models.

Let the oversampling ratio 2, i.e., Suppose
the resultant sampled data system is an all-pole system in terms
of the output sampling interval , i.e.,

(3.1)

We have dropped the delay in the numerator for notational
simplicity. The result in this section remains valid with some
minor notational changes if is present.

The time domain expression of (3.1) is

Observe that 2, and the input to the impulse
generator as shown in Fig. 1 is zero for oddIt follows that

(3.2)

for . In other words, the coefficients
’s are the solution of the linear equation

(3.3)

where

(3.4)

and is shown in (3.5) at the bottom of the page.
Thus, ’s can be uniquely solved by many standard meth-

ods if the matrix has full column rank. In fact, ’s can also
be calculated on-line recursively by employing recursive least
squares or other recursive algorithms. In this case, to guarantee
the asymptotical convergence of the estimates’s to the true
but unknown ’s, some persistent excitation (PE) condition
is required [6]. Define

(3.6)

The PE condition means that the condition below holds
uniformly in for some constants

(3.7)

Theorem 3.1:Consider the system in Fig. 1 with 2 and
given by (3.1). Then, we have the following.

1) is PE if the spectral measure of the input
(in not in , which is a weaker condition) is not
concentrated on points.

2) The recursive least squares estimates’s of (3.3) con-
verge asymptotically to the true value’s if the PE
condition in 1) is satisfied.

Proof: See Section VII.
Remark 3.1: It is important to point out that the idea of fast

sampling at the output is not new. It is a common practice in
signal processing area to have several sampling rates. This idea
has also recently applied to blind system identification for the
FIR system [11]. Let and and be the
transfer functions from the input to the outputs
and , respectively. Denote the transforms of

, , and by , , and ,
respectively. Then

and this implies

If and are FIR systems, the coefficients can be
estimated from the above equation modulo a scaling constant.
If and are IIR systems, however, they share
the same denominator, and the above equation does not
provide any information about the denominator at all. Thus, the
denominator cannot be identified in this way. This difficulty
is inherent in the scheme and cannot be easily removed.

Remark 3.2:The PE condition imposed in Theorem 3.1 is
very mild in most communications systems. For instance,
is PE if is white or has at least sinusoids.

To illustrate the result of Theorem 3.1, we give a simulation
example here.

Simulation Example 1:Suppose the (unknown) sampled
data system is represented by a third-order transfer function

where

...
...

...
...

(3.5)
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Fig. 2. One hundred estimates of the input signal (SNR= 25 dB).

Fig. 3. Actual input (solid) and the sample mean of 100 estimates (dash-dot)
(SNR = 25 dB).

To obtain a performance measure of the blind channel iden-
tification, the normalized root-mean-square error (NRMSE) of
the estimate is defined as

NRMSE

where is the estimate of
from the th run, and is the number of Monte Carlo trials
and was set to be 100 in the simulation. Fifty symbols were
used in each trial to estimate The input signal is
estimated by feeding the received output signal into the inverse
of the estimated transfer function.

For the simulation, both the input and the noise signals are
assumed to be independent random variables in [1, 1]. Fig. 2
shows the 100 estimates of the input signal (SNR25 dB).
Fig. 3 shows the actual input signal (solid line) and the sample
mean of its 100 estimates (dash-dot line) with SNR25 dB.
We see that the sample mean is very close to the actual input

Fig. 4. NRMSE versus SNR.

signal. Fig. 4 shows the NRMSE versus SNR (in decibels) in
a series of 100 Monte Carlo runs for different SNR’s.

Remark 3.3: In reality, the order of the channel may be
unknown. In this case, the order can be estimated by using
some standard methods in the system identification literature.
For instance, if the order is overestimated, the matrixin
(3.5) is no longer full column rank. Thus, the order can be
estimated by testing the rank of For details, e.g., see [6].
Alternatively, the order can be estimated using the standard
subspace method.

It should be pointed out that Theorem 3.1 assumes that
the input and the output are synchronized (i.e., the channel
has zero delay). In reality, the input and the output are not
synchronized, and some unknown delay is always there. This
corresponds to the case where 0 in (2.1) or in the discrete
time domain, the transfer function is given by

for some unknown delay del or 1 for some integer
However, the oversampling ratio 2 implies that one of

the following equations should hold:

The problem is that we do not know which one is the right
one. To this end, let

be the estimates of ’s by using the odd samples
and the even samples , respectively. Define

(3.8)

(3.9)
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Clearly, and are the estimates of the inputby using the
estimates and , respectively. In
the absence of noise, one of recovers, up to a scaling
constant, exactly the message signal modulo a delay
due to unknown in the transfer function Thus, this
signal will be zero for every alternative sample. The other
signal, however, does not have this property. Subsequently, if
we have

(3.10)

it implies that is modulo a delay and, in
turn, that is the estimate of ’s. On the
other hand,

(3.11)

implies that is modulo a delay and, in turn,
that the estimate is correct.

Simulation Example 2:To illustrate the performance of the
above algorithm for an unknown delay del, we consider the
system in Simulation Example 1 again with an unknown delay
del

All the setups are identical as in Simulation Example 1, except
the delay del is unknown. We first set the unknown del2.
After 100 Monte Carlo trials with SNR 30 dB, the sample
means of

Clearly, 0.1101 is the minimum. According to the above
discussion, recovers the input considered at the output
sampling interval , and in fact, the even part of recovers
the input signal Fig. 5 shows the actual input signal

(solid line) and the sample mean of the even part of
(dash-dot line). We see that the even part ofestimates

the input well except for some delay due to the unknown
del. Fig. 6 shows the NRMSE versus SNR in a series of 100
Monte Carlo runs.

We now change the unknown delay del3. After 100 runs
with SNR 30 dB, the sample means of

Fig. 5. Actual input (solid) and the sample mean of its estimates (dash-dot)
when unknown del= 2.

Fig. 6. NRMSE versus SNR when del is unknown.

Obviously, the odd part of recovers the input. Fig. 7 shows
the actual input signal (solid line) and the sample mean
of the odd part of (dash-dot line). We see that again the
proposed scheme estimates the input well except some delay.

IV. I DENTIFICATION OF IIR SYSTEMS

We now consider arbitrary IIR systems characterized by
(2.4). Two algorithms will be provided. The first algorithm
requires and identifies a set of parameters
and , which are equivalent to and , respectively. The
identification of and will be done separately with the
advantage that estimation errors ofand are independent.
The second algorithm uses 1. This algorithm identifies

first and then uses the estimate of to identify With
the lower oversampling ratio, the tradeoff of this algorithm is
that the estimation error in affects the estimate for
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Fig. 7. Actual input (solid) and the sample mean of its estimates (dash-dot)
when unknown del= 3.

Algorithm 4.1: Let The input is given
by

(4.1)

Decompose the output

and let and be, respectively, the transfer func-
tions from to and , i.e.,

(4.2)

Then, we have

On the other hand

(4.3)

where is an even polynomial. Denote

(4.4)

where , and decompose

(4.5)

with

We obtain

Hence

(4.6)

Now, because and are the transfer functions from
to the outputs and , respectively, in

terms of the sampling period , and
share the commonth-order denominator. In addition, as far as
equalization is concerned, either or is sufficient
to recover the input because

Note that the equations in (4.2) are expressed in terms of
the sampling interval Its time domain representation
is given by

(4.7)

The input sequence is nonzero only if , i.e.,

for all Now, consider (4.7) at the sampling intervalfor

As this holds for , we can write more generally that

(4.8)

This equation is linear in and can be written as [similar
to (3.3)]

(4.9)

where we have (4.10) and (4.11), shown at the bottom of
the next page. Again, any standard identification method (e.g.,
least squares) can be used to estimate’s.

To identify and , we have by substituting (4.6)
into (4.2), that

(4.12)

From the equations and
, we have in the time domain

(4.13)

where we have (4.14), shown at the bottom of the next page.
Again, and appear linearly in (4.13). The difference
between this equation and (4.9) is that the solution to this
equation is unique only up to a scaling constant, provided that

has full column rank. This is consistent with our goal of
blind system identification, i.e., to find up to a scaling
constant. In fact, any vector in the null space ofis a solution.
There are many ways to solve this equation. The simpliest one
is probably to normalize one of the components of or

For instance, let 1. Then, we have

(4.15)
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with

or, in a compact form

(4.16)

where we have

(4.17)

and (4.18), shown at the bottom of the page. Thus,and
can be solved in a similar way as for (4.9). Moreover, the

full rankness of can be established in a similar way as for
allpole systems. We summarize the results for blind system
identification of the IIR system in the following theorem (see
Section VII for proof).

Theorem 4.1:Consider the sampled data system in Fig. 1
with Let and be the transfer
functions described above. Then, we have the following.

1) The recursive least squares estimates’s from (4.9)
converge asymptotically to ’s if the spectral measure
of the input is not concentrated on points.

2) The recursive least squares estimate and
from (4.16) converges asymptotically to
and up to a scaling con-

stant, provided that the spectral measure of the input
is not concentrated on points and

that the numerator of the transfer functions has
coprime even and odd components.

Algorithm 4.2

Let 1. Our first step is to identify To this
end, we note that

(4.19)

The time domain expression for the above is

(4.20)

Taking , we have
1. Hence,

(4.21)

Once again, we have

(4.22)

where

(4.23)
and is in (4.24), shown at the bottom of the next page.
Therefore, recursive least-square algorithms can be used to
estimate with asymptotic convergence, providedis PE.

Once the estimate of are obtained, our next step
is to use them to further estimate For this purpose, we
compute

(4.25)

and decompose it into

(4.26)

Assume now that for all Then, ,
meaning that

(4.27)

Normalizing , the above becomes , and

(4.28)

(4.10)

...
...

...
...

(4.11)

...
...

...
...

...
...

(4.14)

...
...

...
...

...
...

(4.18)
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The time domain expression of the above gives a set of linear
equations for

(4.29)

where

(4.30)

Subsequently

(4.31)

Note that contains a scalar factor as a result of normalizing
The inverse above exists because

(following from the assumption ).
Theorem 4.2:Consider the sampled data system in Fig. 1

with 1. Then, we have the following.

1) The recursive least squares estimates’s from (4.22)
converge asymptotically to ’s if the spectral measure
of the input is not concentrated on 1
points.

2) Suppose the PE condition above holds. Then, the re-
cursive least squares estimatefrom (4.29) converges
asymptotically to up to a scaling constant.

Proof: See Section VII.
Algorithm 4.1 needs a faster sampling rate than Algorithm

4.2 does. However, in Algorithm 4.2, the estimates of
depend on the estimates of Therefore, the estimation errors
of can propagate to that of This implies that the overall
estimation accuracy of Algorithm 4.1 may be, in general, better
than Algorithm 4.1. The following numerical simulations show
this fact.

Simulation Example 3:Let the unknown continuous time
channel be represented by a second-order transfer function

In the simulation, the discretized channel model is taken to
be a second-order IIR system. Let the input sampling interval

0.3 be fixed for simulations. The input signal and noise
are taken to be independent random variables in [1, 1]. In
applying Algorithm 4.1, 0.05, and in
applying Algorithm 4.2, 0.1. Fig. 7 shows
the actual input signal (solid line) and the sample mean of its
estimates by 100 Monte Carlo runs (dash-dot line) that were
obtained by applying Algorithm 4.1. Similarly, Fig. 8 shows
the actual input signal (solid line) and the sample mean of its
estimates by 100 Monte Carlo runs (dash-dot line) that were
obtained by applying Algorithm 4.2 (see Fig. 9 as well). In
both figures, SNR 30 dB and 50 transmitted output symbols
are used to identify the channel and then to equalize the input.

Fig. 8. Actual input (solid) and the sample mean (dash-dot) of 100 estimates
obtained by applying Algorithm 4.1.

Fig. 9. Actual input (solid) and the sample mean (dash-dot) of 100 estimates
obtained by applying Algorithm 4.2.

Remark 4.1:As in the case of all-pole systems, Theorems
4.1 and 4.2 assume 0 in (2.1). If 0 and is unknown,
a modification similar to the all-pole case is needed. Namely,

estimators should be used simultaneously for all possible
delays, and a decision maker is added to select the best
estimator.

V. IDENTIFIABILITY

We have seen in the previous sections that 2 is
sufficient for all-pole or FIR systems and that 1 for
IIR systems with order equal to, provided that some very

...
...

...

(4.24)
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mild PE conditions are satisfied. In this section, we study a
more general identifiability problem:Under what conditions
can be uniquely identified based on the observation of

or, equivalently, its transform , regardless
of the input sequence ? Here, unique identifiability,
or simply identifiability, means the following. Suppose there
exists , , , and such that the degree
and relative degree of are the same as those of
and that

Then

for some Implicitly assumed above is that
0 because otherwise, the problem of identifiability cannot be
defined.

The main results of this section provide necessary and suf-
ficient conditions for the identifiability problem. Note that the
setting of the identifiability problem requires the availability
of the whole sequence of Therefore, the necessary
and sufficient condition for the identifiability problem will
become necessary only for the identifiability of when
a finite sequence of is available. Nevertheless, the
identifiability conditions will help us understand and possibly
generalize the results in previous sections.

Since , roughly speaking, can be
identified if and only if is not confused with the input

and that the numerator and the denominator
are coprime. In the sequel, we will address these two issues
separately.

Definition 5.1— Factor and Cofactor): A polynomial
(respectively, rational function) is called a factor if
it can be written as for some nontrivial polynomial
(respectively, rational function) Given a polynomial

that does not contain any factor, its cofactor, which
is denoted by , is a polynomial such that contains
no factor, and are coprime, and is
a factor.

Note that the cofactor is unique up to a constant. In
addition,

Theorem 5.1:Consider the system in Fig. 1 with 2.

1) Suppose is an all-pole system, i.e.,
Then, is identifiable if and only if the odd

component of is nonzero and shares no common
factors with the even component of

2) Similarly, suppose is an FIR system, i.e.,
Then, is identifiable if and only if the odd

component of is nonzero and shares no common
factors with the even component of

Proof: See Section VII.
Unfortunately, it is not possible to identify a generalth-

order IIR system with the oversampling ratio equal to 2. To
illustrate this point, we consider the sampled data system in
Fig. 1 with 2 and

. Then

Since the input is unknown, the transfer function is
clearly not identifiable.

To find out the necessary and sufficient conditions for the
identifiability of a general IIR system, we define a notion of

set.
Definition 5.2— Set: For any oversampling ratio 2,

let the set be all th-order strictly proper and stable transfer
functions in terms of the output sampling
interval satisfying the following.

1) and are coprime.
2) and do not contain any factor.
3) Given any and in

, express them as

(5.1)

(5.2)

where and are coprime, and so are and
Then is not satisfied, and

modulo a constant

(5.3)

With the above definition, we have the following result (see
Section VII for proof).

Theorem 5.2:Consider the systems in Fig. 1. We have the
following:

1) For any oversampling ratio 2, is identifiable
if and only if

2) An th-order IIR is always identifiable for ,
provided that is coprime.

3) An th-order IIR is always identifiable for
1 under Assumption 1.

Remark 5.1:Note that the identifiability conditions above
impose no assumptions on the input signal. If somea priori
information on the input signal is available, i.e, the input signal
is restricted to be in a certain class, then the result above can
be made stronger. For example, 2 is sufficient, provided
that the input signal is such that it does not cancel the zeros
and poles of the the channel transfer function.

Remark 5.2:For 3, the possibility that
(therefore, the system being identifiable) is pathological, i.e.,
basically 3 is sufficient for the identifiability condition,
although we do not have a practical algorithm for it. To argue
that is pathological for 3, we note first
that the possibility that is coprime is generic. Similarly,
the possibility that and contain a factor is also
generic. Further, if condition (3) in the definition of is
violated, then in particular. Then, either or
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will have two roots with the same magnitude but phase
separated by for some integer 0. Such a chance is
pathological. This means thatmust be pathological if both

and can be admitted as possible transfer functions
for the channel. Hence, the satisfaction of condition (3) is also
nonpathological for 3.

VI. CONCLUDING REMARKS

In this paper, a novel approach has been proposed to blindly
identify an IIR system. The key is to sample the output
faster. We feel that the work reported in this paper is just
a preliminary result on the problem of blind identification
of an arbitrary IIR system, which we believe is largely an
untouched field and deserves more work. For instance, an
integer oversampling ratio is assumed in this paper. It is
interesting to see how this can be relaxed to allow any
and what the corresponding identification algorithms are. One
of the key motivations for this paper is to find a minimal
set of assumptions on the input signal for BSI and BCE. In
reality, the input signal is much “richer” than simply being
PE. Further, the input signal is restricted to be in a special
class, depending on the coding technique. Naturally, our next
task is to see how BSI and BCE can be done more effectively
in these circumstances.

PROOFS

Proof of Theorem 3.1:The key is to establish that is
PE when has at least spectral lines. Then, the rest of
the theorem follows from standard results on Least squares;
see [1] and [6]. To this end, note that 0, and

...

...
...

. . .
...

...

...
...

...
...

. . .
...

...

...
...

. . .
...

...

...
...

Let

...

...
...

. . .
...

...
...

It follows that

We now show that the system is
reachable for any 1. Of course, this implies that when

2, the system is reachable. Let be the
Jordan form of and Since is reachable,
each eigenvalue, including those repeated, can only have one
Jordan block. Now, is reachable is reachable

rank , for all ,
where ’s are the eigenvalues of the continuous time system

Im
when Re the

discrete time system is minimal when 1. Therefore,
the system is reachable under Assumption 1. Now, the PE
condition follows from the sufficient richness of [1].
This completes the proof.

Proof of Theorem 4.1:The proof of the first part is remi-
niscent to the proof of Theorem 3.1. Let
and

Then, by simple calculation, we have

where

...
...

...
...

...

and

...
...

...
...

From Assumption 1 and Lemma 1, the discrete time system
is minimal and therefore, each eigenvalue of the matrix
including those of repeated, can only have one Jordan block.
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Let

...

where each is a Jordan block with the dimension
What we have to show is that the system is reachable;
therefore, sufficient richness of the input implies PE of
and, consequently, the convergence. From the proof of the
previous theorem and Assumption 1, we know that is
reachable if is reachable. Note that is reachable

is reachable rank for all
, where ’s are the eigenvalues of the continu-

ous time system. Now, let the first column of the matrixbe

It follows that we have , shown at the bottom of the page.
Since if by Assumption 1, is
reachable the last row of each

...
...

...
...

is not zero. The term inside the bracket is not zero; otherwise,
would be a zero of the discrete time system as well as a

pole, and this contradicts Assumption 1 and Lemma 1. Thus,

is reachable if is not zero, and
To show that those ’s are not zero, observe that any
eigenvalue of is not zero, and moreover, if
is an eigenvalue associated with theth Jordan block
with multiplicity , the corresponding eigenvector and
generalized eigenvectors are the columns of the matrix

, shown at the bottom of the page (see, e.g., [2, p. 65]).
Note that and

adj
det det

with the adjoint matrix formed by the cofactors Thus,
det is the determinant of some nonsin-

gular matrix formed by deleting the first row andcolumn of
, and this implies for all This com-

pletes the proof. For the second part, we notice that the hypoth-
esis implies that the numerators and of the transfer
functions and do not share any common zeros.
Therefore, the conclusion follows from the proof of [12, Th. 2].

Proof of Theorem 4.2:The proof of the first part is identical
to that of Theorem 4.1. The second part is a direct consequence
of the first part.

Proof of Theorem 5.1:It is clear that at
contains a factor if and only if the even and odd components
of (for the all-pole case) or (for the FIR case) are not
coprime. Therefore, the coprimeness is a necessary condition
for identifiability (see the remark before Theorem 5.1). In the
FIR case, this condition is also sufficient because the ratio of
the even and odd components of is exactly the ratio of the
even and odd components of Subsequently, can be
uniquely identified from modulo a constant. Similarly,
in the all-pole case, the ratio of the even and odd compo-
nents of is the ratio of the even and odd components

...
...

...
...

...
...

...
...

...
...

...
...

...

...
...

...
...

...
...

...
...

...
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of Once this function is identified from
, can be uniquely decomposed, provided that the

coprimeness condition for holds.
Proof of Part 1 of Theorem 5.2:Obviously, from the ex-

ample given before the definition of the set, conditions
(1)–(3) in the definition of set are necessary for the unique
identification of Now, we show that they are sufficient.
To this end, we suppose , and there
exist some with the same degree as
such that for some
and Then, let be the greatest common divider of

and and are similarly defined. That
is, (5.1) and (5.2) hold, and

It is implied that , and

(7.1)

Obviously, deg deg is necessary for unique
identification of Now, we show that and
have to be constants if Suppose they are not. Due
to the coprimeness of and , must contain

and, thus, However, the term in
must be canceled by due to the coprimeness of
and Therefore, contains By the same
token, contains and , and has to
be canceled by Thus, also contains Hence,

Similarly, we have These two
co-factor conditions are exactly in violation of condition (3)
in the definition of Therefore, we conclude that and

are constant if Suppose that now, is a
constant and must therefore be Subsequently, both
and must be constant as well due to their coprimeness
and condition (2). In this case, and differ by a
constant. Similarly, if is a constant, and differ
by a constant as well. Subsequently, and differ by
a constant if The proof is thus completed.

Proof of Part 2 of Theorem 5.2:Let Using the
result in Part 1, we argue that if is coprime, must
be a member of Obviously, and do not contain
any factor. Therefore, we need to show that condition (3)
in the definition of is always satisfied as well, argued
by contradiction. That is, we assume that there exists some
coprime that satisfies (5.3) and deg deg ,
i.e., We use the notation in condition (3). Denote
the degree of by , and then, deg On the
other hand, deg is constrained. Therefore, we have

However, is restricted to be 1. The above
leads to or, equivalently, 1, which
violates the assumption that Hence, must
hold. Subsequently, the Part 1 of the theorem implies that

is identifiable.
Proof of Part 3 of Theorem 5.2: is not identifiable

only if (7.1) holds for some nonconstant
and In other words, is a factor, and
so is Note that max degree of degree

of 1 and 1. Thus, and
must contribute to factors. Let be the roots of

, where ’s are the continuous time
system poles. Since is a factor, at least two roots

and of satisfy and
for some integer 1. However, this

implies , which is a contradiction to the
minimality of the system at 1; see Assumption 1 and
Lemma 1. This completes the proof.
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