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   Abstract—Gaussian belief propagation algorithm (GaBP) is one
of the most important distributed algorithms in signal processing
and  statistical  learning  involving  Markov  networks.  It  is  well
known  that  the  algorithm  correctly  computes  marginal  density
functions  from  a  high  dimensional  joint  density  function  over  a
Markov network in a finite number of iterations when the under-
lying  Gaussian  graph  is  acyclic.  It  is  also  known  more  recently
that the algorithm produces correct marginal means asymptotic-
ally for cyclic Gaussian graphs under the condition of walk sum-
mability (or generalised diagonal dominance). This paper extends
this convergence result further by showing that the convergence is
exponential under the generalised diagonal dominance condition,
and provides  a  simple  bound for  the  convergence rate.  Our res-
ults are  derived  by  combining  the  known walk  summability  ap-
proach for asymptotic convergence analysis with the control sys-
tems approach for stability analysis.
    Index Terms—Belief propagation,  distributed  algorithm,  distrib-
uted estimation, Gaussian belief propagation, Markov networks.

I.  Introduction

B ELIEF  propagation  (BP)  algorithm  is  a  well-celebrated
distributed algorithm for Markov networks that has been

widely  utilized  in  many  disciplines,  ranging  from  statistical
learning  and  artificial  intelligence  to  distributed  estimation,
distributed optimisation,  networked  control  and  digital  com-
munications [1]–[13].

Initially introduced by Pearl [1] in 1988, the BP algorithm is
also  known  as  Pearl’s  algorithm,  message-passing  algorithm
and  sum-product  algorithm.  It  is  designed  to  compute  the
marginal  probability  densities  of  random  variables  from  the
joint probability density function over a large Markov network
with  sparse  connections  among  individual  random  variables.
The significance of the algorithm stems from the facts that  it

is  fully  distributed  (i.e.,  only  local  information  is  needed  for
iteration  computation)  and  that  a  wide  range  of  application
problems can be formulated as a BP problem. It is well known
that  the  BP  algorithm  produces  correct  marginal  probability
densities in a finite number of iterations when the underlying
graph for the joint density function is acyclic (i.e., no cycles or
loops).  But  the  properties  of  the  algorithm for  cyclic  (loopy)
graphs have been a major research topic over several decades.

The Gaussian BP algorithm (GaBP), a special version of the
BP  algorithm  for  Markov  networks  with  Gaussian
distributions  (also  known  as  Gaussian  graphical  model),  has
received  special  attention  for  the  study  of  its  convergence
properties.  In  [2],  it  was  shown  that  GaBP  produces
asymptotically  the  correct  marginal  means  under  the
assumption  that  the  joint  information  matrix  is  diagonal
dominance.  It  was  relaxed  in  [3]  that  the  same  asymptotic
convergence holds when the joint information matrix is walk-
summable, which is equivalent to the condition of generalised
diagonal  dominance.  The  convergence  property  in  [3]  was
generalised by [5] to allow an alternative decomposition of the
optimizing  function  and  more  flexible  message  initialization.
In [7], [8], necessary and sufficient conditions for asymptotic
convergence  of  GaBP  are  studied.  In  [5],  convergence
properties  of  the  BP  algorithm  for  convex  optimisation
(including  quadratic  optimisation)  are  studied.  A  pertinent
result  in  [5]  is  a  bound  on  the  convergence  rate  of  the  BP
algorithm under a scaled diagonal dominance assumption and
a particular decomposition of optimizing function. Many other
interesting properties of GaBP can be found in, e.g., [14]–[16]
and the references therein.

The purpose of this paper is to study the convergence rate of
GaBP.  Under  the  generalised  diagonal  dominance  condition,
we  provide  a  simple  bound  for  the  exponential  convergence
rate of the marginal means. This bound is simply the spectral
radius  of  the  matrix  related  to  the  information  matrix.  This
bound  also  coincides  with  that  in  [5]  but  under  weaker
conditions  (see  details  later).  Our  results  are  derived  by
combining  the  walk  summability  approach  in  [3]  for
asymptotic  convergence  analysis  with  the  control  systems
approach for stability analysis.

In the rest of the paper, we introduce GaBP in Section II and
discuss  the  walk  summability  condition  in  Section  III,
followed  by  convergence  rate  analysis  in  Section  IV,
illustrating examples in Section V and conclusions in Section VI.

II.  Problem Formulation

A  Gaussian  graphical  model  is  a  Markov  network  with
Gaussian  distributions,  characterised  by  an  undirected  graph
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G = {V,E} V = {1,2, . . . ,n}
E {i, j} ⊂ V

i ∈ V xi

x = col{x1, x2, . . . , xn}

, where  represents the set of nodes
and  is the set of edges (or unordered pairs ),  with
each  node  being  associated  with  a  random variable .
Fig. 1 shows  an  example  of  Markov  network.  The  joint
probability  density  for  is  given  by  the
following Gaussian density function

p(x) ∝ exp
[
−1

2
xT Ax+bT x

]
(1)

A = {ai j} ai j = 0
{i, j} < E

b
µ = E{x}

P = E{(x−µ)(x−µ)T }

where  is a sparse information matrix with  for
all , which is  a  symmetric  and positive  definite  mat-
rix, and  is the potential vector. It is straightforward to verify
that  the  mean  vector  and  covariance  matrix

 are given respectively by

µ = A−1b, P = A−1. (2)
i ∈ V

pi(xi)
xi

The problem of concern is for each node  to compute,
in a distributed fashion, the marginal density function  of

, defined by

pi(xi) =
w

x−i
p(x)dx−i (3)

x−i x xi

µi µ pii

where  denotes  the  vector  with  the  component  re-
moved.  It  is  well  known  that  this  amounts  to  computing  the
marginal mean  (the ith term of ) and marginal variance 
(the ith diagonal term of P).

p(x)Using the Gaussian graphical model,  can be factorized
into

p(x) ∝
∏
i∈V
ϕi(xi)

∏
{i, j}∈E

ϕ(xi, x j) (4)

with

ϕi(xi) = exp
[
−1

2
aiix2

i +bixi

]
ϕi j(xi, x j) = exp[−ai jxix j]. (5)

pi(xi) k i ∈ V
j ∈ Ni

i m(k)
i→ j(x j)

The BP algorithm is an iterative message-passing algorithm
for  computing .  In  each  iteration ,  each  node 
computes  and  transmits  to  each  node  (the  set  of
neighbouring nodes of ) the message 

m(k)
i→ j(x j) =

w
ϕi j(xi, x j)ϕi(xi)

∏
v∈Ni\ j

m(k−1)
v→i (xi)dxi,

m(k−1)
v→i i

v k−1
pi(xi) k

where  is  the  message  node  receives from  its  neigh-
bouring node  in iteration .  This  results  in the marginal
density  to be estimated in iteration  as

p(k)
i (xi) ∝ ϕi(xi)

∏
v∈Ni

m(k−1)
v→i (xi).

m(k)
i→ j(x j)For a  Gaussian graphical  model,  the  message  can

be expressed as

m(k)
i→ j(x j) ∝ exp

[
−1

2
ai→ j(k)x2

j +bi→ j(k)x j

]
.

This results in GaBP below

ai→ j(k) = −
ai ja ji

ai→ j(k)
, bi→ j(k) = −

a jibi→ j(k)
ai→ j(k)

with

ai→ j(k) = aii+
∑

v∈Ni\ j

av→i(k−1)

bi→ j(k) = bi+
∑

v∈Ni\ j

bv→i(k−1).

ai→ j(0) = aii
bi→ j(0) = bi

p(k)
i (xi)

The  initialization  is  done  by  taking  and
.  The  marginal  mean  and  marginal  variance  of

 are then given by, respectively

µi(k) =
bi+
∑

v∈Ni bv→i(k−1)
aii+
∑

v∈Ni av→i(k−1)
(6)

pii(k) =
1

aii+
∑

v∈Ni av→i(k−1)
. (7)

G
d µi(k) = µi pii(k) = pii

i d G
G i di

di G i

It is well known [2] that, when the graph  is acyclic, GaBP
converges in  iterations with  and  for all
,  where  is  the  diameter  of  (i.e.,  the  largest  distance

between  any  two  nodes  in ).  Actually,  for  each  node , 
iterations are sufficient to yield the above convergence, where

 is  the  largest  distance  from  any  node  in  to  node  [2].
(The  distance  of  two  nodes  is  the  minimum  path  length
between the nodes.)

µi(k)
ui i

For  cyclic  (or  loopy)  graphs,  GaBP  produces  the  correct
marginal  means  asymptotically  under  certain  conditions.  In
particular, it has been established in [3] that  converges to

 for  all  asymptotically  under  the  so-called  walk
summability  condition.  This  condition  is  also  known  to  be
equivalent  to  requiring  the  matrix A to  be  generalised
diagonally dominant [17].

The  goal  of  this  paper  is  to  study  the  convergence  rate  of
GaBP under the same walk summability condition.

III.  Walk Summability

Walk-sum analysis is an elegant approach introduced in [3]
(and  their  earlier  references  thereof)  for  studying  the
convergence  of  GaBP.  Here  we provide  a  quick  summary of
this approach.

R = {ri j} ∈ Rn×n

G = (V,E) w
Given  a  matrix  and  its  induced  graph

, a walk  in the graph is a node sequence

w = (w0,w1, . . . ,wl), ∀ wi ∈ V, (wi,wi+1) ∈ E (8)
land its length is . The weight of the walk is defined to be

ϕ(w) =
l−1∏
i=0

rwiwi+1 . (9)
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Fig. 1.     An example of Markov network.
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i ∈ V
ϕ(i) = 1 w

i j w : i → j
l w : i l−→ j

i j {i→ j}
i j {i l−→ j}

W ϕ(W) =
∑

w∈W ϕ(w)

As a convention, a single node  is regarded as a special
(zero-length)  walk  with  its  weight .  A  walk  from
node  to  is also denoted by , and such a walk with
length  is denoted by . The set of all walks from node
 to  node  is  denoted  by ,  and  the  set  of  all  length l

 walks from node  to node  is denoted by .  The walk-
sum of a set of weights  is denoted by .

(i, j)
The importance of walk sums is revealed in the relationship

that th element of matrix Rl is equal to

(Rl)i j =
∑

w1,...,wl−1

riw1rw1w2 . . .rwl−1 j =
∑

w:i
l−→ j

ϕ(w) (10)

which can be verified by matrix multiplication. Now we give
the definition of walk summability [3].

A ∈ Rn×n aii = 1 i
ϕ({i→ j})∑

w:i→ j |ϕ(w)| i, j∑
w:i→ jϕ(w)

i, j Ax = b

Definition 1: A matrix  with  for all  is said
to be walk-summable if all the walk-sums  converge
absolutely, i.e.,  converges for all .  This is the
same  as  the  unordered  sum  is  well  defined  (i.e.,
converges  to  the  same  value  for  every  possible  summation
order) for all . Further, a linear system  is said to be
walk-summable if A is walk-summable.

R = {ri j} = I−A R̄ = {|ri j|}Defining  and ,  the  following
properties are known for walk-summable systems [3].

Lemma 1 [3]: The following conditions are equivalent.
A ∈ Rn×n aii = 1 i1)  with  for all  is walk-summable;∑

l R̄l2)  converges;
ρ(R̄) < 13) ;
I− R̄ > 04) .

ρ(R) ≤ ρ(R̄)In addition, .

µ

ρ(R) ≤ ρ(R̄) < 1

Using the walk-sum interpretation, the Gaussian variance P
and mean  in  (2)  can  be  expressed  by  walk  sums under  the
assumption of walk summability [3]. More specifically, using
Lemma 1,  which implies that

P = A−1 = (I−R)−1 =

∞∑
l=0

Rl (11)

and (10), we get

Pi j =

∞∑
l=0

(Rl)i j =

∞∑
l=0

∑
w:i

l−→ j

ϕ(w) =
∑

w:i→ j

ϕ(w). (12)

µ = A−1b =
∞∑

l=0
RlbSimilarly,  using  Lemma 1  again,  we  get ,

which in turn implies

µi = (
∞∑

l=0

Rlb)i

=

n∑
j=1

∞∑
l=0

(Rl)i jb j

=

n∑
j=1

∞∑
l=0

∑
w: j

l−→i

ϕ(w)b j

=

n∑
j=1

∑
w: j→i

ϕ(w)b j. (13)

The  connection  between  walk  summability  and  diagonal

A = {ai j} aii > 0
aii >

∑
j,i |ai j| i

dominance  is  revealed  in  the  result  below  [17].  Recall  [18]
that a matrix  is called diagonally dominant if 
and  for all .

A ∈ Rn×n aii = 1 i
ρ(R̄) < 1

D > 0
D−1AD

Lemma 2 [3], [17]:A matrix  with  for all  is
walk-summable (i.e., )  if  and only if A is generalised
diagonally dominant, i.e., there exists a diagonal matrix 
such that  is diagonally dominant.

IV.  Convergence Rate Analysis

This  section  presents  the  main  result  of  this  paper  on  the
convergence rate of GaBP. The key to this analysis is the so-
called  unwrapped  tree  graph  proposed  in  [2],  which  is  a
computation tree graph, associated with the GaBP. Using this
tool,  the  asymptotic  convergence of  GaBP was proved in  [2]
under  the  assumption  of  diagonal  dominance.  This  tool  was
further  used  in  [3]  to  relax  the  diagonal  dominance
assumption to walk summability (or equivalently, generalised
diagonal  dominance).  Here  we  use  the  same  tool  for
convergence rate analysis.

A.  Unwrapped Tree Graph

t > 0 G i
t

Following the work of [2], we construct an unwrapped tree
with depth  for a loopy graph  [2]. Take node  to be the
root and then iterate the following procedure  times:

1) Find all leaves of the tree (start with the root);
2)  For  each leaf,  find all  the  nodes  in  the  loopy graph that

neighbor this leaf node, except its parent node in the tree, and
add all these nodes as the children to this leaf node.

1′,1′′,1′′′,1‘,1“,1“‘
b1 a11

j′ j
j a1′ j′ = a1 j

a j′1′ = a j1 bi

The variables  and weights  for  each node in  the  unwrapped
tree  are  copied  from  the  corresponding  nodes  in  the  loopy
graph.  It  is  clear  that  taking  each  node  as  root  node  will
generate  a  different  unwrapped  tree. Fig. 2 shows  the
unwrapped  tree  around  root  node  1  for  a  loopy  graph.  Note,
for example, that nodes  all carry the same
values  and . Similarly, if node 1' is the parent (or child)
of node  in the unwrapped tree, and node 1 and node  are a
wrapped  version  of  nodes  1  and ,  then  (or

). A similar comment applies to unwrapped .

List  the nodes in the unwrapped tree in breadth first  order,
by starting from the root node, followed by the first layer (i.e.,
the  children  of  the  root  node),  then  the  second  layer,  etc.

 

5

1

42 3

1

42 3

5 5′ 5″

4′ 3′ 2′ 4″ 3″ 2″

1′ 1″ 1′″ 1‘ 1“ 1“‘
 

t = 4
Fig. 2.     Left: a loopy graph; Right: the unwrapped tree for root node 1 with
4 layers ( ).
 

ZHANG AND FU : CONVERGENCE RATE ANALYSIS OF GAUSSIAN BELIEF PROPAGATION FOR MARKOV NETWORKS 3 

Authorized licensed use limited to: University of Newcastle. Downloaded on April 28,2020 at 02:48:36 UTC from IEEE Xplore.  Restrictions apply. 



G(t)
i = {V

(t)
i ,E

(t)
i }

A(t)
i = I−R(t)

i b(t)
i

G(t)
i

Denote  the  unwrapped  tree  as  with  the
associated  matrix  and  vector .  It  is  obvious
that  is connected by construction.

We have the following key property.

G i G(∞)
i

G G(k)
i

i ∈ V k
G(k)

i i ∈ V k ≥ 0
G

Lemma 3 [3]:There is a one-to-one correspondence between
finite-length walks in  that end at , and walks in . That
is, every finite-length walk in  has a counterpart in some 
with  some  and  some  sufficiently  large ,  and  every
finite-length walk in  for any  and  corresponds
to a finite-length walk in .

B.  Main Result
µi(k)

G(k)
i

We  first  establish  a  relationship  between  in  (6)
(obtained by GaBP) and the walks in .

i ∈ V k ≥ 0
Lemma 4: Under the assumption that the information matrix

A in (1) is walk summable, we have, for any  and 

µi(k) =
n∑

j=1

∑
w: j→i|G(k)

i

ϕ(w)b j (14)

w : j→ i|G(k)
i j i
G(k)

i

where  denotes a walk from  to  inside the un-
wrapped graph .

i = 1
G(k)

1 A(k)
1

b(k)
1 z(k) = (A(k)

1 )−1b(k)
1 z(k)

G(k)
1

G(k)
1
Gk

1 z(k)
1

z(k) k G(k)
1

k
A(k)

1 b(k)
1 b

G k
G1(k) µ(k)

1
G k

z(k)
1

G(k)
1

Proof: Without loss of generality, we assume . For the
unwrapped graph , consider the corresponding matrix 
and  vector .  Define .  Then,  can  be
solved by applying GaBP on . As noted in Section II, since

 is a tree graph, it is well known [2] that applying GaBP to
 results in a correct solution for  (the first component of
) in  iterations because every node in  is no more than

 hops away from node 1. On the other hand, due to the fact
that the parameters in  and  are all copied from A and ,
applying  GaBP  to  the  original  graph  for  iterations  is
identical  to  applying it  to .  That  is,  in  (6),  which is
obtained by applying GaBP on  for  iterations,  is  equal  to

.  Now,  it  is  also  known  that  every  tree  graph  is  walk-
summable [3]. Thus, we can apply (13) to  to obtain

z(k)
1 =
∑

j

∑
j→1|G(k)

1

ϕ(w)b j.

z(k)
1 = µ1(k) i = 1Using , we have proved (14) for . Hence, the

result in the lemma holds. ■

µi(k)−µi

Now we can state the main result, derived by combining the
walk  summability  approach  in  [3]  (i.e.,  Lemmas  1,  2  and  4)
with  the  control  systems  approach.  That  is,  we  view  the
evolution  of  as  a  dynamic  system  and  examine  its
exponential stability property.

ρ(R̄)

Theorem  1: Suppose  the  information  matrix A in  (1)  is
generalised  diagonally  dominant.  Then,  the  convergence  rate
of GaBP is at least , i.e.,

|µi(k)−µi| ≤ ρ(R̄)kC (15)
i ∈ V k ≥ 0 C kfor all  and , where  is a constant (independent of ).

Proof: Firstly,  using  Lemma  2,  we  know  that  the
assumption  of  general  diagonal  dominance  is  equivalent  to
assuming  walk  summability.  In  particular, A is  invertible.

µ = A−1bFrom  (2),  we  have .  Using  the  walk  summability
condition and Lemma 1, we get (13), i.e.,

µi =

n∑
j=1

∞∑
l=0

∑
w: j

l−→i

ϕ(w)b j.

µi(k)On  the  other  hand,  is  given  by  (14),  according  to
Lemma 4. Combining the above, we get

µi(k)−µi =

n∑
j=1

∞∑
l=0


∑

w: j
l−→i|G(k)

i

ϕ(w)b j−
∑

w: j
l−→i

ϕ(w)b j

 .
Wi(k) i

k W̃i(k) ⊂Wi(k)
Gk

W̃i(k) k

Denote by  the set  of  all  the  walks  that  end at  node 
with  walk  length  greater  than ,  and  by  the
subset of all  the walks containing nodes not in .  It  is  clear
that  every walk in  has  length greater  than .  Then,  the
above expression can be rewritten as

µi(k)−µi =

n∑
j=1

∞∑
l=0

∑
w: j

l−→i|W̃(k)
i

ϕ(w)b j

=

n∑
j=1

∞∑
l=k+1

∑
w: j

l−→i|W̃(k)
i

ϕ(w)b j.

It follows that

|µi(k)−µi| ≤
n∑

j=1

∞∑
l=k+1

∑
w: j

l−→i|W̃(k)
i

|ϕ(w)||b j|

≤
n∑

j=1

∞∑
l=k+1

∑
w: j

l−→i

|ϕ(w)||b j|

=

n∑
j=1

∞∑
l=k+1

(R̄l)i j|b j|

= (
∞∑

l=k+1

R̄l|b|)i

= (R̄k
∞∑

l=1

R̄l|b|)i

≤ ρ(R̄)kC

C =maxi(
∑∞

l=1 R̄l|b|)i

ρ(R̄) < 1 i
where  is  bounded  due  to  the  fact  that

. Hence, (15) holds for all . ■

p(x)
ϕi j(xi, x j)

Remark 1: The bound in  Theorem 1 coincides  with  that  in
[5].  But  our  assumptions  are  weaker.  More  specifically,  [5]
requires  the  decomposition  of  in  (4)  to  be  such  that

 are  convex,  whereas  the  natural  decomposition  (5)
does  not  have  this  property.  It  is  true  that  if  the  system  is
generalised  diagonally  dominant,  there  exists  a  convex
decomposition  [3].  But  how  to  search  for  such  convex
decomposition  in  a  distributed  way  is  a  non-trivial  exercise,
and  there  is  no  such  algorithm  available.  Also,  our  proof  is
simple and purely based on linear algebraic analysis, different
from existing convergence analysis methods.
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V.  Illustrating Examples

6

p(x)∝exp
[
−1

2
xTAx+

bT x
]

ai j = a ji, i , j, (−0.26,0.26)
ai j = a ji, i , j,

(−0.165,0.165) aii = 1 bi = i,
i = 1, . . . ,n ai j

To illustrate the convergence rate bound in Theorem 1,  we
give  two  loopy  graphs  in  this  section  as  examples.  The  first
one is a 13-node graph with at most 7 neighbouring nodes for
each node, as shown in Fig. 3. The second example is a 1000-
node  graph  with  at  most  randomly  selected  neighbouring
nodes  for  each  node,  as  shown  in Fig. 4.  In  both  cases,  the
resulting  matrix A is  sparse.  The  parameters  of  the

corresponding Gaussian density function 

 are  chosen  as  follows:  In  the  first  example,  every
 is  a  random  value  in ,  and  in  the

second  example,  every  belongs  to
 randomly.  Additionally,  and 

.  The  values  of  are  chosen  to  ensure  diagonal
dominance  (checked  numerically  for  each  row  after  the
random  values  are  chosen),  which  in  turn  ensure  walk
summability.

x y
log µ

µ(k)
log10(

∑
i(µi(k)−µi)2/n)

The  GaBP  simulation  results  are  shown  in Figs. 5 and 6.
The -axis stands for iteration numbers and the -axis stands
for a  form of error between the true Gaussian mean  and
its  estimate  calculated  by  GaBP,  or  more  precisely,

.  By  Theorem  1,  this  term  should
decay at least linearly, i.e.,

log10

∑
i

(µi(k)−µi)2/n

 ≤ log10 C2+ k log10 ρ
2

log10 ρ
2where the term  represents the slope.

10−1.0502/2 ≈ 0.2985

10−1.0642/2 ≈ 0.2937
R̄

R̄ ρ(R̄)

The  simulation  results  for  both  two  examples  have  shown
that the error decreases exponentially with the increase of the
iteration  number.  The  slope  for  the  13-node  example  is
measured  to  be  roughly  −1.0502,  corresponding  to  the
convergence  rate  of .  The  slope  for  the
1000-node  example  is  measured  to  be  roughly  −1.0642,
corresponding to the convergence rate of .
In comparison, for the 13-node graph, the spectral radius of 
is 0.6100; and for the 1000-node graph, the spectral radius of

 is  0.9671.  We  see  that  in  both  examples,  the  upper
bounds the actual convergence rate of GaBP.

VI.  Conclusions

ρ(R̄)

ρ(R̄)

In this paper, we have analysed the convergence property of
GaBP for Markov networks and provided a simple bound on the
convergence  rate.  The  bound  is  characterised  by  and  is
guaranteed  to  be  less  than  1  under  the  walk  summability  (or
generalised diagonal dominance) assumption. This result gives
a  simple  extension  to  the  known  asymptotic  convergence
property of GaBP under the same assumption [2], [3]. We see
in the simulation results that the actual convergence rate is faster
than predicted by . It would be interesting to see how this
bound can be further improved. Other future directions include
relaxing  the  walk  summability  assumption  (possibly  by
following the work of [15]),  and generalising GaBP to wider
distributed estimation and distributed optimisation problems.
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Fig. 3.     13-node graph.
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Fig. 4.     1000-node graph.
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Fig. 5.     GaBP iterations for the 13-node graph.
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Fig. 6.     GaBP iterations for the 1000-node graph.
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