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Abstract—The economic dispatch problem (EDP) is of vital
importance in the operation and planning of power systems.
In this paper, we study the EDP with general cost functions,
transmission losses and prohibited operating zones. The equali-
ty constraint of the EDP is nonlinear due to transmission losses,
while the feasible region is discontinuous due to prohibited oper-
ating zones, meaning that the EDP is a non-convex optimization
problem. In order to solve this problem, this paper proposes
the distributed augmented lambda-iteration method. Compared
with the conventional lambda-iteration method, the proposed
method has the advantages that it can get the optimal dispatch
in the presence of prohibited operating zones and effectively
avoid the oscillatory behavior that the conventional lambda-
iteration method often exhibits. Furthermore, the proposed
method is distributed in the sense that the nodes conduct
local computations and communicate with their neighbors in
a connected undirected graph. Simulation results are given to
show the performance of our method.

I. INTRODUCTION

The economic dispatch problem, which targets the min-

imum aggregate costs of electricity generation in a coop-

erative way, has been intensively investigated in the power

industry and many centralized algorithms have been devel-

oped to solve the EDP. Recently, following the trend of smart

grid and distribution algorithms, a number of distributed

algorithms for the EDP have also appeared. In [1] and [2],

the authors propose the incremental cost consensus (ICC)

algorithm to solve the EDP, where the average consensus

algorithm is used to guarantee the balance between demand

and supply. In [3], the authors propose a consensus based

distributed algorithm, which enables the generators to collec-

tively learn the mismatch between demand and total supply

for feedback. Consensus-based distributed bisection method

is also proposed in [4] and [5] to solve the EDP with general

convex functions on strongly connected directed graphs.

Nevertheless, some practical constraints, e.g., transmis-

sion losses and prohibited operating zones, are not taken

into consideration in [1]–[5]. Neglecting transmission losses

causes an imbalance between demand and supply, possibly

threatening the stability of power systems. Also, neglecting

prohibited operating zones may lead to power assignments

that endanger stable operation of generators. However, trans-

mission losses lead to the nonlinearity of the equality con-

straints, while prohibited operating zones lead to the discon-
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tinuity of the feasible region, both rendering the EDP non-

convex [6]. To handle the non-convexity due to transmission

losses, the conventional lambda-iteration method has been

widely used in the power industry, which solves the non-

convex EDP by iteratively solving an approximated convex

problem. However, it has two major drawbacks:

• As widely reported in the literature, e.g., [7], [8], the

conventional lambda-iteration method may exhibit the

oscillatory behavior in large-scale mixed generation

systems.

• The conventional lambda-iteration method cannot di-

rectly deal with the discontinuity incurred by the pro-

hibited operating zones [9], [10].

In consideration of the growing trend of distributed algo-

rithms and the necessity of including more practical con-

straints in the EDP, this paper aims at solving the EDP

with transmission losses and prohibited operating zones in

a distributed fashion and propose the distributed augmented
lambda-iteration method. The challenges mainly stem from

the non-convexity of the EDP and the constraint of dis-

tributed algorithmic architecture. We not only adopt the idea

of the conventional lambda-iteration method to overcome

the non-convexity challenge, but also extend it by defining

pseudo marginal cost to deal with the discontinuity of the

feasible region. Compared with the conventional lambda-

iteration method, the proposed method is augmented in the

following senses:

• We introduce a damping mechanism to avoid the oscil-

latory behavior that the conventional lambda-iteration

method usually exhibits;

• The proposed method is able to solve the EDP with

prohibited operating zones;

• The proposed method is applicable to not only the EDP

with quadratic cost functions, but also the EDP with

general convex cost functions.

Furthermore, the proposed algorithm is distributed in the

sense that it does not rely on any pre-assigned central/leader

node. Based on the average consensus algorithm [11], in

our method all the nodes conduct local computation and

communicate with their neighbors in a connected undirected

network to solve the EDP.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Basics of Graph Theory

An undirected graph G = (V,E) consists of a non-empty

finite set of nodes V = {1, 2, ..., n} and a finite set of

unordered edges E ⊆ V ×V . Let us denote the neighbor set



of node i ∈ V by Ni = {j ∈ V − {i} : (j, i) ∈ E}, which

implies that node i can communicate with its neighbors bi-

directionally. The degree of node i, denoted by di = |Ni|, is

defined as the cardinality of Ni. Since G is undirected, for

any i and j, (i, j) ∈ E implies (j, i) ∈ E. An undirected

graph is connected if there is a path from any node to any

other node. Self-loops are included, i.e., ∀i ∈ V, (i, i) ∈ E.

A non-negative matrix Q ∈ Rn×n is associated with graph

G, where [Q]ij > 0 if and only if (j, i) ∈ E.

B. Average Consensus Algorithm

Let us consider the undirected graph G = (V,E), where

V = {1, . . . , n}. Each node i ∈ V holds a state denoted by

x ∈ R. Denote by x = [x1, . . . , xn]
T ∈ R

n the aggregate

state. Define the Metropolis weight matrix Q ∈ R
n×n

associated with graph G as

qij =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

max (di, dj) + 1
, if j ∈ Ni,

1−
∑
j∈Ni

qij , if i = j,

0, otherwise,

(1)

where qij is the entry of Q on the ith row and the jth
column.

With the iteration index denoted by κ = 0, 1, . . . , the

average consensus algorithm is given by

xi(κ+ 1) = qiixi(κ) +
∑
j∈Ni

qijxj(κ), ∀i = 1, . . . , n. (2)

where x(0) is the initial aggregate state at κ = 0.
We say that algorithm (2) solves the average consensus

problem asymptotically, i.e., for any initial states xi(0)’s, it

follows

lim
κ→∞xi(κ) =

( n∑
j=1

xj(0)
)
/n, ∀i = 1, . . . , n.

The average consensus algorithm is fully distributed since

iteration (2) can be implemented in a distributed fashion.

See more details in [11].

C. Problem Formulation

Suppose that there are in total n generators in the power

grid, labelled from 1 to n. Let us denote the total load

demand and the output of the ith generator by P load and

Pi, respectively. Taking into consideration the transmission

losses and prohibited operation zones of generators, we

formulate the EDP as follows:

Objective:

min
n∑

i=1

Fi(Pi), (3)

where Fi(Pi) is the cost function associated with the ith
generator.

Power balance constraint:
n∑

i=1

Pi − P loss − P load = 0, (4)

where P loss is the total transmission losses over the grid.

Capacity constraints of generators:

P i � Pi � P̄i, ∀i = 1, . . . , n, (5)

where P i and P̄i are the lower bound and upper bound of

the output of the ith generator, respectively.

Prohibited operating zones of generators: For each generator

i ∈ V , suppose that there are in total Mi prohibited operating

zones, and define P j
i and P̄ j

i as the lower and upper bounds

of the jth prohibited operating zone, respectively. Therefore

the permitted operating zones of the ith generator consist of

Mi + 1 disjoint regions:⎧⎪⎨
⎪⎩

P i � Pi � P 1
i , or

P̄ j
i � Pi � P j+1

i , for j = 1, . . . ,Mi − 1, or

P̄Mi
i � Pi � P̄i.

(6)

In this paper, we deal with the EDP with general cost

functions satisfying the assumption below:

Assumption 1: For every 1 � i � n, Fi(Pi) : R+ → R+

is strictly convex and twice continuously differentiable with

dfi(Pi)

dPi
� 0, ∀Pi ∈ R+,

where fi =
dFi(Pi)

dPi
is the first derivative of function Fi(Pi),

R+ denotes the set of nonnegative real numbers, and the

equality holds at isolated points only.

We assume that the total transmission losses are a function

of the generator outputs Pi’s and we use the B matrix loss
formula (B coefficients) to represent P loss, given by

P loss =

n∑
i=1

n∑
j=1

PiBijPj +

n∑
i=1

B0iPi +B00, (7)

where Bij = Bji, B0i, and B00 are computed according to

the line parameters and the average daily operating status

of the power systems. The equality constraint (4) contains

a quadratic term due to the loss formula, which also leads

to the non-convexity of the EDP (3)-(6). Besides, prohibited

operating zones also lead to the discontinuity (non-convexity)

of the feasible region.

Two connected undirected communication networks with

self-loops are established in this paper: one consists of

pure generation bus and the other one consists of m buses

associated with pure load, pure generation, or both, respec-

tively denoted by G = (V,E) and G
′
= (V

′
, E

′
), where

V
′
= {1, 2, ..., n, n+ 1, ...,m} and V = {1, 2, ..., n}.

III. CONVENTIONAL LAMBDA-ITERATION METHOD

The Lagrange function of the EDP (3)-(5) is given by

L =
n∑

i=1

Fi(Pi)− λ
( n∑

i=1

Pi − P loss − P load
)
,

where λ is the Lagrange multiplier.

With prohibited operating zones neglected, the optimal

solution P ∗
i and the optimal Lagrange multiplier λ∗ satisfy

∂L

∂P ∗
i

= fi(P
∗
i )− λ∗

(
1− ∂P loss

∂P ∗
i

)
= 0, ∀i, (8)



where fi(r) = αir + βi. Combining the cost functions (3)

and the inequality constraints (5), we have the optimality

condition that for all i ∈ V ,⎧⎪⎨
⎪⎩
fi(P

∗
i )pfi > λ∗, for P ∗

i = P i,

fi(P
∗
i )pfi = λ∗, for P i < P ∗

i < P̄i,

fi(P
∗
i )pfi < λ∗, for P ∗

i = P̄i,

(9)

where pfi is the penalty factor:

pfi = 1/

(
1− ∂P loss

∂Pi

)
. (10)

We can obtain the optimal solution P ∗
i ’s and the optimal

Lagrange multiplier λ∗ by combining (4) and (9). But the

equality constraint (4) has a quadratic term and the inequa-

tion (9) is non-linearly piecewise, therefore it is extremely

hard to solve (4) and (9) directly.
We now introduce the conventional lambda-iteration

method [6], which can solve (4) and (9) iteratively. Denote

the iteration step denoted by k = 0, 1, . . .
Step 1: At k = 0, the generators pick initial values Pi[0]’s
such that

∑n
i=1 Pi[0]− P load = 0.

Step 2: Compute the penalty factors pfi[k]’s and the total

transmission losses P loss[k] according to (10) and (7).
Step 3: Solve the following equations to get Pi[k+ 1]’s and

λ[k + 1].
n∑

i=1

Pi[k + 1]− P loss[k]− P load = 0, (11)

⎧⎪⎨
⎪⎩
fi(Pi[k + 1])pfi[k] > λ[k + 1], Pi[k + 1] = P i,

fi(Pi[k + 1])pfi[k] = λ[k + 1], Pi[k + 1] ∈ (P i, P̄i),

fi(Pi[k + 1])pfi[k] < λ[k + 1], Pi[k + 1] = P̄i,
(12)

Step 4: Go back to Step 2 and loop until convergence.

IV. DISTRIBUTED AUGMENTED LAMBDA-ITERATION

METHOD

A. Distributed Collection of Demand Information
The problem formulation in Section II-C is based on an

implicit assumption that the aggregate demand information

is known to each generator. Nevertheless, in practical power

grids the demand is spatially distributed at almost all the

buses, i.e., P load =
∑m

j=1 P
load
j , where P load

j is the power

demand at bus j. As pointed out in [5], it is unnecessary

for the generators to know the aggregated demand P load.

Instead, we apply the average consensus algorithm (2) in

order that each node in V gets the average demand η∗ =
P load/n, which as we will show, is sufficient to solve the

EDP.
In graph G

′
= (V

′
, E

′
), using (1), define an associated

doubly stochastic matrix Q
′ ∈ Rm×m using (1). where the

superscript ′ indicates that the parameters are defined with

regard to graph G
′
.

For every node i ∈ V
′
, we establish two variables pi(κ)

and si(κ), respectively initialized by pi(0) = P load
i , and

si(0) =

{
1, i = 1, 2, ..., n,

0, i = n+ 1, n+ 2, ...m.

Note that initialization of si(κ) is in a heterogenous fashion.

We then run the following average consensus algorithms

simultaneously until convergence:

pi(κ+ 1) = q
′
iipi(κ) +

∑
j∈N

′
i

q
′
ijpj(κ), (13)

si(κ+ 1) = q
′
iisi(κ) +

∑
j∈N

′
i

q
′
ijsj(κ). (14)

Defining p∗ = limκ→∞ pi(κ) and s∗ = limκ→∞ si(κ), we

have:

p∗ = P load/m, s∗ = n/m.

For every node i ∈ V , we have:

η∗ =
p∗

s∗
= P load/n. (15)

B. Distributed Determination of Pi[0]’s

This subsection aims at the determination of Pi[0]’s in a

distributed fashion, satisfying the inequality constraints (5)

and

n∑
i=1

Pi[0] = P load +B00 = n(η∗ +B00/n).

Note that we extract the term B00 from the loss formula

and put it in the above equation, for B00 is a constant and

B00/n is assumed to be known by each generator.

To estimate the total generation capacity in the network,

each node i ∈ V establishes two auxiliary variables xi(κ)
and x̄i(κ), initialized by

xi(0) = P i, x̄i(0) = P̄i.

Then run the following average consensus iterations till

convergence,

xi(κ+ 1) = qiixi(κ) +
∑
j∈Ni

qijxj(κ), ∀i ∈ V, (16)

x̄i(κ+ 1) = qiix̄i(κ) +
∑
j∈Ni

qij x̄j(κ), ∀i ∈ V, (17)

where qij is given by (1). When iterations (16) and (17)

converge, each node i ∈ V will get the common values x∗

and x̄∗ similarly given by

x∗ =

(
n∑

i=1

P i

)
/n, x̄∗ =

(
n∑

i=1

P̄i

)
/n. (18)

After obtaining x∗ and x̄∗, the nodes can get the Pi[0]’s
following

Pi[0] = P i +
x∗ − x∗

x̄∗ − x∗
(P̄i − P i), ∀i ∈ V, (19)

where x∗ = η∗ +B00/n.



C. Distributed Computation of pfi[k]’s and P loss
a [k]

We assume that each node i knows the B coefficients as-

sociated with itself, i.e., Bij , ∀j ∈ V . The key to calculating

pfi[k] is to calculate
∑n

j=1BijPj [k] in a distributed fashion.

For this purpose, each node i ∈ V establishes an auxiliary

variable yj
i (κ), where the superscript j represents yj

i is meant

for the calculation of pfj [k].
We initialize yj

i ’s according to

yj
i (0) = BijPi[k]. (20)

Then run the following iteration till convergence,

yj
i (κ+ 1) = qiiy

j
i (κ) +

∑
l∈Ni

qily
j
l (κ), ∀i ∈ V. (21)

Denote the convergence value of (21) by yj∗, it follows

that

yj∗ =

(
n∑

i=1

BijPi[k]

)
/n.

Therefore the penalty factor pfj is given by

pfj [k] = 1/
(
1− 2nyj∗ −B0j

)
. (22)

Loop until all the nodes j ∈ V obtains their pfj [k]’s.
We then compute the total transmission losses P loss[k].

Since the constant term B00 has already been included in

x∗, we only need to compute

P loss
a [k] =P loss[k]−B00

=

n∑
i=1

n∑
j=1

Pi[k]BijPj [k] +

n∑
i=1

B0iPi[k]

=
n∑

i=1

(
nyi∗[k]Pi[k] +B0iPi[k]

)
.

(23)

For this purpose, each node establishes an auxiliary variable

yi(κ), initialized by

yi(0) = nyi∗[k]Pi[k] +B0iPi[k]. (24)

And then run the following average consensus algorithm till

convergence,

yi(κ+ 1) = qiiyi(κ) +
∑
j∈Ni

qijyj(κ), ∀i ∈ V. (25)

Denote the convergence value of (25) by y∗, it follows

that

y∗ = P loss
a [k]/n. (26)

D. Distributed Bisection Algorithm for Pi[k + 1]

With the pfi[k]’s and P loss
a [k] obtained in a distributed

fashion, we now proceed to the updates of Pi[k + 1]’s and

λ[k + 1], which corresponds to step 3 of the conventional

lambda-iteration method.

The updating of Pi[k + 1]’s and λ[k + 1] is equivalent to

solving the following optimization problem:

min

n∑
i=1

pfi[k]Fi(Pi) (27)

s.t. Pi ∈ Ωi, ∀i ∈ V, (28)
n∑

i=1

Pi − P loss[k]− P load = 0, (29)

where for all i, Ωi is defined as the set of real numbers

that satisfies the constraint (6). One can verify that the

equations (11) and (12) which are solved in step 3 of

the conventional lambda-iteration method, are the necessary

optimality condition of problem (27)-(29) with constraints

(28) replaced by (5). Note that though the pfi[k] and P loss[k]
are constant, the optimization problem (27)-(29) is still non-

convex, as the sets Ωi’s are discontinuous and therefore non-

convex. Besides, the optimality condition (9) does not apply

here due to the prohibited operating zones.

Let us consider the problem from a Lagrange dual per-

spective. The Lagrange function of the problem (27)-(29) is

given by

L =

n∑
i=1

pfi[k]Fi(Pi)− λ

(
n∑

i=1

Pi − P loss[k]− P load

)
.

(30)

For a given Lagrange multiplier λ, consider the following

optimization problem:

min L,

s.t. Pi ∈ Ωi, ∀i ∈ V.
(31)

Since the Lagrange multiplier λ is given, the objective of

(31) is equivalent to

min Lo =
n∑

i=1

pfi[k]Fi(Pi)− λ
n∑

i=1

Pi. (32)

Note that in the optimization problem (31), the Pi’s are

mutually independent, for the equality constraint is null

(reflected indirectly in λ). With pfi[k] > 0, the problem

(31) can be equivalently divided into n subproblems:

min Lo
i = Fi(Pi)− λPi

pfi[k]
,

s.t. Pi ∈ Ωi,

(33)

which is simply the minimization of a scalar function on a

discontinuous region.

The first derivative of Lo
i is given by

dLo
i

dPi
= fi(Pi)− λ

pfi[k]
.

If there are no inequality constraints, the optimal solution

to (33), denoted by P o
i , is such that ∂Lo/∂Pi = 0, i.e.,

P o
i = gi(

λ

pfi[k]
) = hi(λ), (34)

where gi(·) is the inverse function of fi(·). If P o
i happens

to belong to the set Ωi, then P o
i minimizes Lo

i with respect

to not only the set Ωi, but also the whole domain of real

numbers. If P o
i does not belong to Ωi, there are 3 cases:



1) P o
i > P̄i: From the assumption 1, it follows that

fi(Pi) is continuously increasing in R+, therefore dLo
i /dPi

is also continuously increasing in R+. Since P o
i > P̄i

and dLo
i /dPi(P

o
i ) = 0, it follows that dLo

i /dPi(Pi) <
0, for Pi < P o

i . Consequently Lo
i is monotonically decreas-

ing in Ωi. Therefore in this case P �
i = P̄i is the minimizer

of Lo
i in Ωi.

2) P o
i < P i: This case can be analyzed by the same

technique used above. If P o
i < P i, we have P �

i = P i.

3) P j
i < P o

i < P̄ j
i : In last two cases, P o

i is infeasible

because it is beyond the generator’s capacity, while in this

case it falls into one of the prohibited operating zones. Since

dLo
i /dPi(P

o
i ) = 0 and dLo

i /dPi is monotonically increasing,

• for Pi < P o
i , Pi ∈ Ωi, dL

o
i /dPi(Pi) < 0, meaning that

Lo
i is monotonically decreasing;

• for Pi > P o
i , Pi ∈ Ωi, dL

o
i /dPi(Pi) > 0, meaning that

Lo
i is monotonically increasing.

Therefore the optimal solution is either P j
i or P̄ j

i . We now

investigate

Lo
i (P̄

j
i )− Lo

i (P
j
i ) = Fi(P̄

j
i )− Fi(P

j
i )−

λ(P̄ j
i − P j

i )

pfi[k]
.

Let us define λj
i =

Fi(P̄
j
i )−Fi(P

j
i )

P̄ j
i −P j

i

.

• If Lo
i (P̄

j
i )−Lo

i (P
j
i ) > 0, then λ < pfi[k]λ

j
i , P �

i = P j
i ;

• If Lo
i (P̄

j
i )−Lo

i (P
j
i ) < 0, then λ > pfi[k]λ

j
i , P

�
i = P̄ j

i ;

• If Lo
i (P̄

j
i ) − Lo

i (P
j
i ) = 0, then λ = pfi[k]λ

j
i , and P �

i

can take either P j
i or P̄ j

i .

The prohibited operating zones lead to the discontinuity

of the feasible region, but the natural domain of the cost

functions is the entire domain of real numbers. Therefore, in

order to fix the discontinuity of the marginal cost function,

we define the pseudo marginal cost λj
i associated with

the jth prohibited operating zone, which is a constant in

(P j
i , P̄

j
i ). Due to the strong convexity of Fi(Pi), we have

fi(P
j
i ) < λj

i < fi(P̄
j
i ).

Let us define the following mapping:

Pi(λ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

P i, hi(λ) < P i,

hi(λ), hi(λ) ∈ Ωi,

P j
i , P j

i < hi(λ) < P̄ j
i , λ < pfi[k]λ

j
i ,

P̄ j
i , P j

i < hi(λ) < P̄ j
i , λ � pfi[k]λ

j
i ,

P̄i, hi(λ) > P̄i.

(35)

One can verify that the mapping (35) is monotonically

increasing with respect to λ. So Pi[k + 1] = Pi(λ[k + 1])
is also monotonically increasing with respect to λ[k + 1],
which enables us to use the bisection method. The detailed

procedures are as follows.

Each node establishes two commonly shared variables

λ+ and λ− such that the optimal Lagrange multiplier must

lie in the interval [λ−, λ+]. The initial λ+ and λ− can be

selected to be extremely large and small, respectively, for the

convergence of bisection is very fast.

Let t = 0, 1, . . . denote the bisection steps. At step t, each

node computes λ(t+ 1) = (λ−(t) + λ+(t))/2.
Each node then obtains Pi(λ(t + 1)) according to (35)

with λ[k + 1] replaced by λ(t + 1), and then establishes a

variable zi(κ), which is initialized by zi(0) = Pi(λ(t+ 1)).
Run the following iteration till convergence,

zi(κ+ 1) = qiizi(κ) +
∑
j∈Ni

qijzj(κ), ∀i ∈ V. (36)

After convergence, denote the convergence value by z∗. Then

each node updates λ−(t+ 1) and λ+(t+ 1) according to

• For z∗ < y∗[k] + x∗,

λ+(t+ 1) = λ+(t), λ−(t+ 1) = λ(t+ 1).

• For z∗ = y∗[k] + x∗,

λ[k + 1] = λ(t+ 1), and the bisection stops.

• For z∗ > y∗[k] + x∗,

λ+(t+ 1) = λ(t+ 1), λ−(t+ 1) = λ−(t).

Recompute Pi(λ(t + 1))’s and circulate the bisection until

convergence. Then each node obtains Pi[k+1] and λ[k+1].

E. Damping Mechanism to Avoid Oscillations

As aforementioned, the conventional lambda-iteration

method may exhibit oscillatory behavior. That is, after a

certain amount of iterations, the results of each lambda-

iteration oscillate periodically between 2 (seldom more than

2) values, instead of converging to a unique solution. To the

best of the authors’ knowledge, none of the existing works

has effectively avoided this oscillatory behavior.

Herein we assume that after enough iteration steps, the

results oscillate between two values, i.e., for some integer

K > 0 and l = 1, 2, . . ., P [k] = P [k + 2l], and P [k] �=
P [k+1], ∀k > K, where P [k] = [P1[k], . . . , Pn[k]]

T ∈ Rn.

We note that both in subsection IV-C and in the step 2 of

the conventional lambda-iteration method, the computation

of pfi[k]’s and P loss
a [k] only depends on Pi[k]’s, without

using the results of previous iterations. Define the following

damping operator

D[k] =
(P [k] + P [k − 1])

2
,

which takes the average of the computational results at

iterations k and k − 1. We then use D[k] instead of P [k]
to compute pfi[k]’s and P loss

a [k]. We have the following

proposition:

Proposition 1: The damping operator D[k] prevents the

lambda-iteration from oscillating between 2 values.

Proof: Since the lambda-iteration method is an implicit

form of the fixed-point iteration method, it can be expressed

by P [k+1] = H(P [k]), where H(·) is the implicit function

corresponding to the lambda-iteration without D[k]. There-

fore the lambda-iteration with D[k] is given by P [k + 1] =
H((P [k] + P [k − 1])/2). We then prove Proposition 1

by contradiction. Assume that after enough iteration steps,



Fig. 1. Communication network of the 5 generators.

Fig. 2. Results of Case 1

the lambda-iteration with D[k] oscillates between u and v.

Therefore we have for some k,

P [k] = u, P [k + 1] = v, P [k + 2] = u, P [k + 3] = v,

where u �= v. Note that

P [k + 2] = H(
v + u

2
) = P [k + 3],

which contradicts the assumption that u �= v. �
In practice, there is a very small chance that the lambda-

iterations oscillate between l > 2 values. To deal with this,

the damping operator can be generalized in the following

way:

D[k] =
P [k] + . . .+ P [k − l + 1]

l
.

V. NUMERICAL SIMULATION

A. Case 1: EDP without Prohibited Operating Zones

In this case, we apply our distributed algorithm to the

EDP on the IEEE 14-bus system. We consider quadratic

cost functions transmission losses, while neglect the prohib-

ited zones temporarily, which means that the conventional

lambda-iteration method [6] can also solve this EDP.

The generation parameters are adopted from [5] and γi =
0 is set 0 MU for all i. The communication network is shown

in Fig. 1. In this case the total power demand is P load = 250
MW. We set λ+(0) = 10 MU/MW and λ−(0) = 0 MU/MW,

which are sufficient to ensure λ∗ ∈ [λ−(0), λ+(0)]. In

the calculation of Pi[k]’s and λ[k], we artificially set the

bisection number to 15, such that for each k, |λ(15)−λ[k]| �
1
2 |λ+(14)− λ−(14)| = 1

215 |λ+(0)− λ−(0)| ≈ 0.0003.
The evolutions of λ[k] and Pi[k]’s are shown in Fig. 2(a)

and Fig. 2(b), respectively. From Fig. 2(a), we can see that

the conventional lambda-iteration method exhibits the oscil-

latory behavior after about 5 iterations, while the proposed

method with the damping operator converges to the unique

optimal solution.

B. Case 2: EDP with Prohibited Operating Zones

In this case we consider the EDP with prohibited operating

zones. The prohibited zones are 20 ∼ 40% and 60 ∼ 80%
of each generator’s capacity range and the total demand

P load = 150 MW.

Fig. 3. Results of Case 2

The evolutions of λ[k] and Pi[k]’s are shown in Fig. 3(a)

and 3(b), respectively. One counter-intuitive finding from

Fig. 3(a) is that the optimal Lagrange multiplier λ∗ =
4.833 MU/MW with the prohibited operating zones is lower

than λ∗
′
= 5.426 MU/MW without the prohibited operating

zones. Intuitively, due to the existence of prohibited operating

zones, the optimal power assignments are forced away from

those without prohibited operating zones, probably driving

the marginal cost up. But on the other hand, the optimal ag-

gregated cost with the prohibited zones is F ∗ = 648.33 MU,

which is larger than F ∗′ = 631.81 MU without the prohib-

ited operating zones. For generators 2 and 4, their optimal

power assignments are 58 MW and 22 MW, which take the

boundary value of their prohibited operating zones, while

in the absence of prohibited operating zones their optimal

assignment are 40.14 MW and 20.09 MW, respectively.

VI. CONCLUDING REMARKS

This paper aims at solving the EDP with general cost func-

tions, transmission losses, and prohibited operating zones,

for which we propose the distributed augmented lambda-

iteration method. Future work would take into consideration

more constraints, e.g., transmission line capacity and spin-

ning reserve.
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