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Abstract—This paper proposes a filter-based distributed pro-
tocol to realize time synchronization under time-varying clock
parameters. The proposed protocol is derived from a first-order
controller and is fully distributed, meaning that by relying merely
on its local clock readings and reading announcements from its
neighbouring sensor nodes, each node in WSNs can dynamically
update its virtual clock and bound synchronization error to a
steady state. We analyzing the input-to-state stable stability of
the control system which could guarantee convergence properties
in terms of time-vary clock parameters. Simulation results are
given to illustrate the performance of this control protocol.

Index Terms—Wireless sensor networks (WSNs), clock syn-
chronization, first-order controller.

I. INTRODUCTION

Synchronization of local clocks is an important requirement

in mobile sensor networks for a series of applications, e.g.

remote environmental monitoring, target tracking, etc. Clock

synchronization protocol aims at synchronizing local clocks

and achieve a common reference of time among sensors and

thus is rather basic.

Basically two kinds of clock synchronization protocols

are commonly used [1]: tree-based and distributed. A tree-

based protocol assigns one node as a server and other nodes

as clients and forms a hierarchical structure, e.g., reference

broadcast synchronization (RBS) [2], timing-sync protocol for

sensor networks (TPSN) [3] and flooding time synchronization

protocol (FTSP) [4]. However, due to high dependence of tree-

based structure, tree-based protocols are vulnerable to root-

node failure and packet losses in some senarios.

Many researchers pay more attention to developing dis-

tributed protocols. Compared with tree-based ones, distributed

protocols do not require a global reference by avoiding a

specific construction among agents and no server node needs

to be selected in advance. As all local nodes apply exactly the

same algorithm with information from their neighbourhoods

only, these protocols are robust to dynamic topology changes

and are highly scalable. Some typical protocols are listed: [5]

uses a recursive least squares estimation approach to estimate

the best-fit offset values. [6] gives a further analysis of [5]

and indicates that the least-squares solution provides a better

performance for a range of typical network graphs. Other

example, see [7], etc.

Among distributed protocols, consensus-based have been

widely applied to study synchronization in a network as it

can drive all agents to finally reach a state of agreement

based on locally available information [8]. Based on its

way of implementation, there are mainly two categories:

asynchronous [9]–[11] and synchronous [12], [13]. In asyn-

chronous form, node i randomly picks one of its neighbours

and exchange information mutually. Then an updating rule

is used to update their states. Compared with asynchronous

ones, synchronous require concurrent update for every local

node which is unrealistic before a common reference of time

is reached. To tackle this problem, [12] presents a synchronous

protocol to synchronize a network of controlled discrete-time

double integrators. [13] makes a further step by proposing a

realistic pseudo-synchronous implementation. However, most

distributed protocols assume that the clock skews are constant,

which is unrealistic in real applications. In fact, it is well

known that a typical a sensor node can drift up to 30-100
ppm [14].

In this paper, we study the clock synchronization problem

with the focus on handling slow drift of the clock skews. A

filter-based protocol is then proposed, which is fully distribut-

ed in the sense that each node relies only on its local clock

readings and reading announcements from its neighbours. The

main contribution of the protocol is that it deals with a time-

varying clock model and can reduce the synchronization error

of clock skew to a steady state. Compared with the existing

consensus-based distributed protocols, the proposed protocol

shows better robustness against slowly time-varying clock

parameters. Besides, due to its distributed nature it requires no

global information. Simulation results show the performance

of the proposed protocol.

II. PRELIMINARIES

A. Notations

R denotes the set of real numbers; R+ denotes the set of

positive real numbers; 1 represents n-dimensional vector of

ones; 0 represents n-dimensional vector of zeros; In indicates

identity matrix with order n; On indicates zero matrix with

order n; Z denotes the set of nonnegative integer numbers.
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B. Graph theory

An undirected and connected graph G = (V, E) consists

of a non-empty node set V = {1, 2, · · · , n} and an edge set

E ⊆ V × V . The neighbourhood Ni ∈ V of the vertex vi is

the set {vj ∈ V|vivj ∈ E}, i.e, the set of all vertices that are

adjacent to vi. If vj ∈ Ni, it follows that vi ∈ Nj , since they

are mutually adjacent to each other in an undirected graph. di
denotes the cardinality of Ni and dmax = max di, ∀i ∈ V .

For an undirected and connected graph G, the degree matrix

D(G), the adjacency matrix A(G) and the associated Laplacian

matrix L(G) are defined as follows:

D(G)ij =

{
di i = j,

0 otherwise.
(1)

A(G)ij =

{
1 i �= j, j ∈ Ni,

0 otherwise.
(2)

L(G)ij =

⎧⎪⎨⎪⎩
− 1 i �= j, j ∈ Ni,

0 i �= j, j �∈ Ni,

di i = j.

(3)

C. Clock model

Considering an integral clock model [15] for each local

clock i:

τi(t) =

∫ t

0

αi(t
′)dt′ + βi, τi(0) = βi, (4)

where τi(t) is local clock reading of node i; αi(t) is i’s clock

skew and is slowly time-varying; βi is local clock offset and t
indicates absolute reference time. Assume that αi(t) satisfies

the following assumption.

Assumption 2.1: Each local clock skew αi(t) has an upper

bound and lower bound as follows:

1− ρ1 ≤ αi(t) ≤ 1 + ρ1, ∀ i ∈ V, (5)

where 0 < ρ1 ) 1 indicates the maximum drift.

Our distributed synchronization protocol will be in discrete-

time form. Hence the sampling period is introduced and denot-

ed by T . For the sake of simplicity, αi(kT ) = αi(k), ∀ k ∈ Z,

i.e., T = 1. Define Δαi(k) = αi(k+1)−αi(k) as the variation

of αi during one sampling period. Another assumption is

proposed to give a bound on Δαi(k).

Assumption 2.2: For any k ∈ Z,

|Δαi(k)| ≤ ρ2, (6)

where 0 < ρ2 ) 1 is the bound of αi’s variation in one

sampling period.

Consider a WSN composed of n sensor nodes equipped

with its local clocks. The communication topology of WSN

is modeled as an undirected and connected graph G and Ni

denotes the set of one-hop neighbours of node i in WSN. An

edge between node i and j implies that they can communicate

with each other by exchanging their information mutually. In

our setup, communication and computational delays are both

negligible.

The general linear updating protocol is proposed in (7)

and each node i periodically updates its logical clock reading

τ̂i(t) based only on its own information and its neighbours’

information

τ̂i(t) = Gi(τi(t), τj(t)), (7)

where Gi(.) is a linear function depending on the information

available at node i and from node j ∈ Ni, i.e, the local clock

readings of clock i itself and its neighbour nodes j ∈ Ni.

III. CLOCK SYNCHRONIZATION PROTOCOL

The proposed distributed protocol mainly includes three

parts: relative clock skew estimation, clock skew compensa-

tion, and clock reading compensation.

A. Relative clock skew estimation

Some definitions are listed as follows:

Definition 3.1: The definition of relative clock skew for node

i at time t is as follows:

αij(t) =
αj(t)

αi(t)
. (8)

Definition 3.2: tj(k) indicates the global time at which node

j’s clock reading τj(tj(k)) just reaches kT , where T is a

common sampling period set as a default value.

Definition 3.3: τi(tj(k)) (k ∈ Z, ∀j ∈ Ni) indicates node

i’s local clock reading when node j announces that its local

clock reading just reaches kT .

As the local clock skew αi(t) is neither known nor mea-

surable by node i, node i can not figure out αij(t). Instead,

node i tries to estimate relative clock skew αij(tj(k)) with

respect to its neighbours j ∈ Ni at time instant tj(k). The

estimation of relative clock skew αij(tj(k)) is proposed via

low-pass filter introduced by [9].

Initialization: α̂ij(0) = 1.

Main Loop: At t = tj(k), k ∈ Z, the updating step of

α̂ij(t
+) is

α̂ij(t
+) = ρα̂ij(t

−) + (1− ρ)
T

τi(tj(k))− τi(tj(k − 1))
,

(9)

where ρ ∈ (0, 1) is a tuning parameter served as a tradeoff

between the precision of new measurement and prior esti-

mation based on the old measurement. t+ and t− represent,

respectively, the right-hand limit and left-hand limit of t.
Lemma 3.1: [9] For constant αi, applying (9) yields the

following convergent result

lim
t→∞ α̂ij(t) = αij (10)

for any initial condition α̂ij(t).

For time-varying αi(t), the relative skew αij(t) is also time-

varying. However, considering small change of αi(t), (10)

holds approximately under time-varying clock skew. In the

following we propose clock skew compensation protocol using

relative skew algorithm proposed in (9).
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B. Clock skew compensation

The filter-based clock synchronization protocol of skew

compensation is presented as follows:

Initialization: α̂i(0) = 1, ωi(0) = 0, ∀i ∈ V .
Main Loop: At t = tj(k), k ∈ Z, α̂i(t

+) is updated as
follows:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

α̂i(t
+) = α̂i(t

−)− T
∑
j∈Ni

(ωi(t
−)− ωj(t

−)α̂ji(t
−)),

ωi(t
+) = (1− Tγ)ωi(t

−) + T
∑
j∈Ni

(α̂i(t
−)− α̂j(t

−)

α̂ij(t
−)),

(11)

where α̂ij(t
−) is calculated in (9); γ is the information rate

which depicts the proportion of how much new information

is introduced; T > 0 is discrete-time step size; both γ and T
will be specified in the next section to guarantee stability and

convergence of the control system.

By replacing t+ or t− with a common discrete time point

k from a perspective of global clock, (11) can be further

presented as:

Algorithm 1 (Clock skew compensation Protocol)

Input: α̂ij(k) for i ∈ V .

Output: α̂i(k) for i ∈ V and j ∈ Ni.

1: Initialize α̂i(0) = 1, ωi(0) = 0, ∀i ∈ V .

2: while 1 do
3: α̂i(k) ⇐ α̂i(k) − T

∑
j∈Ni

(ωi(k) − ωj(k)α̂ji(k)) at

t = t(k).

4: ωi(k) ⇐ (1 − Tγ)ωi(k) + T
∑

j∈Ni
(α̂i(k) −

α̂j(k)α̂ij(k)) at t = t(k).

5: ωi(t) = ωi(k), α̂i(t) = α̂i(k), t ∈ [k, k + 1).
6: ωi(k+ 1) = ωi(k), α̂i(k+ 1) = α̂i(k) at t = t(k+ 1).

7: end while

Lemma 3.2 shows the bounded property of α̂i(k) and ωi(k)
when applying Algorithm 1.

Lemma 3.2: Protocol (11) leads to the boundedness of

limk→∞ α̂i(k) and limk→∞ ωi(k) under the following param-

eter constraints:

(i) 0 < T < −2
λ2bn

,

(ii) γ > 0,

where λ2bn is defined as the minimum eigenvalue of B0 and

B0 =

[
On −(D(G)− Λ(k)T )

D(G)− Λ(k) −γIn
]
.

Λ(k) is defined as

Λ(k)ij =

{
α̂ij(k) i �= j, j ∈ Ni,

0 otherwise.

Moreover, α̂i(k) and ωi(k) are uniformly bounded for all k ∈
Z, that is:

|α̂i(k)| ≤ α̂sup, |ωi(k)| ≤ ωsup, ∀k ∈ Z,

where α̂sup > 0 and ωsup > 0 respectively denote the upper

bounds for α̂i(k) and ωi(k).

Proof 1: The proof is similar to Proof 2 in main theorem

and is ignored here.

The error of node i’s clock skew is as follows:

εi(k) = α̂i(k)αi(k)− 1

N

N∑
i=1

α̂i(k)αi(k). (12)

Our main result is presented in Theorem 3.1.

Theorem 3.1: Consider the communication topology of

WSNs to be a connected and undirected graph G. If Assump-

tions 2.1, 2.2, 3.1 hold, Algorithm 1 leads to the boundedness

of εi(k) as

lim
k→∞

εi(k) ≤ ρ3 = |1 + Tλi

Tλi
|(4ρ1Tωsupdmax

1 + ρ1
+ ρ2α̂sup)

by choosing:

(i) 0 < T < min{ −2
λ2n

, −2
λ2bn
},

(ii) γ > 0,

where λi is defined as the ith eigenvalue of A0 where

A0 =

[
On −L(G)
L(G) −γIn

]
,

and λ2n is defined as the minimum eigenvalue of A0. λ2bn is

defined as the minimum eigenvalue of B0 defined in Lemma

3.2.

C. Stability and convergence analysis

We now give the proof for Theorem 3.1.
Proof 2: Let αi(k)ωi(k) = ωi(k), αi(k)α̂i(k) = αi(k).

Multiplying (11) with αi(k) yields the following state space
equation

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

αi(k + 1) = αi(k)− T
∑
j∈Ni

(ωi(k)− ωj(k)) + Δα
i (k)+

Δαi(k)αi(k + 1),

ωi(k + 1) = (1− Tγ)ωi(k) + T
∑
j∈Ni

(αi(k)− αj(k))+

Δω
i (k) + Δαi(k)ωi(k + 1),

(13)

where we have the following relationship with Δα
i (k) and

Δβ
i (k):

Δα
i (k) = −T

∑
j∈Ni

ωj(k)(1− αi(k)

αj(k)
α̂ji(k)),

Δω
i (k) = T

∑
j∈Ni

αj(k)(1− αi(k)

αj(k)
α̂ij(k)).

(14)

Define

ω(k) = [ω1(k), ω2(k), ..., ωn(k)]T ,

α(k) = [α1(k), α2(k), ..., αn(k)]T ,

α(k) = [α1(k), α2(k), ..., αn(k)]T .

(15)

The synchronous form becomes[
α(k + 1)
ω(k + 1)

]
= A1

[
α(k)
ω(k)

]
+Θ(k)

[
α(k)
ω(k)

]
+

[
Δα(k)
Δω(k)

]
, (16)
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where

A1 = I2n + TA0, A0 =

[
On −L(G)
L(G) −γIn

]
,

Θ(k) =

[
On −T (A(G)−Π1(k))

T (A(G)−Π2(k)) On

]
,

Π1(k)ij =

⎧⎨⎩
αj(k)

αi(k)
α̂ij(k) i �= j, j ∈ Ni,

0 otherwise.

Π2(k)ij =

⎧⎨⎩
αi(k)

αj(k)
α̂ij(k) i �= j, j ∈ Ni,

0 otherwise.

Δα(k) = [Δα1(k)α̂1(k + 1), ...,Δαn(k)α̂n(k + 1)]T ,

Δω(k) = [Δα1(k)ω̂1(k + 1), ...,Δαn(k)ω̂n(k + 1)]T .

It can be simply verified that without external input

Θ(k)

[
α(k)
ω(k)

]
and

[
Δα(k)
Δω(k)

]
, {(α, ω) : α ∈ span{1} and ω =

0} is the equilibrium subspace of system (16).
According to Assumption 2.2 and Lemma 3.2, as long

as 0 < T < −2
λ2bn

and γ > 0 are satisfied, Δαiαi(k +
1), Δαiωi(k + 1) are uniformly bounded:

|Δαiαi(k + 1)| ≤ ρ2α̂sup, |Δαiωi(k + 1)| ≤ ρ2ωsup. (17)

On the other hand, according to (9), αij(k) ∈ ( 1−ρ1

1+ρ1
, 1+ρ1

1−ρ1
).

Hence the bound of Δα
i (k), Δω

i (k) are given as

|Δα
i (k)| ≤ Tωsup(1 + ρ1)

∑
j∈Ni

(1− (1− ρ1)
2

(1 + ρ1)2
) ≤ Δ1,

|Δω
i (k)| ≤ T α̂sup(1 + ρ1)

∑
j∈Ni

(1− (1− ρ1)
2

(1 + ρ1)2
) ≤ Δ2,

Δ1 =
4ρ1Tωsupdmax

1 + ρ1
, Δ2 =

4ρ1T α̂supdmax

1 + ρ1
.

(18)

As external inputs Δα
i (k), Δω

i (k), Δαi(k)α̂i(k + 1),

Δαi(k)ω̂i(k+1) are bounded, the linear system (16) is input-

to-state stable as long as A1 is Schur-stable.
Notice that A1 can be divided into A0 and I2n. Let the set

of eigenvalues of A0 as σ = {λ1, λ2, ... λ2n} while A1 has

eigenvalue set as σ̂ = {λ̂1, λ̂2, ... λ̂2n} where λ̂i = 1 +Tλi.

Let [ζ, η]T be an associated eigenvector corresponding to λi,

where ζ, η ∈ Rn. Then we have(
λiI2n −

[
On −L(G)
L(G) −γIn

])[
ζ
η

]
= 0 (19)

By eliminating η, we have:

−L(G)2ζ = λi(λi + γ)ζ, (20)

which means λi(λi + γ) is an eigenvalue of −L(G)2 with ζ
being its associated eigenvector. Let σi be an eigenvalue of

the matrix L(G)2. The roots of the polynomial equation

λi
2 + γλi + σi = 0, i = 1, ..., n (21)

are the eigenvalues of A0. (21) leads to the following explicit

expression of root solution

λi =
−γ ±

√
γ2 − 4σi

2
, i = 1, ..., n. (22)

The matrix L(G)2 is symmetric and positive semi-definite with

its rank the same as L(G). The spectrum of matrix L(G)2 the

following inequality

0 = σ1(G) < σ2(G) ≤ ... ≤ σn(G). (23)

Therefore it has one zero eigenvalue and all other eigenvalues

are positive and real. Hence the eigenvalues of A0 can be

negative and lie in the negative half plane except for one zero

eigenvalue if and only if

γ > 0. (24)

Assume that the eigenvalues of A0 satisfy the following

relationship:

0 = λ1(G) > λ2(G) ≥ ... ≥ λ2n(G). (25)

To guarantee that σ̂ = {λ̂2, ... λ̂2n} lie strictly in the unit

circle, the following condition should be satisfied:

|1 + Tλi| < 1, i = 2...n. (26)

Hence T should be bounded by

0 < T < min{ −2

λ2n
,
−2

λ2bn
}. (27)

If (24) and (27) are satisfied, A1 is Schur-stable with

only one eigenvalue at the unit disk. Although calculation

of λ2(G) and λ2n(G) require σ2(G) and σn(G) which are

global information, σ2(G) and σ2(G) can be solved in a

distributed way by [16] or [17] due to symmetric nature of

L(G)2. By knowing σ2(G) and σn(G) in a distributed way,

then common parameter pair γ, T can be found to satisfy (24)

and (27). This guarantees (11) being fully distributed. Finally,

the eigenvalues of A1 lie strictly inside the unit circle except

for one eigenvalue, which means system (16) is input-to-state

stable as A1 is proven to be Schur-stable.

Consider the state coordinate transformation

V −1

[
α(k)
ω(k)

]
=

[
α′(k)
ω′(k)

]
, (28)

where V is the similar transformation matrix with its first

column being

[
1
0

]
and V −1A1V = Λ = diag{1, λ̂2, ..., λ̂2n}.

By similarity transformation V , system (16) is transformed
into [

α′(k + 1)
ω′(k + 1)

]
= Λ

[
α′(k)
ω′(k)

]
+ V −1Θ(k)

[
α(k)
ω(k)

]

+ V −1

[
Δα(k)
Δω(k)

]
.

(29)

If we let η1(k) = [α′
2(k), ..., α′

n(k)] and η2(k) =
[ω′

1(k), ..., ω′
n(k)], an equivalent form of system (29) is⎡

⎣α
′
1(k + 1)

η1(k + 1)
η2(k + 1)

⎤
⎦ =

⎡
⎣ 1 0 0

0 Λ1 0
0 0 Λ2

⎤
⎦
⎡
⎣α

′
1(k)

η1(k)
η2(k)

⎤
⎦+ V −1Θ(k)

[
α(k)
ω(k)

]
+ V −1

[
Δα(k)
Δω(k)

]
,

(30)

where

Λ1 = diag{λ̂2, ..., λ̂n}, Λ2 = diag{λ̂n+1, ..., λ̂2n}. (31)
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The zero input response of system (30) is

R′
1 = lim

k→∞
Λk

⎡⎣α′
1(0)

η1(0)
η2(0)

⎤⎦ . (32)

As {(α, ω) : α ∈ span{1} and ω = 0} is the equilibrium

subspace of system (16),

lim
k→∞

Λk

⎡⎣α′
1(0)

η1(0)
η2(0)

⎤⎦ = lim
k→∞

Λk

[
α(k)
ω(k)

]
= α′

1(0)

⎡⎣1
0
0

⎤⎦ . (33)

From (33), it follows that α′
1(0) = α′

1(k), and η1(k),η2(k)
globally asymptotically converges to 0 as k →∞. Therefore,

by the coordinate transformation, it is obtained that the zero-

input response of (16) globally asymptotically converges to

R1 = α′
1(0)

[
1
0

]
as k →∞.

The zero state response of system (16) is

R2 = lim
k→∞

n−1∑
i=0

Λk−i−1(Θ(k)

[
α(k)
ω(k)

]
+

[
Δα(k)
Δω(k)

]
). (34)

According to Lemma 3.1,

lim
k→∞

Θ(k)

[
α(k)
ω(k)

]
= lim

k→∞

[−T (A(G)−Π1(k))α(k)
0

]
.

(35)

Taking (17) and (18) into account, we can deduce that the zero

state response is bounded by

|R2| ≤

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

| λ̂1

1−λ̂1
|( 4ρ1Tωsupdmax

1+ρ1
+ ρ2α̂sup)

.

.

| λ̂n

1−λ̂n
|( 4ρ1Tωsupdmax

1+ρ1
+ ρ2α̂sup)

| λ̂n+1

1−λ̂n+1
|ρ2ωsup

.

.

| λ̂2n

1−λ̂2n
|ρ2ωsup

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (36)

Therefore,

lim
k→∞

|εi(k)| ≤ | λ̂i

1− λ̂i

|(4ρ1Tωsupdmax

1 + ρ1
+ ρ2α̂sup)

= |1 + Tλi

Tλi
|(4ρ1Tωsupdmax

1 + ρ1
+ ρ2α̂sup).

(37)

This completes the proof of Theorem 3.1.

D. Offset compensation

After the end of clock skew compensation procedure, the

synchronization errors of logical clock skews are bounded by

a relative small steady error bounded by ρ3 under time-varying

input αi(t)s. However, the final goal of clock synchronization

is to compensate for possible offset errors and let all virtual

clocks show identical clock readings. In previous studies [9],

[10], [13], et al. synchronization errors of logical clock skews

asymptotically converge to 0 under constant input αi. Hence

their focus is to drive offset errors to 0 as well. However, under

time-varying input αi(t)s, the offset error does not converge

to 0. As a consequence, clock reading compensation mainly

focuses on reducing the errors of compensated clock reading

τ̂i(t). We present an clock reading compensation protocol

which is integrated into skew compensation in Algorithm 2.

Algorithm 2 Clock reading compensation Protocol

Input: α̂i(k) for i ∈ V .

Output: τ̂i(k) for i ∈ V .

1: Initialize τ̂i(0) = α̂i(0)τi(0), ∀i ∈ V .

2: while 1 do
3: τ̂i(k)⇐ τ̂i(k)+

∑
j∈Ni

τ̂j(k)

di+1 at t = t(k).

4: τ̂i(t)⇐ τ̂i(k) + α̂i(k)(t− τi(k)), t ∈ [t(k), t(k + 1)).

5: τ̂i(k + 1) ⇐ τ̂i(k) + α̂i(k)(τi(k + 1) − τi(k)) ∀i ∈ V
at t = t(k + 1).

6: end while

Specifically, for each broadcast, node i updates its virtual

clock reading τ̂i(k) using the average consensus equation and

then it is added by α̂i(k)(τi(k + 1) − τi(k)) as time moves

until the next round of clock reading compensation.

Remark 3.1: This approach is inspired by [11] but uses

synchronous form and pseudo-synchronous implementation

[13]. As the clock reading compensation protocol is integrated

into skew compensation, every node i in WSNs can achieve

clock skew compensation and clock reading compensation

simultaneously.

IV. SIMULATION

Consider a network topology in Fig. 1 composed of 10
labelled nodes.

Fig. 1. Network topology composed of 10 labelled nodes

Initially we test the performance of clock skew compensa-

tion protocol under different ρ2s. The parameter set is chosen

as: T = 0.1, γ = 4. The initialization values of αis are

assumed to be randomly selected from [0.9999, 0.99997] ∪
[1.00003, 1.0001] since Crystal oscillators exhibit drift ρ1
from 30μs to 100μs in one second. As each local clock

skew experiences small drift, during one sampling period

the local clock skew is added by a random noise ρ2 as

0.01 ticks/s, 0.05 ticks/s, 0.1 ticks/s. It can be seen from

Fig. 2 that it takes nearly 10 iterations (corresponding to 2
seconds) to reduce the maximum difference of skew below
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1 ticks/s (1 ticks/s=1/32768Hz=30.5μs), i.e., the individual

clock resolution.

Fig. 2. Convergent performances of skew compensation

We also test the performance of clock reading compensation

protocol. The random noise ρ2s are chosen as 0.01 ticks/s,

0.05 ticks/s, 0.1 ticks/s. It can be seen from Fig. 3 that

the maximum differences of clock readings finally converge

to a small steady state error, which demonstrates a better

performance in robustness against time-varying clock skew

αi(t)s.

Fig. 3. Convergent performances of clock reading compensation

V. CONCLUSION

This paper studies clock synchronization via a filter-based

approach which is fully distributed over wireless sensor net-

work. A first-order controller is applied and the proposed pro-

tocol shows robustness under time-varying clock parameters.

By analysing input-to-state stability, the convergence property

of the control system is guaranteed by restricting synchroniza-

tion error into a bounded range. Future research includes deal-

ing with asynchronous implementation and checking whether

the proposed protocol is still effective.
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