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Evolution of Our Field 

•  Control Science and Engineering is becoming a mature field.  

•  We are penetrating into neighbouring disciplines. 

•  Many applications for Networked Dynamic Systems. 

•   Abundant research opportunities, yet new theories and tools 
   are seriously lacking. 

Classical Control Modern Control Networked Systems 
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Opportunities  

•  Manufacturing: automation; robotics; high precision control; nano-
technology; …  

•  Energy:  smart power networks; renewable energy; smart buildings; 
carbon capture; emission reduction; … 

•  Water: modelling of water resources; usage efficiency; water 
pollution; desalination; … 

•  Transportation: road traffic control; air traffic control; high speed 
trains; hybrid vehicles; … 

•  Health: system biology; automated health systems; ageing problems 
and assisting systems for the aged; … 

•  Food: farming; land management; food processing; …  

 
 

The list goes on … 
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Mobile device: 

Mobile network: 

Applications: 
Survellience 
Traffic control 
Smart grid 
Smart buildings 
Transportation 
Logistics 
Disaster management (Image from Telstra, Australia) 

Example 1: Machine-to-Machine (M2M) Communication 



Power System 

Wind, PV, DG,… 
Communication Network 
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Example 2: Smart Electricity Network 

GPS Real-time 
measurements 

GPS 

Real-time  
State Estimation 

Prediction and 
Forecasting 

Monitoring and 
Decision Making Real-time 

Feedback Control 
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Power System Communication Network 

How to close the loop?！ 

For the first time, we have the technologies to do  
real-time control for large-scale power systems! 
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Example 3: Sensor Networks 

•  GreenOrbs (2,000 sensor nodes) 
•  Developed  by HKUST, Tsinghua University, etc. 
•  Located in Wuxi, China 
•  Environmental surveillance (forest, ocean, CO2 pollution…)	


Large number of nodes; 
Widely deployed;   
Low power support	


Distributed processing is 
a necessity	


Key Research problems: 
Clock synchronization 
Localization 
Data fusion 
Target tracking 
Mobile sensing … 



Example 4: Multi-agent Systems 

Engineered system 

 Natural system     

Social system 

Key Research problems: 
Consensus/synchronization 
Self organization/steering 
Cooperative motion/behavior 
Formation/flocking/swarming… 

Recommended ref: Nagy, Akos, Biro, Vicsek, “Hierarchical group dynamics in pigeon flocks,” Nature, 2010. 
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Common features of these applications 

Networked Systems 
 
A networked System consists of overlay of two networks 

•  Physical network 
q  power distribution/transmission network; 
q  traffic network (roads and vehicles); 
q  biological cells; 
q  multi-agent system; 
q  Internet of Things; … 

•  Information/communication network 
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New Research Challenges 

•  New modelling methods: physical networks; Communication 
networks; much faster dynamics (multi-time scales); 
•  New control and estimation techniques: theory and 
algorithms;  
•  New simulation tools: physical networks; communication 
networks; scenario simulators; (super) real-time simulators   
•  Network design and planning 

    Need distributed solutions! 
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Types of Distributed Solutions 

•  It is difficult to define “distributed solution” 
•  Characteristics of fully distributed solution: 

•  Computational complexity per node: ~ ki 
•  Communication load per node:  ~ ki 
•  Data storage size per node: ~ ki 
•  No global information (e.g., network size, topology etc) needed  
•  No leader node is required/assumed 
•  Certain global goal/performance is guaranteed 

•  Most available distributed solutions are only partially 
   distributed, or global performances are not guaranteed. 

Typical characteristics of a large network: 
•  Many many nodes (n) 
•  Each node (i) has only a few neighbors  (ki) 
•  Sparsely connected graph 
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Types of Distributed Solutions 

•  It is difficult to define “distributed solution” 
•  Characteristics of fully distributed solution: 

•  Computational complexity per node: ~ ki 
•  Communication load per node:  ~ ki 
•  Data storage size per node: ~ ki 
•  No global information (e.g., network size, topology etc) needed  
•  No leader node is required/assumed 
•  Certain global goal/performance is guaranteed 

•  Most available distributed solutions are only partially 
   distributed, or global performances are not guaranteed. 

Typical characteristics of a large network: 
•  Many many nodes (n) 
•  Each node (i) has only a few neighbors  (ki) 
•  Sparsely connected graph 

Key Feature: Think globally, act locally! 
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Examples of Partially Distributed Solutions: 

•  Distributed control with a central node (leader) which collects  
information from each node and commands their actions 

•  Distributed state estimation where each node gathers data from 
neighbors and estimates the state of the entire network 

•  Average consensus algorithm for discrete-time systems: 
 
 
 
where the design of di requires global information. In this case, 
execution of algorithm is fully distributed, but design of the 
algorithm is not fully distributed. 

xi (k +1) = xi (k)+ di wij (x j (k)− xi (k))
j∈N (i)
∑
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Consensus: 
•  Every consensus:   Easy 
•  Max consensus: Easy 
•  Sum consensus: Harder (?) 

 
Network Topology: 

•  Without loops: Easy 
Many problems solved using belief propagation 

•  With loops: mostly hard 
- Belief propagation provides good approximation 
- Some problems solvable (e.g., average consensus) 

Challenge: Classification of easy/hard problems 

Easy Problems vs. Hard Problems 
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Global design vs. local design 
 

•  Many distributed solutions are easy to implement,  
but the design requires global information. 

•  Question: what global information is acceptable?  

Optimal vs. sub-optimal (approximation) 
 

•  In some cases, distributed algorithms give  
globally optimal solutions, but in many cases,  
only approximations are available. 

•  Difficulty: How to quantify the approximation quality 

The need for distributed solutions is not unique to our field. 
We should learn from our neighboring disciplines … 



Network Coding    

Key Features: 
•  Much higher channel capacity 

than Shannon’s 
•  Much more robust transmission 
•  Much higher security 

General system Relay system 
Broadcast system 

Research problems: 
•  Determining network channel capacity 
•  Network encoding & decoding 
•  Reducing computational complexity 
•  Reducing time delay 
•  Network coding based control? 

Recommended ref: R. Ahlswede et. al., “Network information flow,” IEEE Trans. Info. Theory, 2001. 

Major new development in Network comunications! 



•  Well-known technique for distributed algorithms in  
artificial intelligence and statistics, Proposed by Pearl in 1982 
(Also known as Pearl’s BP). 

•  Very powerful for computing maximum a posterior (MAP) 
solutions, but powerful for many optimization problems, 
including marginal distributions in Bayes nets, Markovian 
random fields (MRF) and graphs (factor graphs in particular). 

•  Provide exact (optimal) solutions in for tree graphs, but  
approximate solutions for general graphs.  

•  Many known distributed algorithms can be interpreted as BP. 
•  Little known to the control community, but it is changing… 

 Brief Intro to Belief Propagation (BP) 

Recommended Ref: “Factor Graphs and the Sum-Product Algorithm” by F. R. Kschischang, 
B. J. Frey, and H-A Loeliger, IEEE Transactions on Info Theory, Feb. 2001 
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Problem: Given a function (think of joint probability density) 
 
 
find the marginals  (think of marginal distribution) 
 

P(x1, x2,..., xN )

Pi (xi ) = P(x1, x2,..., xN )
x1xi−1xi+1xN

∑    for all i =1, 2,...,N

Combinatoric explosion: If each xi takes M possible states, 
brute force computation takes O(MN) calculations. 
 
In general, the problem is known to be NP-hard.  
 
Efficient algorithm explores some underlying structure. 
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Factors: BP explores the structure of the function 

P(x1, x2,..., x4 ) = h(x1, x2, x3)g(x3, x4 ) f (x4 )

factors 
Factor graph:  

x1 x2 x3 x4 

h g f 



22 

Example:  Consider the joint probability density function   

P(x1, x2,..., x4 ) = P(x1)P(x2 )P(x3 | x2 )P(x4 | x1, x2 )

P(x1, x2,..., x4 ) = P(x1)P(x2 | x1)P(x3 | x1, x2 )P(x4 | x1, x2, x3)
instead of the general expression by Bayes rule:  

x1 
x2 

x3 x4 

Graph for this example: tree 

x1 
x2 

x3 x4 

Graph for general function 

Assumption: The graph does not have loops, i.e., it is a tree.   
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Message Passing: At each iteration k, each variable node i  
computes an estimate of the marginal               for each  
neighboring node j and pass it on to node j.  
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mi, j
(k ) (x j )∝ P(x j | xi )P

a (xi ) ms,i
(k−1)(xi )

s∈Ν(i)\ j
∏

xi

∑

The celebrated sum-product rule: 

Prior estimate 
of node i 

Neighborhood 
(without node j) 

Independent 
estimates of 
node i 

Key Result: After a finite number (max path length) of iterations, 
                      will converge, and the exact marginals are mi, j

(k ) (x j )

Pi (xi )∝P
a (xi ) mj,i

(k ) (xi )
j∈N (i)
∏
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Further Comments on BP 
 

•  Very general algorithm, easy to implement,  
fully distributed 

•  Kalman filtering algorithm is known to be BP 
•  Excellent approximations in many cases: 

Turbo codes, low-density parity check codes,… 
•  A variant of sum-product rule, max-product, is  

used to compute 
 

•  Many other variants available for solving more  
complicated problems 

•  Many “tricks” available to deal with loops 

How to connect control problems to BP? 

arg max
x1,x2 ,...,xN

P(x1, x2,..., xN )
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Outline 

•  Motivations and Examples 
 

•  Distributed Approaches 
 

•  Distributed Solutions 
 
•  Distributed state estimation for power networks 
•  Distributed localization for sensor networks 
•  Distributed consensus with quantized information 
•  Distributed control of multi-agent systems 

 
•  Conclusions 



X.Tai, Z. Lin, M. Fu, Y Sun, ACC 2013;  D. Marelli and M. Fu, CDC 2013 (to appear) 

A New Distributed State Estimation Technique  
for Power Networks 

Power network 

Energy management system (EMS) 
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(China)         PMU Placements (China) 

Wide Area Measurement System (WAMS): 

PMU = phasor measurement unit 



29 

SCADA 
measurements 

PMU 
measurements 

Typical Communication Network for WAMS: 

Core Problem: 
Real-time State 

Estimation 
Control Centre 

µW 
5-10s 

Fibre 
50-100ms 
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IEEE 118-bus system 

Distributed State Estimation Problem 



System Model 

 Weighted least  
 squares (WLS) 
 
 
(max likelihood) 



Distributed processing 

System Partition 

Key Question: Can the global estimate be computed in a distributed manner? 



Assumptions: 

Distributed WLS Algorithm  



Distributed WLS algorithm 

Algorithm illustration: 

Message passing 
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Algorithm 1 Distributed WLS estimation: (Algorithm on
node i, i ∈ V)
Initialization:
1) Compute the local estimate and its associated estimation
error covariance

x̌
(0)
i = Σ̌(0)

i α̌i,

Σ̌(0)
i = Ψ̌−1

i ,

with

α̌0
i = AT

i R
−1
i yi +

∑

j∈Ni

DT
i,jS

−1
i,j zi,j,

Ψ̌0
i = AT

i R
−1
i Ai +

∑

j∈Ni

DT
i,jS

−1
i,Ni(k)

Di,j .

2) Transmit to every node j ∈ Ni the correction factor

γ
(0)
j,i = Di,j x̌

(0)
j ,

Υ(0)
j,i = Di,jΣ̌

(0)
j DT

i,j .

Main loop: For t = 0, 1, · · · , let γ(t)
i,j , Υ

(t)
i,j be the correction

factor received by node i from node j.
1) Update the local estimate and its associated estimation
error covariance based on the received correction factor:

x̂
(t+1)
i = Σ(t+1)

i



α̌0
i −

∑

j∈Ni

β
(t)
i,j



 , (20)

Σ(t+1)
i =



Ψ̌0
i −

∑

j∈Ni

Φ(t)
i,j





−1

, (21)

where

β
(t)
i,j = DT

i,jS
−1
i,j γ

(t)
i,j , (22)

Φ(t)
i,j = DT

i,jS
−1
i,j Υ

(t)
i,jS

−1
i,j Di,j . (23)

2) Compute

x̌
(t+1)
j,i = Σ̌(t+1)

j,i



α̌0
i −

∑

k∈Ni/{j}

β
(t)
i,k



 ,

Σ̌(t+1)
j,i =



Ψ̌0
i −

∑

k∈Ni/{j}

Φ(t)
i,k





−1

for every j ∈ Ni, and then transmit to node j the
correction factor

γ
(t+1)
j,i = Cj,ix̌

(t+1)
j,i ,

Υ(t+1)
j,i = Cj,iΣ̌

(t+1)
j,i CT

j,i.

A. Ideal Setup

The ideal setup here means that the inter-node communica-
tions do not have communication delays and packet loss, and
all local control centers operate synchronously. We show next
that finite-time convergence and optimality of estimation are

ensured by Algorithm 1. In other words, for every node i ∈ V ,
after a finite number of steps, Algorithm 1 yields at node i the
local estimate x̂i that is equal to the (block) component x̂opt

i
of the globally optimal estimate x̂opt.
Before presenting Theorem 4, we introduce several notions

from graph theory. For a graph, a path is a concatenation of
adjacent edges (without loops) and its length is the number
of edges forming it. The radius of node i is defined as the
maximum length of a path from node i to any other node in
the graph, denoted by Γi. The diameter of the graph is the
maximum radius over all nodes and is denoted by Γ.

Theorem 4. Consider the system (2) with Assumption 1 and 2.
If Algorithm 1 is used, then for every i ∈ V ,

x̂
(t)
i = x̂opt

i for all t ≥ Γi. (24)

Moreover, For any i ∈ V and t ∈ N0 the matrices Ψ̌0
i −

∑

j∈Ni
Φ(t)

i,j and Ψ̌0
i −

∑

j∈Ni/{k}
Φ(t)

i,k for any k ∈ Ni are
invertible.

Remark 5. From (24) in Theorem 4, it is known that the local
estimates on all nodes converge to the optimal one after Γ =
max {Γi, i ∈ V} steps.
Remark 6. Notice that the invertibility of the matrices Ψ̌0

i −
∑

j∈Ni
Φ(t)

i,j and Ψ̌0
i −

∑

k∈Ni/{j}
Φ(t)

i,k, for all j ∈ Ni, is
necessary for the validity of Algorithm 1. This holds even
when some Ai does not have full column rank.
Before giving the proof of Theorem 4, we introduce some

notations. For each i ∈ V , let N i = Ni ∪ {i} be the union set
of node i’s neighbor set and node i itself. The notationN i\{j}
stands for the set difference. Next we useM(0)

i = M(0)
j,i = {i}

as the initial sets, and define (recursively) the following two
sequences of sets

M(t)
i =

⋃

k∈M(n−1)
i

N k,

M(t)
j,i =

⋃

k∈M(n−1)
j,i

N k \ {j}.

That is,M(t)
i is the set of nodes which are connected to node i

by t or less number of edges, and M(t)
j,i is the set resulting

after removing fromM(t)
i those nodes that are linked to node i

through node j.
For each t ∈ N0 and i ∈ V let

m
(t)
i =

[

yTk , z
T
k,l : k ∈ M(t)

i , l ∈ M(t+1)
i

]T

be the vector obtained by stacking the vectors of all measure-
ments and boundary measurements associated with the nodes
in M(t)

i . Also, let

ξ
(t)
i =

[

xT
k : k ∈ M(t)

i

]T
,

e
(t)
i =

[

vTk , w
T
k,l : k ∈ M(t)

i , l ∈ M(t+1)
i

]T
,

T
(t)
i = E

{

e
(t)
i

(

e
(t)
i

)T
}

,

and H(t)
i be the matrix formed by sub-matrices of H such that

m
(t)
i = H

(t)
i ξ

(t)
i + e

(t)
i . (25)
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∑

k∈Ni/{j}

Φ(t)
i,k





−1

for every j ∈ Ni, and then transmit to node j the
correction factor

γ
(t+1)
j,i = Cj,ix̌

(t+1)
j,i ,

Υ(t+1)
j,i = Cj,iΣ̌

(t+1)
j,i CT

j,i.

A. Ideal Setup

The ideal setup here means that the inter-node communica-
tions do not have communication delays and packet loss, and
all local control centers operate synchronously. We show next
that finite-time convergence and optimality of estimation are

ensured by Algorithm 1. In other words, for every node i ∈ V ,
after a finite number of steps, Algorithm 1 yields at node i the
local estimate x̂i that is equal to the (block) component x̂opt

i
of the globally optimal estimate x̂opt.
Before presenting Theorem 4, we introduce several notions

from graph theory. For a graph, a path is a concatenation of
adjacent edges (without loops) and its length is the number
of edges forming it. The radius of node i is defined as the
maximum length of a path from node i to any other node in
the graph, denoted by Γi. The diameter of the graph is the
maximum radius over all nodes and is denoted by Γ.

Theorem 4. Consider the system (2) with Assumption 1 and 2.
If Algorithm 1 is used, then for every i ∈ V ,

x̂
(t)
i = x̂opt

i for all t ≥ Γi. (24)

Moreover, For any i ∈ V and t ∈ N0 the matrices Ψ̌0
i −

∑

j∈Ni
Φ(t)

i,j and Ψ̌0
i −

∑

j∈Ni/{k}
Φ(t)

i,k for any k ∈ Ni are
invertible.

Remark 5. From (24) in Theorem 4, it is known that the local
estimates on all nodes converge to the optimal one after Γ =
max {Γi, i ∈ V} steps.
Remark 6. Notice that the invertibility of the matrices Ψ̌0

i −
∑

j∈Ni
Φ(t)

i,j and Ψ̌0
i −

∑

k∈Ni/{j}
Φ(t)

i,k, for all j ∈ Ni, is
necessary for the validity of Algorithm 1. This holds even
when some Ai does not have full column rank.
Before giving the proof of Theorem 4, we introduce some

notations. For each i ∈ V , let N i = Ni ∪ {i} be the union set
of node i’s neighbor set and node i itself. The notationN i\{j}
stands for the set difference. Next we useM(0)

i = M(0)
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as the initial sets, and define (recursively) the following two
sequences of sets
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⋃
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i

N k,
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⋃

k∈M(n−1)
j,i

N k \ {j}.

That is,M(t)
i is the set of nodes which are connected to node i

by t or less number of edges, and M(t)
j,i is the set resulting

after removing fromM(t)
i those nodes that are linked to node i

through node j.
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m
(t)
i =

[

yTk , z
T
k,l : k ∈ M(t)

i , l ∈ M(t+1)
i

]T

be the vector obtained by stacking the vectors of all measure-
ments and boundary measurements associated with the nodes
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i . Also, let

ξ
(t)
i =

[

xT
k : k ∈ M(t)

i

]T
,

e
(t)
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T
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i , l ∈ M(t+1)
i

]T
,

T
(t)
i = E

{

e
(t)
i

(

e
(t)
i

)T
}

,

and H(t)
i be the matrix formed by sub-matrices of H such that

m
(t)
i = H

(t)
i ξ

(t)
i + e

(t)
i . (25)



Theorem: 

Properties 

Advantages: 

N = max path length of the graph 
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IEEE 118-bus system 

Example 

Partition graph of the system: 

Graph Diameter N = 4 
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Distributed estimates vs. centralized estimates: 

Observation: Convergence after 4 iterations 

distributed centralized 



Y. Diao, M. Fu, H. Zhang, Z. Lin, IEEE Trans. Networking (to appear); CDC 2012; ASCC 2013; LSS 2013 

A new distributed localization method  
for sensor networks 

2-D Localization Problem: 

Anchor nodes 

To be localized 

Localized 

Given: A set of anchor nodes (with  
  known positions) and relative  
  distance measurements 
  between neighboring nodes 
 
 
Questions: Which nodes’ positions 
 can be uniquely determined and  
 how to compute their positions?  
 
Distributed algorithms are required.  

Distance Measurements: 
    Received Radio Strength (RSS) 
    Time of Arrival (TOA) 
    Time Difference of Arrival (TDOA) 
    Angel of Arrival (AOA)	




Localizability Conditions	

Localizability of an entire 
sensor network	


Rigidity of the corresponding 
distance graph	


Network localizable 
Globally Rigid 

+ 
Three Anchor Nodes	


Eren et. al. , 2004	


Very nonlinear problem!  Also need distributed algorithm. 



Barycentric Coordinate	


2	


1	


3	


4	


Nodes 1,2,3 = anchor nodes 
Node 4: To be localized 

Pseudo linear representation:  
p4 = a41p1 + a42p2 + a43p3

where aij depend only on the distance measurements, with  

and

(I − C)ps = Bpa. (8)

According to eq. (7), we could obtain an iterative algorithm
to solve ps under certain conditions,

zs(t+ 1) = Czs(t) +Bpa(t) (9)

where zs ∈ Cn−3 represents the estimate of the coordinate ps

of the normal sensor nodes in G.

In [1], a sensor network to be localized is assumed to satisfy
the following two assumptions.

A1: All sensor nodes lie inside a convex hull formed by the
anchor nodes.

A2: Each sensor node l lies inside a convex hull formed by
its three neighbors.

In the 2D case, a convex hull is actually a triangle formed
by three nodes. Thus, assumption A2 leads to two constraints
of the barycentric coordinate, i.e.,

ali + alj + alk = 1, (10)

0 < ali, alj , alk < 1. (11)

In [1], Khan et. al. proved that the spectral radius of C is
less than 1 when (10) and (11) hold. Thus, the estimate of
the coordinate in (9) can converge to the true value in the
Euclidean coordinate system.

In this paper, we will relax the assumptions A1 and A2 and
address a distributed algorithm to compute the locations of
sensor nodes no matter whether they lie inside a convex hull
or not. After relaxing these two assumptions, two problems
need to be addressed. First, how to determine the signs of
the barycentric coordinate when one node lies outside the
convex hull of its neighbors. Second, when the convex hull
assumption is dropped, the matrix C in system (9) might not be
Schur. Then, how to provide a convergent iterative algorithm
to compute the coordinate.

III. SIGN PATTERN DETERMINATION FOR THE

BARYCENTRIC COORDINATE

For u, v ∈ {i, j, k, l}, we use σuv ∈ {1,−1} to indicate the
sign of auv . Suppose node l is localizable. It is known that
no matter a node l lies inside the convex hull of its three
neighbors or not, the barycentric coordinate {ali, alj , alk}
obtained from eq. (2) must satisfy ali + alj + alk = 1. Thus,
given |ali|, |alj |, |alk|, which can be calculated from (3), the
problem of determining the sign pattern of the barycentric
coordinate is equivalent to solve the following equation

σli|ali|+ σlj |alj |+ σlk|alk| = 1 (12)

where σli,σlj and σlk take values either 1 or −1.

In the following we will discuss whether (12) has a unique
solution. Moreover, if σli,σlj and σlk can not be uniquely
solved from (12), we then explore other range based conditions
to determine the sign pattern.

The first case that (12) does not have a unique solution is
that one of |ali|, |alj |, |alk| equals to zero. That is, a node l

lies on the line aligned with one of three edges of the triangle
formed by its three neighbors, according to (2). Without loss
of generality, say ali = 0. For this case, σli can be either 1
or −1. But the other two signs σlj and σlk can be determined
according to the following criterion.

{σli,σlj ,σlk} =







{σli, 1, 1} if |alj |, |alk| < 1,
{σli, 1,−1} if |alj | > 1, |alj | > |alk|,
{σli,−1, 1} if |alk| > 1, |alk| > |alj |.

(13)

If node l does not lie on the boundary lines, there are totally
7 possible sign patterns as the pattern {−1,−1,−1} is not
possible due to (12). According to (2) and the definition of the
signed areas, the seven possible sign patterns of {σli,σlj ,σlk}
are shown in Fig. 2. In the following lemma, we characterize

c

j k

i

{1, 1, 1}

{−1, 1, 1} {−1,−1, 1}

{1,−1, 1}

{1,−1,−1}

{1, 1,−1}

{−1, 1,−1}

Fig. 2. Seven possible sign patterns for {σli,σlj ,σlk}.

the second case when the sign pattern can not be uniquely
solved from (12).

Lemma 1: Given |ali| #= 0, |alj | #= 0, and |alk| #= 0,
the solution of (12) does not result in a unique sign pattern
{σli,σlj ,σlk} if and only if one of them, saying ali, satisfies
|ali| = 1, and |alj | = |alk|.

Proof: (Sufficiency) If |ali| = 1 and |alj | = |alk|, it
can be inferred from (12) that {σli,σlj ,σlk} = {1, 1,−1} or
{σli,σlj ,σlk} = {1,−1, 1}. That is, (12) does not result in a
unique sign pattern.

(Necessity) Suppose there are two sign patterns both satis-
fying (12). That is, it holds that

[

|ali| |alj | |alk|
]





v1

v2

v3



 =
[

1 1
]

(14)

where v1,v2,v3 ∈ {[1 1], [−1 1], [−1 − 1], [1 − 1]}. This
means a positive combination of v1,v2,v3 equals to [1 1] (see
Fig. 3). Consequently, there must be [1 1] for one of v1,v2,
and v3. Without loss of generality, we assume v1 = [1 1].
Next, we consider different choice of v2. If v2 equals to [1, 1]
or [−1,−1], we will have v3 equal to [−1 − 1] or [1 1]. In
this way, two solutions {σli,σlj ,σlk} are actually identical. If
v2 equals to [−1 1] or [1 − 1], v3 must equal to [1 − 1] or
[−1 1]. Then according to (12), we know that |ali| = 1 and
|alj | = |alk|.

1= ±a41 ± a42 ± a43



Resulting localization problem:	


II. PRELIMINARIES AND PROBLEM FORMULATION

A. Barycentric coordinates

The barycentric coordinate, which was firstly introduced by
August Ferdinand Möbius in 1827 [3], is a geometric notion
characterizing the relative position of one node with respect
to its several neighbor nodes. For one node, say l with its
Euclidean coordinate pl, and its three neighbor nodes, say i,
j and k with their Euclidean coordinates pi, pj and pk in the
plane, node l’s barycentric coordinate with respect to i, j and
k is {ali, alj , alk} satisfying

pl = alipi + aljpj + alkpk. (1)

Especially, when ali+alj+alk = 1, the barycentric coordinate
is called the areal coordinate because it can be expressed as
a ratio of signed areas between specified triangles. As shown
in Fig. 1, the barycentric coordinate {ali, alj , alk} is given by











ali =
S∆ljk

S∆ijk

alj =
S∆lki

S∆ijk

alk = S∆lij

S∆ijk

(2)

where S∆ljk , S∆lki, S∆lij and S∆ijk are the signed areas
of the corresponding triangles ∆ljk, ∆lki, ∆lij and ∆ijk.
These areas can be calculated with pairwise internode distance
measurements through Cayley-Menger determinant [4]. For
instance,

S2
∆ljk = −

1
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∣
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(3)

where dlj , dlk and djk are the distance measurements among
node l, j and k, respectively. The sign of S∆ljk is positive if
node l is on the left-hand side when one moves from node j
to k, and negative otherwise.

i

j k

l

dli

dlj
dlk

Fig. 1. An illustrative example for the barycentric coordinate.

To avoid the case that S∆ijk = 0, we need an assumption
on the configuration of node l’s three neighbors as below.

A0: For each node in the network, its three neighbors are not
collinear.

Note that, the computation of the coefficients in terms of
(2), i.e., ali, alj and alk, depends on the signed value of

S∆ljk, S∆lki and S∆lij . If we only know the pairwise distance
measurements, we can compute the square values of these
areas and thus the absolute values of ali, alj and alk. However,
we cannot determine the signs of these areas and thus are not
able to have the barycentric coordinate.

B. Problem formulation

The common used trilateration scheme for computing the
coordinate of node l is to solve a group of equations like







dli = ‖pl − pi‖
dlj = ‖pl − pj‖
dlk = ‖pl − pk‖.

(4)

Here, pu, u ∈ {i, j, k, l}, is the Euclidean coordinate of node
u and duv , u, v ∈ {i, j, k, l}, is the distance measurement
between node u and v. These equations can be solved in
a sequential way if each node has at least three distance
measurements to other nodes that know their coordinates. We
call those sensor nodes, who initially know their coordinates,
the anchor nodes. In contrast, we call the nodes, who do not
know their coordinates initially, the normal sensor node or
just sensor nodes for short. In this paper, a network under
consideration is assumed to contain at least three anchor nodes,
which is a necessity for uniquely localizing the network.

Instead of solving these nonlinear equations in a sequential
way, Khan et. al. provide an iterative algorithm [1], named
DILOC, to compute the coordinates of a network G based
on the barycentric coordinate presentation.

Given a network G, containing n nodes, its Euclidean
coordinates can be written in a form like

p = Ap, (5)

where p ∈ Cn is the aggregated Euclidean coordinate of G
and the nonzero inputs in the i-th row, i ∈ {1, 2, · · · , n} are
the barycentric coordinate of node i. For example, if node l
has three neighbors i, j and k, then the l-th row of A has
nonzero entries in the positions corresponding to the i-th, j-th
and k-th columns. The other entries in the l-th row are all
zeros.

If we consider the first three rows of p to represent the
positions of the three anchor nodes in G, then in terms of the
natural partition of anchor nodes and normal sensor nodes, we
can partition A and p as

A =

[

I3 0
B C

]

, p =

[

pa

ps

]

(6)

where pa and ps correspond to the aggregate positions of
anchor nodes and other normal sensor nodes, respectively.
The nonzero entries of the l-th row can be recognized as the
weights of its three neighbors. So, all diagonal inputs of C are
zeros. The matrix A is often treated as the adjacency matrix

of the network. Thus, the representation of ps can be written
as

ps = Cps +Bpa (7)
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where dlj , dlk and djk are the distance measurements among
node l, j and k, respectively. The sign of S∆ljk is positive if
node l is on the left-hand side when one moves from node j
to k, and negative otherwise.
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Fig. 1. An illustrative example for the barycentric coordinate.

To avoid the case that S∆ijk = 0, we need an assumption
on the configuration of node l’s three neighbors as below.

A0: For each node in the network, its three neighbors are not
collinear.

Note that, the computation of the coefficients in terms of
(2), i.e., ali, alj and alk, depends on the signed value of

S∆ljk, S∆lki and S∆lij . If we only know the pairwise distance
measurements, we can compute the square values of these
areas and thus the absolute values of ali, alj and alk. However,
we cannot determine the signs of these areas and thus are not
able to have the barycentric coordinate.

B. Problem formulation

The common used trilateration scheme for computing the
coordinate of node l is to solve a group of equations like




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dli = ‖pl − pi‖
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(4)

Here, pu, u ∈ {i, j, k, l}, is the Euclidean coordinate of node
u and duv , u, v ∈ {i, j, k, l}, is the distance measurement
between node u and v. These equations can be solved in
a sequential way if each node has at least three distance
measurements to other nodes that know their coordinates. We
call those sensor nodes, who initially know their coordinates,
the anchor nodes. In contrast, we call the nodes, who do not
know their coordinates initially, the normal sensor node or
just sensor nodes for short. In this paper, a network under
consideration is assumed to contain at least three anchor nodes,
which is a necessity for uniquely localizing the network.

Instead of solving these nonlinear equations in a sequential
way, Khan et. al. provide an iterative algorithm [1], named
DILOC, to compute the coordinates of a network G based
on the barycentric coordinate presentation.

Given a network G, containing n nodes, its Euclidean
coordinates can be written in a form like

p = Ap, (5)

where p ∈ Cn is the aggregated Euclidean coordinate of G
and the nonzero inputs in the i-th row, i ∈ {1, 2, · · · , n} are
the barycentric coordinate of node i. For example, if node l
has three neighbors i, j and k, then the l-th row of A has
nonzero entries in the positions corresponding to the i-th, j-th
and k-th columns. The other entries in the l-th row are all
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If we consider the first three rows of p to represent the
positions of the three anchor nodes in G, then in terms of the
natural partition of anchor nodes and normal sensor nodes, we
can partition A and p as
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where pa and ps correspond to the aggregate positions of
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where dlj , dlk and djk are the distance measurements among
node l, j and k, respectively. The sign of S∆ljk is positive if
node l is on the left-hand side when one moves from node j
to k, and negative otherwise.
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To avoid the case that S∆ijk = 0, we need an assumption
on the configuration of node l’s three neighbors as below.

A0: For each node in the network, its three neighbors are not
collinear.

Note that, the computation of the coefficients in terms of
(2), i.e., ali, alj and alk, depends on the signed value of
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areas and thus the absolute values of ali, alj and alk. However,
we cannot determine the signs of these areas and thus are not
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B. Problem formulation

The common used trilateration scheme for computing the
coordinate of node l is to solve a group of equations like
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Here, pu, u ∈ {i, j, k, l}, is the Euclidean coordinate of node
u and duv , u, v ∈ {i, j, k, l}, is the distance measurement
between node u and v. These equations can be solved in
a sequential way if each node has at least three distance
measurements to other nodes that know their coordinates. We
call those sensor nodes, who initially know their coordinates,
the anchor nodes. In contrast, we call the nodes, who do not
know their coordinates initially, the normal sensor node or
just sensor nodes for short. In this paper, a network under
consideration is assumed to contain at least three anchor nodes,
which is a necessity for uniquely localizing the network.

Instead of solving these nonlinear equations in a sequential
way, Khan et. al. provide an iterative algorithm [1], named
DILOC, to compute the coordinates of a network G based
on the barycentric coordinate presentation.

Given a network G, containing n nodes, its Euclidean
coordinates can be written in a form like

p = Ap, (5)

where p ∈ Cn is the aggregated Euclidean coordinate of G
and the nonzero inputs in the i-th row, i ∈ {1, 2, · · · , n} are
the barycentric coordinate of node i. For example, if node l
has three neighbors i, j and k, then the l-th row of A has
nonzero entries in the positions corresponding to the i-th, j-th
and k-th columns. The other entries in the l-th row are all
zeros.

If we consider the first three rows of p to represent the
positions of the three anchor nodes in G, then in terms of the
natural partition of anchor nodes and normal sensor nodes, we
can partition A and p as

A =

[

I3 0
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, p =
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where pa and ps correspond to the aggregate positions of
anchor nodes and other normal sensor nodes, respectively.
The nonzero entries of the l-th row can be recognized as the
weights of its three neighbors. So, all diagonal inputs of C are
zeros. The matrix A is often treated as the adjacency matrix

of the network. Thus, the representation of ps can be written
as

ps = Cps +Bpa (7)

The above can be rewritten as 
and

(I − C)ps = Bpa. (8)

According to eq. (7), we could obtain an iterative algorithm
to solve ps under certain conditions,

zs(t+ 1) = Czs(t) +Bpa(t) (9)

where zs ∈ Cn−3 represents the estimate of the coordinate ps

of the normal sensor nodes in G.

In [1], a sensor network to be localized is assumed to satisfy
the following two assumptions.

A1: All sensor nodes lie inside a convex hull formed by the
anchor nodes.

A2: Each sensor node l lies inside a convex hull formed by
its three neighbors.

In the 2D case, a convex hull is actually a triangle formed
by three nodes. Thus, assumption A2 leads to two constraints
of the barycentric coordinate, i.e.,

ali + alj + alk = 1, (10)

0 < ali, alj , alk < 1. (11)

In [1], Khan et. al. proved that the spectral radius of C is
less than 1 when (10) and (11) hold. Thus, the estimate of
the coordinate in (9) can converge to the true value in the
Euclidean coordinate system.

In this paper, we will relax the assumptions A1 and A2 and
address a distributed algorithm to compute the locations of
sensor nodes no matter whether they lie inside a convex hull
or not. After relaxing these two assumptions, two problems
need to be addressed. First, how to determine the signs of
the barycentric coordinate when one node lies outside the
convex hull of its neighbors. Second, when the convex hull
assumption is dropped, the matrix C in system (9) might not be
Schur. Then, how to provide a convergent iterative algorithm
to compute the coordinate.

III. SIGN PATTERN DETERMINATION FOR THE

BARYCENTRIC COORDINATE

For u, v ∈ {i, j, k, l}, we use σuv ∈ {1,−1} to indicate the
sign of auv . Suppose node l is localizable. It is known that
no matter a node l lies inside the convex hull of its three
neighbors or not, the barycentric coordinate {ali, alj , alk}
obtained from eq. (2) must satisfy ali + alj + alk = 1. Thus,
given |ali|, |alj |, |alk|, which can be calculated from (3), the
problem of determining the sign pattern of the barycentric
coordinate is equivalent to solve the following equation

σli|ali|+ σlj |alj |+ σlk|alk| = 1 (12)

where σli,σlj and σlk take values either 1 or −1.

In the following we will discuss whether (12) has a unique
solution. Moreover, if σli,σlj and σlk can not be uniquely
solved from (12), we then explore other range based conditions
to determine the sign pattern.

The first case that (12) does not have a unique solution is
that one of |ali|, |alj |, |alk| equals to zero. That is, a node l

lies on the line aligned with one of three edges of the triangle
formed by its three neighbors, according to (2). Without loss
of generality, say ali = 0. For this case, σli can be either 1
or −1. But the other two signs σlj and σlk can be determined
according to the following criterion.

{σli,σlj ,σlk} =







{σli, 1, 1} if |alj |, |alk| < 1,
{σli, 1,−1} if |alj | > 1, |alj | > |alk|,
{σli,−1, 1} if |alk| > 1, |alk| > |alj |.

(13)

If node l does not lie on the boundary lines, there are totally
7 possible sign patterns as the pattern {−1,−1,−1} is not
possible due to (12). According to (2) and the definition of the
signed areas, the seven possible sign patterns of {σli,σlj ,σlk}
are shown in Fig. 2. In the following lemma, we characterize
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{1, 1, 1}

{−1, 1, 1} {−1,−1, 1}

{1,−1, 1}

{1,−1,−1}

{1, 1,−1}

{−1, 1,−1}

Fig. 2. Seven possible sign patterns for {σli,σlj ,σlk}.

the second case when the sign pattern can not be uniquely
solved from (12).

Lemma 1: Given |ali| #= 0, |alj | #= 0, and |alk| #= 0,
the solution of (12) does not result in a unique sign pattern
{σli,σlj ,σlk} if and only if one of them, saying ali, satisfies
|ali| = 1, and |alj | = |alk|.

Proof: (Sufficiency) If |ali| = 1 and |alj | = |alk|, it
can be inferred from (12) that {σli,σlj ,σlk} = {1, 1,−1} or
{σli,σlj ,σlk} = {1,−1, 1}. That is, (12) does not result in a
unique sign pattern.

(Necessity) Suppose there are two sign patterns both satis-
fying (12). That is, it holds that

[

|ali| |alj | |alk|
]





v1

v2

v3



 =
[

1 1
]

(14)

where v1,v2,v3 ∈ {[1 1], [−1 1], [−1 − 1], [1 − 1]}. This
means a positive combination of v1,v2,v3 equals to [1 1] (see
Fig. 3). Consequently, there must be [1 1] for one of v1,v2,
and v3. Without loss of generality, we assume v1 = [1 1].
Next, we consider different choice of v2. If v2 equals to [1, 1]
or [−1,−1], we will have v3 equal to [−1 − 1] or [1 1]. In
this way, two solutions {σli,σlj ,σlk} are actually identical. If
v2 equals to [−1 1] or [1 − 1], v3 must equal to [1 − 1] or
[−1 1]. Then according to (12), we know that |ali| = 1 and
|alj | = |alk|.

Iterative solution: 

Anchor nodes 

Sensor nodes 
Depending only on distance measurements 



Challenge: How to guarantee convergence & how to implement? 

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Barycentric coordinates

The barycentric coordinate, which was firstly introduced by
August Ferdinand Möbius in 1827 [3], is a geometric notion
characterizing the relative position of one node with respect
to its several neighbor nodes. For one node, say l with its
Euclidean coordinate pl, and its three neighbor nodes, say i,
j and k with their Euclidean coordinates pi, pj and pk in the
plane, node l’s barycentric coordinate with respect to i, j and
k is {ali, alj , alk} satisfying

pl = alipi + aljpj + alkpk. (1)

Especially, when ali+alj+alk = 1, the barycentric coordinate
is called the areal coordinate because it can be expressed as
a ratio of signed areas between specified triangles. As shown
in Fig. 1, the barycentric coordinate {ali, alj , alk} is given by











ali =
S∆ljk

S∆ijk

alj =
S∆lki

S∆ijk

alk = S∆lij

S∆ijk

(2)

where S∆ljk , S∆lki, S∆lij and S∆ijk are the signed areas
of the corresponding triangles ∆ljk, ∆lki, ∆lij and ∆ijk.
These areas can be calculated with pairwise internode distance
measurements through Cayley-Menger determinant [4]. For
instance,

S2
∆ljk = −

1
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∣

∣

∣

∣
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∣
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(3)

where dlj , dlk and djk are the distance measurements among
node l, j and k, respectively. The sign of S∆ljk is positive if
node l is on the left-hand side when one moves from node j
to k, and negative otherwise.

i

j k

l

dli

dlj
dlk

Fig. 1. An illustrative example for the barycentric coordinate.

To avoid the case that S∆ijk = 0, we need an assumption
on the configuration of node l’s three neighbors as below.

A0: For each node in the network, its three neighbors are not
collinear.

Note that, the computation of the coefficients in terms of
(2), i.e., ali, alj and alk, depends on the signed value of

S∆ljk, S∆lki and S∆lij . If we only know the pairwise distance
measurements, we can compute the square values of these
areas and thus the absolute values of ali, alj and alk. However,
we cannot determine the signs of these areas and thus are not
able to have the barycentric coordinate.

B. Problem formulation

The common used trilateration scheme for computing the
coordinate of node l is to solve a group of equations like







dli = ‖pl − pi‖
dlj = ‖pl − pj‖
dlk = ‖pl − pk‖.

(4)

Here, pu, u ∈ {i, j, k, l}, is the Euclidean coordinate of node
u and duv , u, v ∈ {i, j, k, l}, is the distance measurement
between node u and v. These equations can be solved in
a sequential way if each node has at least three distance
measurements to other nodes that know their coordinates. We
call those sensor nodes, who initially know their coordinates,
the anchor nodes. In contrast, we call the nodes, who do not
know their coordinates initially, the normal sensor node or
just sensor nodes for short. In this paper, a network under
consideration is assumed to contain at least three anchor nodes,
which is a necessity for uniquely localizing the network.

Instead of solving these nonlinear equations in a sequential
way, Khan et. al. provide an iterative algorithm [1], named
DILOC, to compute the coordinates of a network G based
on the barycentric coordinate presentation.

Given a network G, containing n nodes, its Euclidean
coordinates can be written in a form like

p = Ap, (5)

where p ∈ Cn is the aggregated Euclidean coordinate of G
and the nonzero inputs in the i-th row, i ∈ {1, 2, · · · , n} are
the barycentric coordinate of node i. For example, if node l
has three neighbors i, j and k, then the l-th row of A has
nonzero entries in the positions corresponding to the i-th, j-th
and k-th columns. The other entries in the l-th row are all
zeros.

If we consider the first three rows of p to represent the
positions of the three anchor nodes in G, then in terms of the
natural partition of anchor nodes and normal sensor nodes, we
can partition A and p as

A =

[

I3 0
B C

]

, p =

[

pa

ps

]

(6)

where pa and ps correspond to the aggregate positions of
anchor nodes and other normal sensor nodes, respectively.
The nonzero entries of the l-th row can be recognized as the
weights of its three neighbors. So, all diagonal inputs of C are
zeros. The matrix A is often treated as the adjacency matrix

of the network. Thus, the representation of ps can be written
as

ps = Cps +Bpa (7)

1

1

−1

−1

Fig. 3. An illustration for the necessity proof.

Next, we present a result on how to determine the sign
pattern using the range based information when it can not be
uniquely solved from (12).

Lemma 2: Given |ali| = 1 and |alj | = |alk| "= 0, suppose
∠ijk is an acute angle1.

1) σli = −1 if and only if

djl = dik, dkl = dij , and d2il = 2d2ij + 2d2ik − d2jk.

2) If σli = −1, then {σli,σlj ,σlk} = {−1, 1, 1}.
3) If σli = 1 and d2jl < d2ij + d2il, then {σli,σlj ,σlk} =

{1, 1,−1}.
4) If σli = 1 and d2jl > d2ij + d2il, then {σli,σlj ,σlk} =

{1,−1, 1}.

Proof: 1) (Necessity) If σli = −1, then we have ali =
−1. Moreover, since |alj | = |alk|, it follows from (12) that
alj = alk = 1. Thus, S∆ljk = −S∆ijk, S∆lij = S∆ijk and
S∆lki = S∆ijk . Comparing the sign pattern with the ones
described in Fig. 2, we know that the only option of l is at the
location of l

′′′

in Fig. 4, which forms a parallelogram together
with nodes i, j and k. Hence, we can obtain directly that djl =
dik , dkl = dij . Furthermore, according to the parallelogram
law, we have

d2il = 2d2ij + 2d2ik − d2jk. (15)

(Sufficiency) If djl = dik and dkl = dij , we can draw two
circles centered at j and k with radius dik and dij , respectively.
These two circles will have two intersection points. One of the
two intersection points is l

′′′

and we denote the other by l∗.
From the necessity proof, it is known that when node l is at
the location of l

′′′

, it satisfies (15). On the other hand, we will
show that when node l is at the location of l∗, it does not
satisfy (15). (To see this, it remains to show that dil′′′ "= dil∗ .
Suppose by contradiction that dil′′′ = dil∗ . Then, recalling the
fact djl′′′ = djl∗ and dkl′′′ = dkl∗ , we have that nodes i, j
and k are on the perpendicular bisector of the line segment
l
′′′

l∗ and so they are colinear, a contradiction to assumption
A0.) Therefore, it can be concluded that due to the condition
d2il = 2d2ij +2d2ik − d2jk, node l must lie at the location of l

′′′

.
Thus, according to the sign patterns described in Fig. 2, we
can obtain that σli = −1.

1If ∠ijk is not acute, then ∠ikj must be acute and the conditions in the
lemma can be modified accordingly.

i

j k

l
′′′

l
′

l
′′

Fig. 4. An example of ∆ijk and node l.

2) If σli = −1, then {σli,σlj ,σlk} = {−1, 1, 1}, which is
shown in the necessity proof of 1).

3) If σli = 1, then we have ali = 1. For this case, S∆ljk =
S∆ijk according to (2). Therefore, node l must be on the line
that is parallel to the edge jk and crosses node i. On this line,
there are two nodes, saying node l

′

and l
′′

as shown in Fig. 4,
whose distances to node i are equal to dil.

For the triangle ∆ijl
′

, according to the cosine law, it holds
that

d2
jl

′ = d2ij + d2
il

′ − 2dijdil′ cos∠jil
′

.

Since l
′

l
′′

is parallel with jk, we have ∠jil
′

= ∠ijk. Then
we know d2

jl′
< d2ij + d2

il′
because ∠ijk is an acute angle.

Similarly, for the triangle ∆ijl
′′

, we could obtain that d2
jl

′′ >

d2ij + d2
il

′′ .

Therefore, if d2jl < d2ij + d2il, then node l must be at the
locatio of l′. Thus, according to the sign patterns described in
Fig. 2, we obtain that {σli,σlj ,σlk} = {1, 1,−1}.

4) Following the argument in 3), we know that if d2jl >

d2ij + d2il, then node l must lie at the location of l
′′

. Then
again from the sign patterns described in Fig. 2, we obtain
that {σli,σlj ,σlk} = {1,−1, 1}.

Finally, we summarize the above results to provide an
algorithm of determining the sign pattern based on the range
measurement information. The pseudo code is given in Algo-
rithm 1.

IV. DISTRIBUTED LOCALIZATION ALGORITHM

In this section, we develop a convergent iterative algorithm
for localization, that is, to solve ps from (7). Notice that for a
general barycentric coordinate, the spectral radius of C may be
larger than 1. It means that the iterative form presented in (9)
may not converge. In the sequel, we will modify it to have a
new convergent iterative algorithm to compute the coordinates
of localizable sensor nodes.

Pre-multiplying a diagonal matrix K on both sides of (7),
we can obtain

Kps = KCps +KBpa.

Algorithm 1 Determining the sign pattern of node l’s barycen-
tric coordinate.
Input: |ali|, |alj |, |alk|, dli, dlj , dlk , dij , dik , djk .
Output: {σli,σlj ,σlk}.

Solve eq. (12)
if the solution is unique then

Return σli,σlj ,σlk

else if one of |ali|, |alj |, |alk| equals to 0 then
Determine {σli,σlj ,σlk} according to (13)

else if djl = dik, dkl = dij and d2il = 2d2ij + 2d2ik − d2jk
then

{σli,σlj ,σlk} = {−1, 1, 1}
else if d2jl < d2ij + d2il then

{σli,σlj ,σlk} = {1, 1,−1}
else if d2jl > d2ij + d2il then

{σli,σlj ,σlk} = {1,−1, 1}
end if

Adding ps on both sides of the above equation and packing
the terms, we have

ps = (I −K(I − C))ps +KBpa.

Recall that pa is constant. So we could consider the following
iterative algorithm

zs(t+ 1) = (I −K(I − C))zs(t) +KBpa, (16)

where zs is the estimate of the coordinates of the normal
sensor nodes. Here, the key is to find an appropriate diagonal
matrix K so that I −K(I − C) is Schur.

The above iterative form of localization can be implemented
in a distributed way, that is,

zi(t+ 1) = zi(t)− ki

(

zi(t)− Σ
j∈Ni

aijzj(t)

)

(17)

where zi is the estimate of sensor node i’s coordinate, ki is
the ith diagonal entry of K , and aij , j ∈ Ni, is the barycentric
coordinate of node i with respect to its three neighbors.

However, finding a diagonal pre-conditioner K in a com-
pletely distributed way to make I − K(I − C) Schur is a
challenging task. Next we introduce a cluster-based approach
for the design of K , which is partially distributed and does
not require to collect all the information of the whole network.
For a sensor network G, if the anchor nodes are not far away
from each other, then suppose G can be partitioned into a
set of clusters G0, G1, . . . , Gm such that G0 is the cluster
of anchor nodes, and for any cluster Gs, s ∈ {1, · · · ,m},
the neighbors used to define the barycentric coordinate of
any node in Gs belong to G0 ∪ · · · ∪ Gs. This is the case
when the set of clusters is sequentially localizable. It is
common in practice as the neighboring topology is usually
dependent on the configuration in the Euclidean space and
limited communication ranges. How to detect such a set of
sequential clusters is of independent interest. Readers may
refer to [8] and [9].

For each cluster Gs, s = 1, . . . ,m, we propose a scheme
to design Ks (the corresponding block of K for the cluster
Gs). The idea is inspired by the work of [5] and [6] using the
continuity property of eigenvalues with respect to the values
of Ks. Denote by Ls the square block submatrix in I − C
corresponding to the cluster Gs (taking the rows and columns
of I−C indexed by the nodes in Gs). Suppose the total number
of nodes in Gs is ns. We denote Ks = diag(ks1 , ks2 , . . . , ksns

)
and denote by Lj

s, j = 1, . . . , ns, the jth principal submatrix
of Ls. The procedure of designing Ks for each cluster Gs is
summarized in Algorithm 2.

Algorithm 2 Finding the diagonal pre-conditioner Ks for
cluster Gs.

1: Input: Ls

2: Output: Ks = diag(ks1 , ks2 , . . . , ksns
)

3: for j = 1 : ns do
4: Find k′sj such that the eigenvalues of

diag{k′s1 , . . . , k
′
sj
}Lj

s lie in the open right-half-
plane.

5: end for
6: Find sufficiently small ε > 0 to make the eigenvalues of

εdiag{k′s1 , . . . , k
′
sns

}Ls inside the unit circle centered at
(1, 0).

7: return ksj = εk′sj , j = 1, . . . , ns.

Next, we discuss why Algorithm 2 can succeed in finding
the diagonal pre-conditioner Ks. According to the loop in the
algorithm, it is certain that an appropriate k′s1 can be found
first so that k′s1L

1
s is in the open right-half-plane. Thus, the

eigenvalues of
[

k′s1 0
0 0

]

L1
s

are k′s1L
1
s and 0. By the continuity property of eigenvalues,

we can then find k′s2 in the neighborhood of the origin such
that the eigenvalues of

[

k′s1 0
0 k′s2

]

L2
s

both lie in the open right-half-plane. Repeating the argument
leads to the finding of a set of k′sj , j = 1, . . . , ns, such that
the eigenvalues of diag{k′s1 , . . . , k

′
sns

}Ls all lie in the open
right-half-plane, for which, a small ε > 0 can then be chosen
to shrink the eigenvalues of εdiag{k′s1 , . . . , k

′
sns

}Ls inside the
unit disk centered at (1, 0).

To implement the algorithm of finding a diagonal pre-
conditioner for the cluster Gs, a randomly selected node in
the cluster acts as a cluster head and collects the barycentric
coordinates of nodes in the same cluster, i.e., Ls. It computes
an appropriate Ks according to Algorithm 2 and then sends
ksj to the individual nodes in the cluster. If the cluster size is
medium, the required communication cost is acceptable.

After obtaining the diagonal pre-conditioners for all clusters,
the localization algorithm (16) is fully distributed, requir-
ing only the exchange of the estimate from the neighbors.

Algorithm 1 Determining the sign pattern of node l’s barycen-
tric coordinate.
Input: |ali|, |alj |, |alk|, dli, dlj , dlk , dij , dik , djk .
Output: {σli,σlj ,σlk}.

Solve eq. (12)
if the solution is unique then

Return σli,σlj ,σlk

else if one of |ali|, |alj |, |alk| equals to 0 then
Determine {σli,σlj ,σlk} according to (13)

else if djl = dik, dkl = dij and d2il = 2d2ij + 2d2ik − d2jk
then

{σli,σlj ,σlk} = {−1, 1, 1}
else if d2jl < d2ij + d2il then

{σli,σlj ,σlk} = {1, 1,−1}
else if d2jl > d2ij + d2il then

{σli,σlj ,σlk} = {1,−1, 1}
end if

Adding ps on both sides of the above equation and packing
the terms, we have

ps = (I −K(I − C))ps +KBpa.

Recall that pa is constant. So we could consider the following
iterative algorithm

zs(t+ 1) = (I −K(I − C))zs(t) +KBpa, (16)

where zs is the estimate of the coordinates of the normal
sensor nodes. Here, the key is to find an appropriate diagonal
matrix K so that I −K(I − C) is Schur.

The above iterative form of localization can be implemented
in a distributed way, that is,

zi(t+ 1) = zi(t)− ki

(

zi(t)− Σ
j∈Ni

aijzj(t)

)

(17)

where zi is the estimate of sensor node i’s coordinate, ki is
the ith diagonal entry of K , and aij , j ∈ Ni, is the barycentric
coordinate of node i with respect to its three neighbors.

However, finding a diagonal pre-conditioner K in a com-
pletely distributed way to make I − K(I − C) Schur is a
challenging task. Next we introduce a cluster-based approach
for the design of K , which is partially distributed and does
not require to collect all the information of the whole network.
For a sensor network G, if the anchor nodes are not far away
from each other, then suppose G can be partitioned into a
set of clusters G0, G1, . . . , Gm such that G0 is the cluster
of anchor nodes, and for any cluster Gs, s ∈ {1, · · · ,m},
the neighbors used to define the barycentric coordinate of
any node in Gs belong to G0 ∪ · · · ∪ Gs. This is the case
when the set of clusters is sequentially localizable. It is
common in practice as the neighboring topology is usually
dependent on the configuration in the Euclidean space and
limited communication ranges. How to detect such a set of
sequential clusters is of independent interest. Readers may
refer to [8] and [9].

For each cluster Gs, s = 1, . . . ,m, we propose a scheme
to design Ks (the corresponding block of K for the cluster
Gs). The idea is inspired by the work of [5] and [6] using the
continuity property of eigenvalues with respect to the values
of Ks. Denote by Ls the square block submatrix in I − C
corresponding to the cluster Gs (taking the rows and columns
of I−C indexed by the nodes in Gs). Suppose the total number
of nodes in Gs is ns. We denote Ks = diag(ks1 , ks2 , . . . , ksns

)
and denote by Lj

s, j = 1, . . . , ns, the jth principal submatrix
of Ls. The procedure of designing Ks for each cluster Gs is
summarized in Algorithm 2.

Algorithm 2 Finding the diagonal pre-conditioner Ks for
cluster Gs.

1: Input: Ls

2: Output: Ks = diag(ks1 , ks2 , . . . , ksns
)

3: for j = 1 : ns do
4: Find k′sj such that the eigenvalues of

diag{k′s1 , . . . , k
′
sj
}Lj

s lie in the open right-half-
plane.

5: end for
6: Find sufficiently small ε > 0 to make the eigenvalues of

εdiag{k′s1 , . . . , k
′
sns

}Ls inside the unit circle centered at
(1, 0).

7: return ksj = εk′sj , j = 1, . . . , ns.

Next, we discuss why Algorithm 2 can succeed in finding
the diagonal pre-conditioner Ks. According to the loop in the
algorithm, it is certain that an appropriate k′s1 can be found
first so that k′s1L

1
s is in the open right-half-plane. Thus, the

eigenvalues of
[

k′s1 0
0 0

]

L1
s

are k′s1L
1
s and 0. By the continuity property of eigenvalues,

we can then find k′s2 in the neighborhood of the origin such
that the eigenvalues of

[

k′s1 0
0 k′s2

]

L2
s

both lie in the open right-half-plane. Repeating the argument
leads to the finding of a set of k′sj , j = 1, . . . , ns, such that
the eigenvalues of diag{k′s1 , . . . , k

′
sns

}Ls all lie in the open
right-half-plane, for which, a small ε > 0 can then be chosen
to shrink the eigenvalues of εdiag{k′s1 , . . . , k

′
sns

}Ls inside the
unit disk centered at (1, 0).

To implement the algorithm of finding a diagonal pre-
conditioner for the cluster Gs, a randomly selected node in
the cluster acts as a cluster head and collects the barycentric
coordinates of nodes in the same cluster, i.e., Ls. It computes
an appropriate Ks according to Algorithm 2 and then sends
ksj to the individual nodes in the cluster. If the cluster size is
medium, the required communication cost is acceptable.

After obtaining the diagonal pre-conditioners for all clusters,
the localization algorithm (16) is fully distributed, requir-
ing only the exchange of the estimate from the neighbors.

Only local information is required 

Distributed Implementation: 

Centralized and distributed methods available for computing K. 

K: diagonal stabilizer 
(pre-conditioner) 



Moreover, it can be known that the iterative algorithm (16)
is globally asymptotically convergent due to its linear form,
while most existing localization work (e.g., [7]) based the sub-
gradient method only ensures local convergence.

V. SIMULATION

In this section, a sensor network with 12 nodes is consid-
ered. As shown in Fig. 5(a), three anchor nodes are connected
by black lines and other nine sensor nodes are marked by red
stars. The blue lines with arrows represent the neighboring
topology in localization. In this example, both assumptions
A1 and A2 are not satisfied.

The 12 nodes are grouped into four clusters, i.e., G0 =
{1, 2, 3}, G1 = {4, 5, 6}, G2 = {7, 8, 9}, and G3 =
{10, 11, 12}. The barycentric coordinate of each node is
calculated according to Algorithm 1 based on the range
measurement information. The diagonal pre-conditioner Ks,
s = 1, 2, 3, is obtained utilizing Algorithm 2. The coordinate
of each node is then iteratively calculated in terms of (17) in a
distributed way. The trajectories of the estimates are shown in
Fig. 5(b), from which it is seen that the estimates asymptoti-
cally converge to the true coordinates from an arbitrary initial
guess.

The residual error defined as
||zs(t)−ps||
||zs(0)−ps||

is plotted in
Fig. 5(c) with respect to the iteration steps. Though the
localization algorithm is executed in parallel, the convergence
process takes three stages, as being observed in Fig. 5(c), be-
cause the localization of a cluster depends on the localization
of the cluster closer to the anchor nodes.

VI. CONCLUSION

In this paper, we develop a distributed algorithm to com-
pute the locations of sensor nodes based on the barycentric
coordinates. Two critical problems are solved, leading to the
success of globally convergent localization. First, for a general
configuration that does not require every node to be inside
a convex hull of its neighbors, a range information based
algorithm is proposed to determine the signs of the barycentric
coordinates and therefore the barycentric coordinates. Second,
a distributed iterative algorithm is obtained with the global
convergence ensured diagonal pre-conditioner designed based
on a partially distributed cluster scheme. Future work includes
analysis of localizability and convergence rate of the proposed
approach, and localization performance in the presence of
measurement noises.
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Simulation 

Sensor network with 12 nodes 

Moreover, it can be known that the iterative algorithm (16)
is globally asymptotically convergent due to its linear form,
while most existing localization work (e.g., [7]) based the sub-
gradient method only ensures local convergence.

V. SIMULATION

In this section, a sensor network with 12 nodes is consid-
ered. As shown in Fig. 5(a), three anchor nodes are connected
by black lines and other nine sensor nodes are marked by red
stars. The blue lines with arrows represent the neighboring
topology in localization. In this example, both assumptions
A1 and A2 are not satisfied.

The 12 nodes are grouped into four clusters, i.e., G0 =
{1, 2, 3}, G1 = {4, 5, 6}, G2 = {7, 8, 9}, and G3 =
{10, 11, 12}. The barycentric coordinate of each node is
calculated according to Algorithm 1 based on the range
measurement information. The diagonal pre-conditioner Ks,
s = 1, 2, 3, is obtained utilizing Algorithm 2. The coordinate
of each node is then iteratively calculated in terms of (17) in a
distributed way. The trajectories of the estimates are shown in
Fig. 5(b), from which it is seen that the estimates asymptoti-
cally converge to the true coordinates from an arbitrary initial
guess.

The residual error defined as
||zs(t)−ps||
||zs(0)−ps||

is plotted in
Fig. 5(c) with respect to the iteration steps. Though the
localization algorithm is executed in parallel, the convergence
process takes three stages, as being observed in Fig. 5(c), be-
cause the localization of a cluster depends on the localization
of the cluster closer to the anchor nodes.

VI. CONCLUSION

In this paper, we develop a distributed algorithm to com-
pute the locations of sensor nodes based on the barycentric
coordinates. Two critical problems are solved, leading to the
success of globally convergent localization. First, for a general
configuration that does not require every node to be inside
a convex hull of its neighbors, a range information based
algorithm is proposed to determine the signs of the barycentric
coordinates and therefore the barycentric coordinates. Second,
a distributed iterative algorithm is obtained with the global
convergence ensured diagonal pre-conditioner designed based
on a partially distributed cluster scheme. Future work includes
analysis of localizability and convergence rate of the proposed
approach, and localization performance in the presence of
measurement noises.
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Distributed Average Consensus  
with Quantized Information 

•  Formation control 
•  Distributed estimation  
•  Multi-sensor data fusion 
•  Distributed computing Distributed average  

consensus control  
Distributed average  
consensus control  
Distributed average  
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Distributed average  
consensus control  
Distributed average  
consensus control  
Distributed average  
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Distributed average  
consensus control  
Distributed average  
consensus control  

Clock 
Synchronization 

T. Li, M. Fu, L. Xie, J. Zhang, 
ASCC 2009, IEEE-TAC 2010. 



Distributed consensus: to achieve agreement by distributed 
information exchange  

1

1( ) (0),     
N

i j
j

x t x t
N =

→ →∞∑ average 
consensus 
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With limited data rate between neighbors！ 

xi (t +1) = xi (t)+ hui (t),  
t = 0,1,...,  i =1,2...,N

{ , , }=G V E A

n nodes 



Motivations 
Ø  Pioneering work: Olfati-Saber & Murray (2004), Ren &Beard 

(2005), Xiao & Boyd (2004), … 

Ø But requiring exact information exchange.  

Ø Quantized information exchange: Kashyap et al. (2007), Carli        
et al. (2007,2008), Kar & Moura (2007),…  

Ø But requiring infinite-level quantization or having non-zero 
steady-state error. 

  



Our objectives: 

Achieve exact average consensus with exponential  
convergence rate using finite data rate. 

Minimize the number of bits transmitted. 

Energy to 
transmit 1 bit 

 
Energy for 
1000-3000 
operations 

 

≈ Shnayder et al. 
        2004 



Technical Problems: 
 
1.  How many bits does each pair of neighbors 

need to exchange at each time step to 
achieve consensus of the whole network ? 

2.  What is the relationship between the 
consensus convergence rate and the 

number of quantization levels ? 

 



 

Node j encoding transmission decoding Node i 

States are real-valued，but only 
finite bits of information are 

transmitted at each time-step 

x̂ ji (t)
x j (t)

estimate of  
xj(t) by node i 

Distributed protocol  



Encoder at Node j: 

Z-1	

)1(

1
−tg  Q	


)1( −tg

)(tx j

)(tjξ

)1( −tjξ )(tjΔ

scaling 
function 

−

+

channel 
(j,i) 

Quantized  
signal 

+

quantizer 



Decoder at Node i: 

)1( −tg

Z-1	


)(tjΔ )(ˆ tx ji+

Encoder 

φj
	


channel 
(j,i)	


Decoder 

ψji
	


)(tjΔ )(tjΔ )(ˆ tx ji)(tx j

channel 
(j,i) 

Combined Scheme: 



For a connected network, average-consensus can be  
achieved with exponential convergence rate base on  
a single-bit exchange between each pair of neighbors 
at each time step. 
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The highest asymptotic convergence rate increases as  
the number of quantization levels and the  
synchronizability increase, and decreases as the  
network expands. 



{( , ) } 0.2P i j ∈ =E

(0) ,  1,2,...,30ix i i= =

A network with 30 nodes 
1 bit quantizer  

Simulation Example: 
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Generalizations to continuous-time systems  
and sampled-data systems 

S. Liu, T. Li, L. Xie, M. Fu, J. Zhang, to appear in Automatica. 

Sampled –data implementation: 

Distributed control law: 

Quantizer at each node (logarithmic): 

Dynamics at each node: Example: 



Wind Power Regulation using Air Conditioner Network	


•  Total power supply = baseline power + fluctuating wind power; 
•  m wind power generators supplying n variable-freq. air conditioners (VFAC) 
•  Goal: Adjust the VFAC’s load to balance the wind power fluctuation while 

          keeping the room temperatures within a prescribed threshold.  

 
 
	


by H. Xing, Y. T. Mu,  
M. Fu 



Problem Statement	

Thermal Model for VFAC:  

T (t +1) = aT (t)+ (1− a)(Ta −ηRP(t))+w(t)
time constant ambient temp noise temperature input power 

Steady State Model:  
T SS = Ta −ηRP

SS

Power consumption by the i-th VFAC (control variables):  
Pi = Pi1 +Pi2 ++Pim

Control Objective for VFACs:  

T1
SS −T1

SP

ΔT1
=
T2
SS −T2

SP

ΔT2
= ... = Tn

SS −Tn
SP

ΔTn

Gj = P1 j +P2 j ++Pnj,   j =1, 2,...,m
Power consumption constraint for the j-th wind power plant:  

comfort zone 

  set point 

forecast power by generator j 



Power Dispatch using Consensus Algorithm	

Proposed Consensus Control Algorithm:  

Pij (k +1) = Pij (k)−Wii
j Pi (k)−Pi

SP

ΔPi
− Wil

j Pl (k)−Pl
SP

ΔPll∈Ni

∑

P1 j (0)+P2 j (0)++Pnj (0) =Gj

for all i and j  

We can select the weighting parameters (in a distributed fashion) to  
guarantee the convergence of the algorithm, which in turn guarantees 

T1(∞)−T1
SP

ΔT1
=
T2 (∞)−T2

SP

ΔT2
= ... = Tn (∞)−Tn

SP

ΔTn
P1 j (k)+P2 j (k)++Pnj (k) =Gj, for all  j  and k



Simulation Results	

•  10 VFACs，3 wind power plants. 
•  Temperature model sampling time: 1min 
•  Wind forecast interval: 1hour	


Te
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n 
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) 

Window power forecast AC temperature 

10 VFACs 



Distributed Circumnavigation by Unicycles 

Applications: 
•  Security and surveillance 
•  Satellite orbit maintenance 
•  Source seeking … 

R. Zheng, Z. Lin, M. Fu and D. Sun, ASCC 2013 
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Unicycle-like vehicles are considered : 
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Measurements: Each robot i measures the relative positions of the  
target and another agent i + 1 modulo N. 

Distributed Control: 

Each robot i measures the relative positions of the target

and another agent i + 1 modulo N

Robot i

Robot i + 1

T
u
(i)
T u

(i)
+

u
(i)
T = R(θi)

[

xT − xi
yT − yi

]

u
(i)
+ = R(θi)

[

xi+1 − xi
yi+1 − yi

]

R(θi) =

[

cos θi sin θi
− sin θi cos θi

]

N + 1 modulo N = 1
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A distributed control strategy is proposed

i

i + 1
T

au
(i)
T

(1− a)u(i)+

Control law:

[

vi
ωi

]

=

[

kv 0
0 kω

]
[

(1− a)u(i)+ + au
(i)
T

]

kv , kω : control gains (> 0)

a: control parameter
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A distributed control strategy is proposed

i

i + 1
T

au
(i)
T

(1− a)u(i)+

Control law:

[

vi
ωi

]

=

[

kv 0
0 kω

] [

(1− a)u(i)+
︸ ︷︷ ︸

repulsion

+ au
(i)
T

︸︷︷︸

attraction

]

(a > 1)

kv , kω : control gains (> 0)

a: control parameter

7 / 22
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Simulation Examples 
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Simulation Examples 



67 

Concluding Remarks  

•  Great opportunities for new control theory and applications 
•  Many exciting and challenging research problems 
•  Urgency about real, relevant and applicable research 
•  Multidisciplinary research: 

•  Communication network design 
•  Network-based control paradigms and algorithms 
•  Distributed sensing, sensor fusion and estimation 
•  What to learn from other disciplines? 

•  Network coding? 
•  Belief Propagation? 
•  Sparse optimization? …  


