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Abstract: Plug-in hybrid electric vehicles (PHEV) tend to become more widespread in the next decades. However, large
penetration of PHEVs will overload the distribution system. In smart grid, the charging of PHEVs can be controlled to reduce
the peak load, which is known as demand side management (DSM). In this paper, we focus on the impact of PHEV charging
on low-voltage transformers. The objective is to flatten the load curve of low-voltage transformers, while each consumer’s
requirement for their PHEV to be charged to the required level by their specified time is satisfied. We first formulate it as a
convex optimization problem and then propose a distributed water-filling-based algorithm to solve it. Proofs of optimality and
numerical simulations are given to demonstrate the effectiveness of our algorithm.
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1 Introduction

Road traffic is known as one of the main causes of green-
house gas emission. Together with the rising fuel price and
high energy efficiency, electric vehicles tend to become more
widespread in the next decades. To satisfy the need of long
distance travel, plug-in hybrid electric vehicles (PHEVs) are
more desirable. A PHEV has both an electric and a com-
bustion engine, so short drives can use the onboard battery
while fuel is used for long drives. A PHEV is charged when
it is plugged into the charger located at home or a public
charging station. However, this may pose challenge to the
electric grid’s distribution system [1]. Large penetration of
PHEVs will add to the current peak load or create new peak
load. It can cause serious voltage deviation and overloading
of transformers. Excessive voltage deviation can cause dam-
age to electrical appliances while persistent overloading can
overheat transformers, which may result in a blackout.

Fortunately, with the development of smart grid, advanced
metering and communication systems enable us to develop
better algorithms to deal with these problems. So the timing
and rate of PHEV charging can be controlled to reduce the
peak load, which is called demand side management (DSM).
DSM refers to programs that attempt to influence customer
consumption patterns of electricity to match current or pro-
jected capabilities of the power supply system [2]. DSM is
surely an critical part of smart grid, as it makes the grid more
economical, reliable and eco-friendly.

There have been a number of studies on DSM of PHEVs.
Reference [3] presents a hierarchical control algorithm to re-
alize the synergy between PHEV charging and wind pow-
er. The three-level controller proposed in this paper uti-
lizes PHEV charging to compensate wind power fluctua-
tion and thus indirectly regulate the grid frequency. Ref-
erences [4] and [5] both deal with the valley-filling prob-
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lem by controlling the charging of a large population of
PHEVs. In [4], a decentralized algorithm is developed based
on Nash equilibrium, which proves optimality in the homo-
geneous case where all PHEVs have the same exit time, en-
ergy need and maximum charging power. In [5], a control
signal from the utility company is altered to guide the up-
dates of PHEVs’ charging profiles. This algorithm converges
to optimal charging profiles in both homogeneous and non-
homogeneous cases. References [6] and [7] are more rele-
vant to this paper since they both tackle the problem of distri-
bution transformer overheating. In [6], peak load shedding is
utilized to do load shaping, with consideration of consumer-
s’ preferences and load priorities. A multi-agent system so-
lution (MAS) is adopted in [7], which features high adapt-
ability and scalability. Reference [8] gives a comprehensive
review on PHEV charging problems.

In this paper, we focus on the impact of PHEV charging
on low-voltage transformers. The objective is to flatten the
load curve of every low-voltage transformer, while each con-
sumer’s requirement for their PHEV to be charged to the
required level by their specified time is satisfied. Inspired
by the water filling principle in information theory, we first
formulate it as a convex optimization problem and then pro-
pose a distributed water-filling-based algorithm to solve it.
In the algorithm, a low-voltage transformer is only responsi-
ble for communication and requiring very little computation
while the PHEVs connected to it share the computation in
a distributed fashion. Proofs of optimality and numerical
simulations are given to demonstrate the effectiveness of our
algorithm.

The rest of the paper is organized as follows. In Sec-
tion 2, the model of PHEV charging is introduced and the
problem formulation is presented. In Section 3, we give a
water-filling algorithm and its modified version to address
this problem. In Section 4, numerical simulations are given
to illustrate the algorithm. Concluding remarks are given in
Section 5.



2 Preliminaries and Problem Formulation

In this section, we first give the dynamic model of
PHEV charging and then introduce the charging methods of
Lithium-ion batteries briefly. Finally, the DSM problem for
PHEV charging at low-voltage transformers is formulated as
an optimization problem.

2.1 Dynamic Model of PHEV Charging
Nowadays, almost all PHEVs use Lithium-ion batteries

because of its advantages, e.g., high energy density, good
load characteristics and low maintenance.

The state of charge (SOC) is the equivalent of a fuel gauge
for the battery in a PHEV and is defined as:

SOC =
CR

C
× 100% (1)

with C representing the battery energy capacity (kWh) and
CR is the remaining battery energy capacity (kWh).

Suppose there are n households, each having a PHEV.
Suppose we start at time 0 and the sampling period is set
to be ∆T . For the i-th PHEV, the initial SOC, target SOC,
exit time, battery capacity, charging efficiency coefficien-
t and maximum charging power are denoted by xi(0), x

⋆
i ,

Ti = Ki∆T , Ci, ηi(∈ (0, 1)) and pi,max(≥ 0), respective-
ly. For households without active PHEVs, their capacities
and maximum charging powers will be set to zero. The dy-
namic model for the i-th charging PHEV is given by

xi(k + 1) = xi(k) +
ηi∆T

Ci
pi(k) (2)

where xi(k) and pi(k) are the SOC and charging power,
respectively, at time k. The charging power is assumed to
be kept constant in each sampling interval.

Denoting

ai =

{
ηi∆T/Ci Ci > 0

0 Ci = 0

equation (2) can be rewritten as

xi(k + 1) = xi(k) + aipi(k) (3)

which is valid for all PHEVs, whether charging or not. The
constraint on pi(k) is given by

0 ≤ pi(k) ≤ pi,max(k) (4)

with

pi,max(k) =

{
pi,max k < Ki and Ci > 0

0 otherwise

2.2 Charging Method
Traditionally, constant current constant voltage (CC-CV)

charging method is used to charge PHEVs, shown in Fig. 1.
First, the PHEV is charged with a constant current and when
the battery voltage limit is reached, Stage 2 begins. In terms
of SOC, the best functional range of Lithium-ion batteries
is from 20% to 85%. Actually, when Stage 1 terminates,

Fig. 1: CC-CV charging process of Lithium-ion batteries

SOC can reach 85%. Thus, it is recommended to ignore
Stage 2 [9]. In this paper, PHEVs are charged with variable
power. Regarding the effects of variable charging current on
Lithium-ion battery, [10] has given a detailed description in
terms of capacity fade and efficiency, from which, we can
conclude that Lithium-ion batteries can be charged with dy-
namic power without adversary effects. Therefore, PHEVs
are assumed be charged by a smart charger, which could de-
termine the charging current of PHEV based on the power
allocated and terminal voltage.

2.3 Problem Formulation
Consider a distribution grid as in Fig. 2 where the distribu-

tion grid is a hierarchical structure involving a high-voltage
transformer (HVT) connecting to a set of low-voltage trans-
formers (LVT) each of which in turn connecting to a num-
ber of households with PHEV chargers [7]. The objective
is to apply DSM on all PHEV chargers to maximally flat-
ten the power demand curve at the LVT connected to the
PHEVs, while satisfying each consumer’s requirement for
their PHEV to be charged to the required level by their spec-
ified time. As the HVT and LVT can not get the flattest
demand curve at the same time and LVTs tend to get over-
loaded sooner than HVTs [7], we only consider LVTs in this
paper.

Consider the given time horizon from k = 0 to N − 1,
where N ≥ Ki, i = 0, 1, . . . , n. It is assumed that
the forecast non-PHEV power consumption qi(k), k =
0, 1, . . . , N − 1, for each household i is known to the house-
hold i. The objective of DSM can be formulated as follows:

min f(p, η) =
∑N−1

k=0 (
∑n

i=1(pi(k) + qi(k))− η)
2

subject to

{
xi(Ki) = x⋆

i

0 ≤ pi(k) ≤ pi,max(k)

(5)
The variables are pi(k) and η. The physical meaning of η is
that this is the “ideal” flat power curve. Indeed, f(p, η) =
0 if and only if the aggregate power curve

∑n
i=1(pi(k) +

qi(k)) is flat over k. The solution for η is easily given by
differentiating f(p, η) with respect to η and setting the result
to zero, which gives



Fig. 2: Schematic description of the structure of a distribu-
tion grid [7]

N−1∑
k=0

(
n∑

i=1

(pi(k) + qi(k))− η

)
= 0 (6)

which yields

η =
1

N

(
n∑

i=1

bi +
N−1∑
k=0

n∑
i=1

qi(k)

)
(7)

where bi = (x⋆
i − xi(0))/ai. The physical meaning of bi is

the energy need of the i-th PHEV (normalized by ∆T ).

3 Main Results

In this section, we first give a water filling algorithm for a
single PHEV and then develop it into a multiple-PHEV one.
A modified version of the second algorithm is also presented.

3.1 Water Filling for a Single PHEV
We drop the subscript because there is only one PHEV.

Without loss of generality, we assume the required exit time
K = N . Using the Lagrangian multiplier [11], the La-
grangian is given by

K−1∑
k=0

(p(k) + q(k)− η)2 + 2λ(

K−1∑
k=0

p(k)− b) (8)

where b = (x⋆ − x(0))/a. The factor of 2 above is for
convenience. Differentiating the Lagrangian with respect to
p(k) and setting the result to zero yields

p(k) + q(k)− η + λ = 0 (9)

Denoting α = η − λ (which is independent of k), equation
(9) can be rewritten as

p(k) + q(k) = α (10)

The above is the optimality condition without considering
the constraints 0 ≤ p(k) ≤ pmax. When these constraints
are considered, the optimality condition becomes:

There exists a constant α (called equip-power level) such
that for any 0 ≤ k < K, either (10) holds or

p(k) = 0 and p(k) + q(k) > α (11)

or
p(k) = pmax and p(k) + q(k) < α (12)

Remark 1 The optimal solution above can be simply in-
terpreted as the following water filling principle: Initialize
α = mink qk. Then, gradually raise α. Each time α is raised
a bit, compute the p(k) = α− q(k) and project it to the fea-
sible region [0, pmax(k)], then compute

∑
k p(k). Gradually

raise α until the sum equals b.

It is easy to see that the optimal value of α can be found
using a bi-section method. See algorithm 1.

Algorithm 1 Water filling for a single PHEV
Input: pmax, b and q(k), k = 0, 1, . . . , N − 1
Output: α and p(k), k = 0, 1, . . . , N − 1

1: Initialize αmin = mink q(k) and αmax = maxk q(k) + pmax

2: while αmax − αmin > ε do
3: Choose α = (αmin + αmax)/2
4: Compute p(k) = P[α− q(k)]
5: if

∑N−1
k=0 p(k) > b then

6: set αmax = α
7: else if

∑N−1
k=0 p(k) < b then

8: set αmin = α
9: end if

10: end while

In the above algorithm, ε is a very small number and P[·] is
the projection operation, i.e.,

P[x(k)] =


pmax(k) x(k) > pmax(k)

x(k) 0 ≤ x(k) ≤ pmax(k)

0 x < 0

3.2 Water Filling for Multiple PHEVs
For the case of multiple PHEVs, the optimal solution is

not unique. This is because two PHEVs can “trade” their
charging times without affecting the total power consump-
tion. In the following, we give an optimal solution. Without
loss of generality, we assume that K1 ≤ K2 ≤ . . . Kn ≤
N . The main idea is that we do water filling to all the PHEVs
one by one from 1 to n until all PHEVs are done.

Algorithm 2 Water filling for Multiple PHEVs
Input: pi,max, bi and qi(k), k = 0, 1, . . . , N − 1, i = 1, 2, . . . , n
Output: pi(k), k = 0, 1, . . . , N − 1, i = 1, 2, . . . , n

1: Every PHEV reports non-PHEV power demand qi(k) to LV,
k = 0, 1, . . . , N − 1, i = 1, 2, . . . , n

2: LV computes the aggregate demand q(k) =
∑n

i=1 qi(k)
3: for i = 1, 2, . . . , n do
4: PHEVi gets q(k) from LV
5: PHEVi uses water filling to compute pi(k) (Algorithm 1)
6: PHEVi reports pi(k) to LV
7: LV computes q(k) ⇐ q(k) + pi(k)
8: end for

Theorem 1 The solution given by Algorithm 2 is an optimal
solution.

To prove Theorem 1, we first examine some properties of
the water filling principle and then give some preliminary
results.



Denote the set {0, 1, . . . , N − 1} by N and decompose it
into three disjoint subsets: N1 = {k ∈ N : p(k) = pmax},
N2 = {k ∈ N : 0 < p(k) < pmax}; N3 = {k ∈ N :
p(k) = 0}. Then the following properties of the water filling
solution p(k) hold:

Property 1 For any k1 ∈ N1, k2 ∈ N2, k3 ∈ N3 (if the
subsets are not empty), q(k1) ≤ q(k2) ≤ q(k3) and q(k1) +
p(k1) ≤ q(k2) + p(k2) ≤ q(k3) + p(k3).

Property 2 p(k) + q(k) are at equal level for all k ∈ N2, if
this subset has multiple elements.

Property 3 If q(k) = q(k̃) for some k ̸= k̃, then q(k) +
p(k) = q(k̃) + p(k̃).

Lemma 1 Consider the case n = 2 and K1 = K2 = N .
Then, the solution of pi(k), i = 1, 2, 1 ≤ k < N , given by
Algorithm 2 is optimal.

Proof 1 Without loss of generality, we assume that q(k) is
monotonically non-decreasing, i.e., q(0) ≤ q(1) ≤ . . . ≤
q(N − 1). If this were not the case, we could sort q(k) and
relabel the time indices to make q(k) monotonically non-
decreasing. It is clear that the constraints for pi(k) remain
the same after the sorting and relabeling.

Denote pi = [pi(0) pi(1) . . . pi(N−1)]′ and p = [p1 p2].
We proceed by contradiction. Let p⋆ be the solution given
by Algorithm 2 and suppose this is not an optimal solution.
Note that the constrained optimization problem for f(p, η)
is convex, thus any stationary point of f(p, η) is an optimal
solution. Since p⋆2 is optimised using the water filling princi-
ple for the given p⋆1, p⋆ not being optimal means that we can
perturb p⋆1 without violating its constraints to further reduce
f(p, η). We show below that this is not possible.

Equivalently, this is to say that p⋆1 remains optimal when
q is replaced with q+ p⋆2. Indeed, using the properties of the
water filling solution, we know that q(k)+p⋆1(k) and q(k)+
p⋆1(k) + p⋆2(k) are also monotonically non-decreasing. Use
our notation of N1,N2 and N3 before. It is clear that k1 <
k2 < k3 for k1 ∈ N1, k2 ∈ N3, k3 ∈ N3 (if the subsets are
non-empty). Suppose we try to perturb p1(k2) for some k2 ∈
N2, then the water filling principle (Property 2) dictates that
p1(k) must change by the same amount for all k ∈ N2. If the
change is positive, p1(k1) must decrease for some k1 ∈ N1

and thus q(k1)+p1(k1)+p⋆2(k1) will decrease; If the change
is negative, p1(k3) must increase for some k3 ∈ N3 and thus
q(k3)+ p1(k3)+ p⋆2(k3) will increase. Either way, this goes
against the water filling principle and the resulting value of
f(p, η) will increase. This is a contradiction, which implies
that p⋆1 is indeed optimal for q + p⋆2. Q.E.D.

Then we give the proof of Theorem 1 on the basis of Lem-
ma 1.

Proof 2 We now consider the general case of any n ≥ 2.
Recall that K1 ≤ K2 ≤ . . . ≤ Kn ≤ N . Similar to the
proof of Lemma 1, we proceed by contradiction. Let p⋆ =
[p⋆1 p⋆2 . . . p⋆n] be obtained by Algorithm 2 and suppose that
this is not optimal. This implies that [p⋆1 p

⋆
2 . . . p

⋆
n−1] can be

perturbed to reduce f(p, α) further. Since the constraints for
each pi are independent, the above further implies that there
exists some i < n such that p⋆i can be perturbed to reduce
f(p, α). It is clear that the choice of pi does not affect those

p(k) with k ≥ Ki. Therefore, it suffices to consider the
following optimization problem:

min
pi,η

Ki−1∑
k=0

(Q(k) + pi(k) + P2(k)− η)2

subject to the given constraints on pi, where Q(k) = q(k)+∑i−1
j=1 p

⋆
j (k), P2(k) =

∑n
j=i+1 p

⋆
j (k). Following the same

argument as in the proof of Lemma 1, we conclude that the
optimal pi for solving the above is still p⋆i . This contradicts
the earlier assumption that p⋆ is not optimal for minimizing
f(p, η). Hence, p⋆ must be an optimal solution. Q.E.D.

Corollary 1 It is inferred from the Proof of Theorem 1 that
if K1 = K2 . . . = Kn = N , the result is optimal no matter
in which order we do water filling.

3.3 Modified Water Filling for Multiple PHEVs
The solution given by Algorithm 2 tends to meet the de-

mand of PHEVi earlier than that of PHEVj for any i < j.
This can create a problem if the future supply and demand
forecasts become inaccurate or the exit times get altered. It
would be more desirable to have a somewhat balanced dis-
patch of power to all PHEVs. This can be achieved by the
following modified version of Algorithm 2. To describe the
modified algorithm more clearly, we give the definition of
Circular Order.

Definition 1 Given n numbers, x1 ≤ x2 ≤ . . . xn, then
Circular Order includes n different orders and the i-th one
is xi, xi+1, . . . xn, x1 . . . xi−1

Here we still assume that K1 ≤ K2 ≤ . . . Kn ≤ N . The
idea is to do power allocation in Circular Order and allocate
power according to the average. More specifically, firstly, do
water filling as in Algorithm 2 in the first Circular Order and
get the intermediate energy need at K1,K2, . . . ,Kn−1; then
do water filling in other orders in the interval from 0 to K1,
K1 to K2,. . . Kn−1 to Kn. See Algorithm 3 for details.

Algorithm 3 Modified water filling for multiple PHEVs
Input: pi,max, bi , qi(k), k = 0, 1, . . . , N − 1 and Ki, i =

1, 2, . . . , n , K0 = 0
Output: p̄i(k), k = 0, 1, . . . , N − 1

1: Do water filling as in Algorithm 2 in the first Circular Order
2: Every PHEVi gets its intermediate energy need at time

K1,K2, . . .Ki−1

3: for i = 1, 2, . . . , n− 1 do
4: Do water filling as in Algorithm 2 all Circular Orders during

the interval from Ki−1 to Ki

5: Compute p̄i(k), k = Ki−1, . . . ,Ki

6: end for
7: Get p̄i(k), k = 0, 1, . . . , N − 1

Theorem 2 The solution given by Algorithm 3 is an optimal
solution.

To prove Theorem 2, we first give the following lemma.

Lemma 2 Consider the case K1 = K2 . . . = Kn = N , do
water filling according to Algorithm 2 n times in Circular
Order. The average of the n optimal results is still optimal.



Proof 3 Optimal solution to the i-th PHEV in the j-th Circu-
lar Order is denoted by p⋆i,j = [p⋆i,j(0) p

⋆
i,j(1) . . . p⋆i,j(Ki−

1)]′ and the average 1/n
∑n

j=1 p
⋆
i,j is denoted by p̄i

⋆ =
[p̄i

⋆(0) p̄i
⋆(1) . . . p̄i

⋆(Ki)]
′. First, we prove p̄i

⋆ still satisfy
the two constraints.

p⋆i,j(k) ≤ pi,max(k) ⇒

p̄i
⋆(k) =

1

n

n∑
j=1

p⋆i,j(k) ≤
1

n

n∑
j=1

pi,max(k) = pi,max(k)

Similarly, p̄i(k) ≥ 0. So 0 ≤ pi(k) ≤ pi,max(k) is satisfied.

N−1∑
k=0

p⋆i,j(k) = bi ⇒

N−1∑
k=0

p̄i
⋆(k) =

N−1∑
k=0

1

n

n∑
j=1

p⋆i,j(k) =
1

n

n∑
j=1

N−1∑
k=0

p⋆i,j(k) = bi

Thus the equality constraint is also satisfied. We proceed
with the proof of optimality. Recall the objective function in
(5), p⋆i,j(k) being optimal means

n∑
i=1

(p⋆i,j(k) + qi(k))− η = M⋆(k), j = 1, 2, . . . , n

So ∑n
i=1(p̄i

⋆(k) + qi(k))− η
=

∑n
i=1(

1
n

∑n
j=1 p

⋆
i,j(k) + qi(k))− η

=
∑n

i=1
1
n

∑n
j=1 p

⋆
i,j(k) +

1
n

∑n
j=1

∑n
i=1 qi(k)

− 1
n

∑n
j=1 η

= 1
n

∑n
j=1(

∑n
i=1 p

⋆
i,j(k) +

∑n
i=1 qi(k)− η)

= 1
n

∑n
j=1[

∑n
i=1(p

⋆
i,j(k) + qi(k))− η]

= 1
n

∑n
j=1 M

⋆(k) = M⋆(k)

As a result, p̄i⋆ is also optimal. Q.E.D.

Then we give the proof of Theorem 2 on the basis of Lem-
ma 2.

Proof 4 We consider the general case where K1 ≤ K2 ≤
. . . ≤ Kn ≤ N . After doing water filling as in Algorithm
2 in the first Circular Order every PHEVi gets its intermedi-
ate energy needs at times K1,K2, . . .Ki−1. Then, for every
time interval Ki to Ki+1, following the same argument as in
the proof of Lemma 2, p̄i is optimal. Q.E.D.

4 Numerical Simulations

In this section, we first give a numerical simulation to il-
lustrate Algorithm 2 and Algorithm 3. Then, realistic power
consumption data are used to demonstrate the effectiveness
of Algorithm 3 in flattening low-voltage transformer load
curve.

4.1 Illustration of Algorithm 2 and Algorithm 3
We consider 5 households here and the simulation param-

eters are given in Table 1. The aggregate non-PHEV power
is given by

q(k) =

{
25 k = 1, 2 . . . 10

q(k) = 23
400 (k − 31)2 + 2 k = 11, 12 . . . 50

Table 1: Parameters of the five households
NO. Max Power Energy Need Exit Time non-PHEV

1 4 20 38 0.2q(k)

2 3.5 15 50 0.3q(k)

3 3.9 20 50 0.1q(k)

4 4.6 25 50 0.25q(k)

5 4 20 50 0.15q(k)

Both Algorithm 2 and Algorithm 3 can minimize the ob-
jective function and flatten the aggregate power curve; see
Fig. 3.
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Fig. 3: Power curve from Algorithm 2 and Algorithm 3

However, the power allocated to each PHEV is completely
different for different algorithms. As we have mentioned
before, the solution given by Algorithm 2 tends to meet the
demand of PHEVi earlier than that of PHEVj for any i < j.
We can see from Fig. 4 and Fig. 5 that Algorithm 3 gives
more balanced charging curves than given by Algorithm 2.
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Fig. 4: Power allocation by Algorithm 2
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Fig. 5: Power allocation by Algorithm 3

4.2 Simulation Using Realistic Data
The realistic household non-PHEV demand curve has

similar pattern to the curve in [6] as described in Fig. 6-a.



Fig. 6-b is regarded as the predicted household non-PHEV
demand curve and we emulate it by processing the data in
Fig. 6-a with a low-pass filter. Parameters of the five PHEVs
are shown in Table 2. These data are from [6, 12, 13].

Table 2: Parameters of the five PHEVs
Model Battery Size Energy Need Max Power

GM-Chevy Volt 16 8 3.84
Nissan-Leaf 24 12 6.6

Tesla-MODEL S 60 30 10
Volvo-C30 24 12 3.52

BMW-Mini E 35 17 11.52

In the simulation, suppose PHEVs are not at home from
7:30 to 17:30 (450-1050 minutes), so they are not allowed
to be charged during this interval. Fig. 6-c describes the
power allocated to this PHEV using Algorithm 3 and Fig.
6-d shows the total power curve of this household. It can be
seen that no new peak load is created.
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Fig. 6: Power curve of a household

Fig. 7 shows the total power demand curve with and with-
out DSM. Without DSM, every PHEV starts charing with
maximum power as soon as it arrives home. Obviously, a
new peak load is created and it can be devastating to the low-
voltage transformer. DSM helps to shift the charing timing
of PHEVs to when non-PHEV power demand is relatively
small.
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Fig. 7: Power curve of low voltage transformer with and
without DSM

5 Conclusion

Demand side management of PHEVs will become neces-
sary to reduce peak loads as the penetration of PHEVs be-
come greater. Trying to flatten power demand curve at trans-
formers will avoid overloading and defer investment. In this
paper, we formulate this problem as a convex optimization
problem and propose a distributed algorithm, in which the

water filling principle plays a pivotal role. Simulation result-
s show that the proposed algorithm can efficiently fulfill the
task of flattening power demand curve.
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