
Optimal Filtering for Networked Systems with Markovian
Communication Delays

HAN Chunyan1, ZHANG Huanshui2, FU Minyue3

1. School of Electrical Engineering, University of Jinan, Jinan 250022, Shandong, P. R. China
E-mail: cyhan823@hotmail.com

2. School of Control Science and Engineering, Shandong University, Jinan 250061, Shandong, P. R. China
E-mail: hszhang@sdu.edu.cn

3. School of Electrical Engineering and Computer Science, University of Newcastle, Callaghan, NSW 2308, Australia
E-mail: minyue.fu@newcastle.edu.au

Abstract: This paper is concerned with the optimal filter problems for networked systems with random transmission delays,
while the delay process is modeled as a multi-state Markov chain which incorporates the data losses naturally. By defining
a delay-free observation sequence, the optimal filter problems are transformed into the ones of the standard Markov jumping
parameter measurement system. We first present an optimal Kalman filter, which is with time-varying, path-dependent filter
gains, and the number of the paths grows exponentially in time delay. Thus an alternative optimal Markov jump linear filter is
presented, in which the filter gains just depend on the present value of the Markov chain, and as a result, the obtained filter is
again a Markov jump linear system. It can be shown that the proposed Markov jump linear filter converges to the constant-gain
filter under appropriate assumptions.
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1 Introduction

Control over networks, or the so called networked con-

trol systems (NCSs), has become a widely used technology

in control area and has attracted significant attention in the

past few years (see [1] and the references therein). In net-

worked systems, data travel through different networks and

communication channels from the sensors to the controller

and from controller to actuators. Despite of many advan-

tages that communication networks have, such as low cost,

reduced weight and power requirements, simple installation

and maintenance, when the data is transmitted over the com-

munication networks with finite bandwidth, random delay

and packet dropout are two inevitable problems in networked

systems. That is, some packets may suffer a time-delay dur-

ing transmission through the network or they maybe com-

pletely lost due to some reasons such as data collisions,

transmission errors and network congestion. These phenom-

ena in data transmission over the network, will deteriorate

the performance of the controllers and filters if they are not

considered in the design procedure. Hence nowadays the

filter and controller design for networked control systems

with the consideration of various uncertainties in data trans-

mission in the network has attracted significant interest; see

[2],[3].

Up to now, many researchers have studied the filter design

for the packet delay or packet dropout cases. For the problem

of packet dropout, the initial work can be traced back to Nahi

[4] and Hadidi [5], where the phenomena of packet losses is

described as the observation uncertainties by a scalar binary

random variable. More recently, this problem has been stud-

ied using intermittent observation models [6], [7]. In [6] and

[7], the stability of the Kalman filter in relation to the data
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arrival rate is investigated. It is shown that there exists a

critical data arrival rate for an unstable system so that the

mean filtering error covariance will be bounded for any ini-

tial condition. In [8], an optimal H2 filtering in networked

control systems with multiple packet dropout is considered,

where the random dropout is represented by two Bernoulli

distributed white sequences which taking the values of 0 or

1, and the filter is derived by a convex optimization problem

through a set of linear matrix inequalities (LMIs). In [9],

Sun and Xie have presented a multiple packet dropout mod-

eling method, and an optimal linear estimator was computed

recursively in terms of the solution of a Riccati difference

equation. In [10] and [11], the robust filtering and nonlin-

ear H∞ filtering are designed for the multiple missing mea-

surement systems via the LMI techniques, respectively. The

measurement output contains randomly missing data that is

modeled by a Bernoulli distributed white sequence with a

known conditional probability.

For the problem of random communication delays, sev-

eral results have been presented under different modeling

method and performance index. In the case of observations

transmitted to the estimator with irregular times, a recursive

linear minimum variance state estimator was proposed via

the state augmentation method [12]. Latter, the same esti-

mation problem was considered in networked control sys-

tems [13], where the minimum variance state estimator and

optimal sensor control strategy were obtained. For the sit-

uation that the one-step sensor delay was described as a bi-

nary white noise sequence, a reduced-order linear unbiased

estimator was designed via state augmentation in [14]. As

for the random delay characterized by a set of distributed

Bernoulli variables, the Kalman filtering [15], the unscented

filtering algorithm [16], the linear and quadratic least-square

estimation method [17], the robust filtering [18], and the H∞
filtering [19], [20] have been developed. The rational of

modeling the random delay as Bernoulli variable sequences
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has been justified in those papers. On the other hand, mod-

eling the random delay as a finite state Markov chain is also

a reasonable way. The relevant estimation results for this

type of modeling can be found in [21], and the references

therein. In a very recent study, the optimal filtering [22], and

the H2 filtering [23] problems associated respectively with

possible delay of one or more sampling period, uncertain ob-

servations and multiple packet dropouts are studied under a

unified framework, respectively. It can be noted that the re-

sults mentioned above mainly focus on the systems just with

one or two step delays. To our best knowledge, there exist

few estimation results on multiple random delayed systems

[21], [22], [15], especially for the systems with multiple

Markovian transmission delays and packet dropouts simul-

taneously. Further, few results considered the convergence

and stability analysis of the designed filters [15]. This mo-

tivates us to study this interesting and challenging problem,

which has great potential in practical applications.

This paper investigates the optimal filtering problems for

networked systems with random transmission delays. The

delay process is characterized by a multi-state Markov chain

which incorporating the case of packet dropouts naturally.

A new delay-free observation sequence is defined by rear-

ranging the received observations up to the present time, and

the information contained in the new defined observations

is equivalent to that of the original ones. Then the filtering

problems are converted into the ones of the standard Markov

jumping parameter measurement systems, and the jumping

parameter has the same statistic properties as the random de-

lays. An optimal linear mean square filter is first presented

based on the innovation analysis method, in which the fil-

ter gains is time-varying and sample path dependent, and the

sample paths grows exponentially in time delay. Then high

computation is required in the filter design, and the conver-

gence analysis to this filter is difficult. Alternatively, an opti-

mal Markov jump linear filter is presented, in which the filter

gains are just dependent on the present value of the Markov

chains, but not the entire mode history. And at each time,

just r̄ filter gains are derived, which result in the obtained

filter is a Markov jump linear system. It can be shown that

the Markov jump linear filter is convergent and can be ap-

proximated by a stationary filter with constant gains under

appropriate assumptions.

The remainder of this paper is organized as follows. In

section 2, we present the problem formulations and some

preliminaries. In section 3, the optimal linear mean square

filter is designed based on the innovation analysis method,

which is with time-varying and sample path dependent filter

gains. In section 4, an alternative Markov jump linear fil-

ter is presented by using the mean square method, in which

the filter gains just determined by the present value of the

Markov chain, and thus less pre-computation is required. Fi-

nally, the conclusions are drawn in section 5 with some final

comments.

Notations: Throughout this paper, R
n denotes the n-

dimensional Euclidean space, B(Rn,Rm) denotes the norm

bounded linear space of all m × n matrices with B(Rn) =
B(Rn,Rn). For L ∈ B(Rn), L′ stands for the transpose of

L. As usual, L ≥ 0(L > 0) will mean that the symmetric

matrix L ∈ B(Rn) is positive semi-definite (positive defi-

nite), respectively. We set B(Rn)+ = {L ∈ B(Rn);L =
L′ ≥ 0}. Moreover, tr(.) indicates the trace operator, E(.)
denotes the mathematical expectation operator, and Prob(.)
means the occurrence probability of an event.

2 Problem Formulations and Preliminaries

Consider the following discrete-time systems

x(k + 1) = Ax(k) + Cw(k), x(0) = x0, (1)

z(k) = Hx(k) +Gv(k), (2)

where x(k) ∈ R
n is the state sequence, z(k) ∈ R

m is

the output sequence, w(k) ∈ R
p is the system noise, and

v(k) ∈ R
q is the output noise. The initial state x0, w(k)

and v(k) are null mean second-order independent wide sense

stationary sequences with covariance matrices V, Ip and Iq ,

respectively. x0, w(k) and v(k) are mutually independent,

and GG′ > 0.

The measurement z(k) is time-stamped, and transmitted

through a digital communication network (DCN), whose

goal is to deliver packets from a source to a destination. The

DCNs are in general very complex, and thus time delay or

even packet dropout is unavoidable between the senders and

the receivers. Moreover, the network-induced delays and

packet dropouts are often random. Let r(k) denote the trans-

mission delay of the measurement z(k), where r(k) is of

a Markov process, and takes values in a finite state space

{0, 1, · · · , r̄,∞}. When r(k) = i(i = 0, · · · , r̄), it means

that z(k) will be received within r̄ time steps. If the mea-

surement transmitted to the receiver with a delay larger than

r̄, it will be considered as the one lost completely. And

for this case, the random delay is set to be ∞. Denote the

transition probability matrix of r(k) as Λ = [(λij)], where

λij � Prob(r(k + 1) = j|r(k) = i)(i, j = 0, · · · , r̄,∞),

and set π(k) = [π0(k) · · ·πr̄(k), π∞(k)]′ with πi(k) �
Prob(r(k) = i)(i = 0, · · · , r̄,∞), then π(k) and Λ satisfy

the Kolmogorov difference equation π(k + 1) = Λ′π(k).
Further, we introduce the indicator function of r(k) as fol-

lows

φk,i =

{
1, if r(k) = i;
0, otherwise.

(3)

for i = 0, 1, · · · , r̄. As is well known, in the real-time con-

trol system, the output z(k) can only be observed at most

one time, and thus φk,i(i = 0, 1, · · · , r̄) must satisfy the fol-

lowing property:

φk,i × φk,j = 0, i �= j. (4)

The relation (4) includes two cases:

φk,i + · · ·+ φk,r̄ = 1, (5)

or

φk,i + · · ·+ φk,r̄ = 0. (6)

Based on the above statement, we know that the possible

received observations up to time k are

γk
s z(s) = γk

sHx(s) + γk
sGv(s), 0 ≤ s ≤ k, (7)
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where

γk
s =

{
1, if z(s) arrives before or at time k;

0, otherwise.
(8)

From this definition it follows that

γk
s =

r̄∑
i=0

φs,i, 0 ≤ s ≤ k − r̄, (9)

γk
s =

¯k−s∑
i=0

φs,i, k − r̄ < s ≤ k, (10)

For the convenience of discussions, we denote yks =
γk
s z(s), then the optimal filtering problems studied in this

paper can be stated as follows:

Problem 1 (Optimal linear mean square filter) Given the

observations {yks |0≤s≤k} and {γk
s |0≤s≤k}, find an optimal

linear mean square filter x̂o(k|k) of the state x(k).
Problem 2 (Optimal Markov jump filter) Given the ob-

servations {yks |0≤s≤k} and the present value of γk
k , find an

optimal recursive Markov jump linear filter x̂e(k|k) of the

state x(k).

3 Optimal Linear Mean Square Filter

In this section, we will design the optimal linear minimum

mean square error (LMMSE) filter x̂o(k|k) of the state x(k)
based on the projection formula, where

x̂o(k|k) � E{x(k)|yk0 , · · · , ykk ; γk
0 , · · · , γk

k}. (11)

We now present the following definition.

Definition 1 Consider the given time instant k. For 0 ≤ s ≤
k, the LMMSE estimator of x(s) is defined as

x̂o(s|s− 1) � E{x(s)|yk0 , · · · , yks−1; γ
k
0 , · · · , γk

s−1}, (12)

while its error covariance matrix P (s|s− 1) is defined as

P (s|s− 1) � E{(x(s)− x̂o(s|s− 1))(x(s)−
x̂o(s|s− 1))′|yk0 , · · · , yks−1; γ

k
0 , · · · , γk

s−1}. (13)

From the the projection formula, we will obtain the

LMMSE estimation result as follows.

Theorem 1 Consider the system (1), (7), and recalling the
definition of γk

s in (9), (10), the LMMSE estimation x̂o(k|k)
is given by

x̂o(k|k) = x̂o(k|k − 1) + φk,0K(k)[z(k)−Hx̂o(k|k − 1)],
(14)

where K(k) is the solution to the following equation

K(k) = P (k|k − 1)H ′(HP (k|k − 1)H ′ +GG′)−1, (15)

and the estimation x̂o(k|k− 1) is computed by the following
steps.

• Step 1 Calculate x̂o(s|s − 1), 0 ≤ s ≤ k − r̄ by the
following Kalman recursion

x̂o(s+ 1|s) = Ax̂o(s|s− 1) +
r̄∑

i=0

φs,iK(s)

×[z(s)−Hx̂o(s|s− 1)], (16)

where

K(s) = AP (s|s− 1)H ′(HP (s|s− 1)H ′ +GG′)−1,

with

P (s+ 1|s) = AP (s|s− 1)A′ −
r̄∑

i=0

φs,iK(s)

×HP (s|s− 1)A′ + CC ′. (17)

• Step 2 Calculate x̂o(s + 1|s), k − r̄ < s ≤ k by the
following recursion

x̂o(s+ 1|s) = Ax̂o(s|s− 1) +
k−s∑
i=0

φs,iK(s)

×[z(s)−Hx̂o(s|s− 1)], (18)

where

K(s) = AP (s|s− 1)H ′(HP (s|s− 1)H ′ +GG′)−1,

with

P (s+ 1|s) = AP (s|s− 1)A′ −
k−s∑
i=0

φs,iK(s)

×HP (s|s− 1)A′ + CC ′. (19)

• Step 3 Set s+1 = k in (18), then x̂o(k|k−1) is obtained
directly.

Proof. As in the derivation of the Kalman filter, we first

define the innovation sequences

eks = yks − ŷks , 0 ≤ s ≤ k, (20)

where ŷks is the LMMSE estimation of yks given the observa-

tions

{yk0 , · · · , yks−1, γ
k
0 , · · · , γk

s−1}.

In view of the projection formula and the definition of the

innovation sequences (20), we will obtain (14)-(19) immedi-

ately. �
Remark 1 In practice, the optimal estimator corresponds
to a time-varying Kalman filter for the system (1) and (7),
since all the values of the modes of operations γk

0 , · · · , γk
k

are known at time k. The recursive equation for the covari-
ance error matrix P (k|k− 1) and the gain of the filter K(k)
are sample path dependent, and the number of sample paths
grows exponentially subject to r̄. Up to time k, it would
be necessary to pre-computed 2r̄ gains. Thus, in the next
section, we will present an alternative optimal filter x̂e(k|k)
which just depends on the present value of the γk

k rather than
on the entire past history of modes γk

0 , · · · , γk
k . Then the

optimal filter in this form requires much less pre-computed
gains ( r̄(r̄+1)

2 instead of 2r̄).

4 Optimal Markov Jump Linear Filter

We consider in this section the optimal Markov jump lin-

ear filter in the recursive form for systems (1) and (7). First,

we present the following definition.
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Definition 2 Consider the given time instant k, the optimal
Markov jump linear filter x̂e(k|k, k) of x(k) is defined as

x̂e(k|k, k) � E{x(k)|yk0 , · · · , ykk ; γk
k}, (21)

and for 0 ≤ s ≤ k, the optimal Markov jump linear filter
x̂e(s|s− 1, s− 1) of x(s) is defined as

x̂e(s|s− 1, s− 1) � E{x(s)|yk0 , · · · , yks−1; γ
k
s−1}. (22)

In view of Definition 2, the optimal Markov jump filters

(21) and (22) can be written as

x̂e(k|k) = x̂e(k|k − 1)− F (k, γk
k )[γ

k
kz(k)

−γk
kHx̂e(k|k − 1)], (23)

x̂e(s+ 1|s) = Ax̂e(s|s− 1)− F (s, γk
s )[γ

k
s z(s)

−γk
sHx̂e(s|s− 1)], 0 ≤ s ≤ k. (24)

where F (k, γk
k ) and F (s, γk

s ) are the filter gains which need

to be determined.

It follows from (9) and (10) that the Markov jump linear

filter in the form of (23)-(24) can be rewritten recursively as

x̂e(k|k) = x̂e(k|k − 1)− F (k, φk,0)[φk,0z(k)

−φk,0Hx̂e(k|k − 1)], (25)

x̂e(s+ 1|s) = Ax̂e(s|s− 1)− F (s, φs,i)[φs,iz(s)

−φs,iHx̂e(s|s− 1)], (26)

0 ≤ s ≤ k − r̄, i = 0, 1, · · · , r̄,
x̂e(s+ 1|s) = Ax̂e(s|s− 1)− F (s, φs,i)[φs,iz(s)

−φs,iHx̂e(s|s− 1)], (27)

k − r̄ < s ≤ k, i = 0, 1, · · · , k − s,

The goal is to determine the filter gains F (k, γk
k ),

F (s, γk
s )(0 ≤ s ≤ k), such that its estimation error covari-

ance is minimized.

Define

x̃e(k|k) = x(k)− x̂e(k|k), (28)

Y
(0)
0 (k|k) = E{x̃e(k|k)x̃e(k|k)′φk,0}, (29)

x̃e(s|s− 1) = x(s)− x̂e(s|s− 1), 0 ≤ s ≤ k, (30)

Y
(r̄)
i (s) = E{x̃e(s|s− 1)x̃e(s|s− 1)′φs,i}, (31)

0 ≤ s ≤ k − r̄, i = 0, 1, · · · , r̄,
Y

(k−s)
i (s) = E{x̃e(s|s− 1)x̃e(s|s− 1)′φs,i} (32)

k − r̄ < s ≤ k, i = 0, 1, · · · , k − s.

Then the desired filter x̂e(k|k) is obtained in the following

result.

Theorem 2 Consider the system (1) and (7), and given time
k > r̄, the minimum mean square error solution to the
Markov jump linear filter x̂e(k|k) is given by

x̂e(k|k) = x̂e(k|k − 1)− F
(0)
0 (k)[φk,0z(k)

−φk,0Hx̂e(k|k − 1)], (33)

where the filter gain F
(0)
0 (k) = F (0)(k, φk,0) for φk,0 = 1,

which is determined by

F
(0)
0 (k) = −Y

(0)
0 (k)H(HY

(0)
0 (k)H ′ + π0(k)GG′)−1, (34)

and x̂e(k|k− 1) and Y
(0)
0 (k) are computed by the following

steps:

• Step 1 Calculate x̂e(s|s − 1) and Y
(r̄)
i (s) for 0 ≤ s ≤

k − r̄, i = 0, 1, · · · , r̄
x̂e(s+ 1|s) = Ax̂e(s|s− 1)− F

(r̄)
i (s)[φs,iz(s)

−φs,iHx̂e(s|s− 1)], (35)

where the filter gain F (r̄)(s, φs+i,i) = F
(r̄)
i (s) for

φs,i = 1, which is calculated by

F
(r̄)
i (s) = −AY

(r̄)
i (s)H ′(HY

(r̄)
i (s)H ′

+πi(s)GG′)−1, (36)

and Y
(r̄)
i (s) satisfies the following coupled Riccati dif-

ference equation

Y
(r̄)
j (s)

=

r̄∑
i=0

λij{AY
(r̄)
i (s)A′ + πi(s)CC ′ −AY

(r̄)
i (s)H ′

×(HY
(r̄)
i (s)H ′ + πi(s)GG′)−1HY

(r̄)
i (s)A′}.(37)

• Step 2 Calculate x̂e(s+1|s) and Y
(k−s)
i (s) for k− r̄ <

s ≤ k, i = 0, 1, · · · , k − s

x̂e(s+ 1|s) = Ax̂e(s|s− 1)− F
(k−s)
i (s)[φs,iz(s)

−φs,iHx̂e(s|s− 1)], (38)

where the filter gain F (k−s)(s, φs,i) = F
(k−s)
i (s) for

φs,i = 1, which is calculated by

F
(k−s)
i (s) = −AY

(k−s)
i (s)H ′(HY

(k−s)
i (s)H ′

+πi(s)GG′)−1, (39)

and Y
(k−s)
i (s) satisfies the following coupled Riccati

difference equation

Y
(k−s−1)
j (s+ 1)

=
k−s∑
i=0

λij{AY
(k−s)
i (s)A′ + πi(s)CC ′ −A

×Y
(k−s)
i (s)H ′(HY

(k−s)
i (s)H ′ + πi(s)GG′)−1

×HY
(k−s)
i (s)A′}. (40)

• Step 3 Set s + 1 = k in Step 2, then x̂e(k|k − 1) and
Y

(0)
0 (k) is obtained from (38) and (40), respectively.

Proof : First, for s = k, from (1) and (33), and recalling the

definition of x̃e(k|k), we have that

x̃e(k|k) = [I + φk,0F
(0)(k, φk,0)H]x̃e(k|k − 1)

+φk,0F
(0)(k, φk,0)Gv(k), x̃e(0|0) = x0,

so the estimation error covariance matrix

Y
(0)
0 (k|k) � E{x̃e(k|k)x̃e(k|k)′φk,0}

= [I + F
(0)
0 (k)H]Y

(0)
0 (k)[I + F

(0)
0 (k)H]′

+π0(k)F
(0)
0 (k)GG′F (0)

0 (k)′. (41)

Seen from (41) that Y
(0)
0 (k) will be minimized if and only if

F
(0)
0 (k) = −Y

(0)
0 (k)H(HY

(0)
0 (k)H ′ + π0(k)GG′)−1,
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the minimum mean square jump filter gain (34) is obtained.

Next, for 0 ≤ s ≤ k − r̄, we have from (1), (35) and note

the definition of x̃e(s|s− 1) that

x̃e(s|s− 1) = (A+ φs+i,iF
(r̄)(s, φs+i,i)H)x̃e(s|s− 1)

+Cw(s) + φs+i,iF
(r̄)(s, φs+i,i)Gv(s).

(42)

In view of (31) and (42), we get that

Y
(r̄)
j (s+ 1) � E{x̃e(s+ 1|s)x̃e(s+ 1|s)φs+1,j}

=
r̄∑

i=0

λij{(A+ F
(r̄)
i (s)H)Y

(r̄)
i (s)

(A+ F
(r̄)
i (s)H)′ + πi(s)CC ′

+πi(s)F
(r̄)
i (s)GG′F (r̄)

i (s)′}. (43)

Obviously, the minimum mean square error filter gain sub-

ject to (35) is that

F
(r̄)
i (s) = −AY

(r̄)
i (s)H ′(HY

(r̄)
i (s)H ′ + πi(s)GG′)−1,

and thus (43) becomes as in (37).

Finally, following the similar procedure as in the determi-

nation of F
(r̄)
i (s) and Y

(r̄)
i (s) for 0 ≤ s ≤ k − r̄, we will

obtain (39) and (40)immediately. This completes the proof

of Theorem 2. �
In the following, we will show that the filter presented in

Theorem 2 is the optimal realization of the general recursive

Markov jump linear filters. We assume the general Markov

jump linear filter is with the form

x̂u(k|k) = Â(k, φk,0)x̂u(k|k − 1) + B̂(k, φk,0)z(k),

(44)

x̂u(s+ 1|s) = Â(s, φs,i)x̂u(s|s− 1) + B̂(s, φs,i)z(s),

x̂u(0|0) = 0, 0 ≤ s ≤ k − r̄, i = 0, 1, · · · , r̄, (45)

x̂u(s+ 1|s) = Â(s, φs,i)x̂u(s|s− 1) + B̂(s, φs,i)z(s),

k − r̄ < s ≤ k, i = 0, 1, · · · , k − s. (46)

Denote

x̃u(k|k) = x(k)− x̂u(k|k), (47)

x̃u(s|s− 1) = x(s)− x̂u(s|s− 1), 0 ≤ s ≤ k, (48)

then the following result will be obtained.

Theorem 3 Let x̃u(s|s−1)(0 ≤ s ≤ k), Y (r̄)
i (s), (0 ≤ s ≤

k − r̄, i = 0, 1, · · · , r̄) and Y
(k−s)
i (s), (k − r̄ < s ≤ k, i =

0, 1, · · · , k − s) be as in (48), (37), and (40), respectively.
Then for 0 ≤ s ≤ k − r̄,

E{‖x̃u(s|s− 1)‖2} ≥
r̄∑

i=0

tr{Y (r̄)
i (s)}, (49)

and for k − r̄ < s ≤ k,

E{‖x̃u(s|s− 1)‖2} ≥
k−s∑
i=0

tr{Y (k−s)
i (s)}. (50)

Proof : As in the proof of Theorem 5.3 in [24], we can show

that

E{x̃e(s|s− 1)x̂u(s|s− 1)′φs,i} = 0, (51)

0 ≤ s ≤ k − r̄, i = 0, 1, · · · , r̄,
E{x̃e(s|s− 1)x̂e(s|s− 1)′φs,i} = 0, (52)

0 ≤ s ≤ k − r̄, i = 0, 1, · · · , r̄,
E{x̃e(s|s− 1)x̂u(s|s− 1)′φs,i} = 0, (53)

k − r̄ < s ≤ k, i = 0, 1, · · · , k − s,

E{x̃e(s|s− 1)x̂e(s|s− 1)′φs,i} = 0, (54)

k − r̄ < s ≤ k, i = 0, 1, · · · , k − s.

Then for 0 ≤ s ≤ k − r̄, we have from (51) that

E{‖x̃u(s|s− 1)‖2}
= E{‖x(s)− x̂e(s|s− 1) + x̂e(s|s− 1)

−x̂u(s|s− 1)‖2}

=
r̄∑

i=0

E{‖(x̃e(s|s− 1) + x̂e(s|s− 1)

−x̂u(s|s− 1))φs,i‖2}

=
r̄∑

i=0

tr{Y (r̄)
i (s)}+ E{‖x̂e(s|s− 1)− x̂u(s|s− 1)‖2}

−
r̄∑

i=0

tr{E(x̃e(s|s− 1)x̂u(s|s− 1)′φs,i)}

+
r̄∑

i=0

tr{E(x̃e(s|s− 1)x̂e(s|s− 1)′φs,i)},

≥
r̄∑

i=0

tr{Y (r̄)
i (s)},

since

E{x̃e(s|s− 1)x̃e(s|s− 1)′φs,i} = Y
(r̄)
i (s),

E{x̃e(s|s− 1)x̂e(s|s− 1)′φs,i} = 0,

E{x̃e(s|s− 1)x̂u(s|s− 1)′φs,i} = 0,

E{‖x̂e(s|s− 1)− x̂u(s|s− 1)‖2} ≥ 0.

The similar reasoning shows that E{‖x̃u(s|s − 1)‖2} ≥∑r̄
i=0 tr{Y (k−s)

i (s)}. Completing the proof of the theorem.

�
Theorem 3 shows that the optimal solution to the Markov

jump linear filtering problem can be obtained from the

filtering recursive equations Y
(r̄)
i (s)(i = 0, · · · , r̄) and

Y
(k−s)
i (s)(i = 0, · · · , k − s) as in (37) and (40), respec-

tively.

Remark 2 For the case in which A,C,H,G and λij in (1)
and (2) are time invariant and {r(k)} satisfies the ergodic
assumption, so that πi(k) converges to πi > 0 as k goes
to infinity, the filtering coupled Riccati difference equations
(37) and (40) leads to the following coupled algebraic Ric-

5964



cati equations

Y
(r̄)
j =

r̄∑
i=0

λij{AY (r̄)
i A′ + πiCC ′ −AY

(r̄)
i H ′

×(HY
(r̄)
i H ′ + πiGG′)−1HY

(r̄)
i A′},

j = 0, 1, · · · , r̄, (55)

Y
(l)
j =

l+1∑
i=0

λij{AY (l+1)
i A′ + πiCC ′ −AY

(l+1)
i H ′

×(HY
(l+1)
i H ′ + πiGG′)−1HY

(l+1)
i A′},

l = r̄ − 1, · · · , 0, j = 0, 1, · · · , l. (56)

while the corresponding filter gains in Theorem 2 become as

F
(r̄)
i = −AY

(r̄)
i H ′(HY

(r̄)
i H ′ + πiGG′)−1, (57)

i = 0, 1, · · · , r̄,
F

(l)
i = −AY

(l)
i H ′(HY

(l)
i H ′ + πiGG′)−1, (58)

l = r̄ − 1, · · · , 0, i = 0, 1, · · · , l.

Thus the constant-gain filter just requires us to
keep in memory the gains F (l) = (F

(l)
0 , · · · , F (l)

l ),
l = r̄, · · · , 0. In the next section, we will give the conditions
for the existence of the constant-gain filter, and shows that
the optimal Markov jump linear filter (33), (35) and (38)
converge to the constant-gain filter.

5 Conclusion

This paper has addressed the optimal filtering problems

for the Markovian transmission delayed systems. Two kinds

of optimal filters have been developed. The first one is the

optimal Kalman filtering, which requires high computation

and doesn’t converge to a steady state in general. The second

one is an alternative Markov jump linear filter which just

depends on the present value of the Markov chain, and thus

requires less pre-computed gains. It can be shown that, under

standard assumptions, this filter is convergent to a constant-

gain filter which is viewed as the third designed filter.

References
[1] J.P. Hespanha, P. Naghshtabrizi and Y. Xu, A survey of recent

results in networked control systems, IEEE Trans. Automat.
Control, 95(1):138-162, 2007.

[2] W. Zhang and L. Yu, Modeling and control of networked

control systems with both network-induced delay and packet-

dropout, Automatica, 44:3206-3210, 2008.

[3] M. Liu, D. W.C. Ho and Y. Niu, Stabilization of Markovian

jump linear system over networks with random communication

delay, Automatica, 45:416-421, 2009.

[4] N. E. Nahi, Optimal recursive estimation with uncertain obser-

vation, IEEE Trans. Inf. Theory, 15(4):457-462, 1969.

[5] M. T. Hadidi and C. S. Schwartz, Linear recursive state es-

timators under uncertain observations, IEEE Trans. Automat.
Control, 24(6):944-948, 1979.

[6] B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M. I.

Jordan, and S. S. Sastry, Kalman filtering with intermittent ob-

servations, IEEE Trans. Automat. Control, 49(9):1453-1463,

Sep. 2004.

[7] K. Plarre and F. Bullo, On Kalman filtering for detectable

systems with intermittent observations, IEEE Trans. Automat.
Control, 54(2):386-390, 2009.

[8] M. Sahebsara, T. Chen, and S. L. Shah, Optimal H2 Filtering

in Networked Control Systems With Multiple Packet Dropout,

IEEE Trans. Automat. Control, 52(8):1508-1513, 2007.

[9] S. Sun, L. Xie, W. Xiao, and Y. Chai Soh, Optimal linear esti-

mation for systems with multiple packet dropouts, Automatica,
44:1333-1342, 2008.

[10] G. Wei, Z. Wang, and H. Shu, Robust filtering with stochastic

nonlinearities and multiple missing measurements, Automat-
ica, 45:836-842, 2009.

[11] B. Shen, Z. Wang, H. Shu, and G. Wei, On nonlinear H∞ fil-

tering for discrete-time stochastic systems with missing mea-

surement, IEEE Trans. Automat. Control, 53(9):2170-2180,

2008.

[12] A. S. Matveev and A. V. Savkin, The problem of state estima-

tion via asynchronous communication channels with irregular

transmission times, IEEE Trans. Autom. Control, 48(4):670-

676, 2003.

[13] A. S. Matveev and A. V. Savkin, Optimal state estimation in

networked systems with asynchronous communication chan-

nels and switched sensors, J. Optim. Theory Appl., 128(1):139-

165, 2006.

[14] E. Yaz and A. Ray, Linear unbiased state estimation under

randomly varying bounded sensor delay, Appl. Math. Letters,
11:27-32, 1998.

[15] L. Shi, L. Xie, R. M. Murrayc, Kalman filtering over a packet-

delaying network: A probabilistic approach, Automatica,44:

2134-2140, 2009.
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