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Abstract: This paper considers the sampled-data average consensus problem for multi-agent systems with �rst order continuous
dynamics. The communication channels among the agents are constrained in which the exchanged information is digital rather
than analogue. In this paper, the logarithmic quantizer is applied to the communication channels. A distributed consensus
protocol is proposed based on sampled measurements. It is proved that as long as the quantization levels are dense enough, the
proposed protocol is robust to the logarithmic quantization, i.e. all the states of the agents are uniformly bounded and the gap
between the state of each agent and the average value of the initial conditions converges to zero as the density of quantization
levels goes to in�nity. An example is given to demonstrate the effectiveness of the protocol.
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1 Introduction

Distributed consensus becomes a hot research topic in re-
cent years [12], [20], [1], [2], [21]. The problem is widely
encountered in the real world, for example, in distributed
computation, �ocking, traf�c control, networked control,
formation �ight, etc.
The average consensus problem means to design a net-

worked interaction protocol such that the states of all the
agents converge to the average of their initial states asymp-
totically or in �nite time. However, when we consider that
each agent can be able to communicate with only a set of
discrete signals, the problem becomes complicated. Based
on the gossip algorithm, [14] designs an average consensus
protocol under the assumption that the states of agents are
integer-valued. Under the same assumption, [19] analyzes
the quantization effect on the average consensus and gives
an upper bound for the consensus errors. [6] considers three
kinds of update strategies including totally quantized, par-
tially quantized and compensating based on both determin-
istic quantization and probabilistic quantization. Based on
the assumption that the quantization errors are white noises,
two coding schemes are provided by [22] and conditions un-
der which the consensus is achieved are obtained. Under the
same assumption, [7] analyzes the average consensus prob-
lem under Cayley graph. Other works for consensus problem
with additive noises in channels can be found in [11], [16],
[13] and [18]. In [8], an upper bound for the consensus er-
rors is derived. Although the quantization level in the above
works can be �nite, the average consensus problem is not ex-
actly solved. Given a logarithmic quantizer, [4] and [5] solve
the average consensus problem when the quantization level
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is unlimited. By introducing a scaling function in coding and
decoding, [3] and [15] obtain a lower bound for the number
of quantization levels such that the average consensus prob-
lem is solved. Moreover, [15] provides a way to reduce the
number of transmitting bits to one by properly selecting the
control parameters. The results is generalized to multi-agent
systems with communication delays [17]. Other works about
choosing scaling function in communication constraint con-
trol are referred in [10].
Comparing with [4] and [5], we propose an average con-

sensus protocol based on sampled measurement of each
agent in this paper. The logarithmic quantization is also ap-
plied to the communication channels. The proposed protocol
is much simpler than the ones in [4] and [5]. Moreover, we
prove that the proposed protocol is robust with respect to the
quantizer and the consensus error is asymptotically conver-
gent to 0 as the quantization density goes to in�nity.
Some remarks on notation are given as follows. ℝ,ℝ𝑛 and

ℝ
𝑚×𝑛 denote the set of real numbers, real 𝑛-dimensional
column vectors and real 𝑚 × 𝑛 matrices, respectively. For
a vector or matrix 𝐴, 𝐴′ denotes its transpose. ∥ ⋅ ∥2 and
∥ ⋅ ∥∞ denote the Euclidian norm and in�nity norm, respec-
tively. 1 stands for a column vector with every element of
1. Given a square matrix 𝑀 with all the eigenvalues real,
𝜆𝑖(𝑀) and 𝜆max(𝑀) are the 𝑖th smallest eigenvalue and the
largest eigenvalue of𝑀 , respectively. The �oor function is
denoted by ⌊⋅⌋.

2 Preliminaries

In this section, we shall review some basics of graph the-
ory and logarithmic quantization which are fundamental to
the later development.

2.1 Concepts in Graph Theory
A directed graph is denoted by 𝒢 = {𝒱 , ℰ𝒢, 𝐴𝒢}, where

𝒱 = {1, 2, . . . , 𝑁} is the set of node with 𝑖 representing the
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𝑖th agent; ℰ𝒢 is the set of edges which are represented by a
pair of node indices (𝑖, 𝑗). We consider that (𝑖, 𝑗) ∈ ℰ if
and only if node 𝑖 can send its information to node 𝑗. In this
case, node 𝑖 is called the parent node and node 𝑗 is called the
child node. The set of neighbors of the 𝑖th agent is denoted
by𝒩𝑖 = {𝑗 ∈ 𝒱 ∣ (𝑗, 𝑖) ∈ ℰ}. If (𝑖, 𝑖) ∈ ℰ , we say that node
𝑖 has self-loop. In this paper, we assume that no self-loop
exists. 𝐴𝒢 = [𝑎𝑖,𝑗 ] ∈ ℝ

𝑁×𝑁 is the the adjacency matrix
associated with 𝒢. If 𝑗 ∈ 𝒩𝑖, 𝑎𝑖,𝑗 > 0, otherwise 𝑎𝑖,𝑗 = 0.
If matrix 𝐴 is symmetric, then the corresponding graph is
called undirected graph.
A graph is balanced if the in-degree 𝑑𝑒𝑔𝑖𝑛(𝑖)

Δ
=∑

𝑗∈𝒱∖{𝑖} 𝑎𝑖,𝑗 and the out-degree 𝑑𝑒𝑔𝑜𝑢𝑡(𝑖)
Δ
=
∑

𝑗∈𝒱∖{𝑖} 𝑎𝑗,𝑖
are equal for all 𝑖 ∈ 𝒱 . For example, an undirected graph is
a kind of balanced graph.
There is a path from node 𝑖 to node 𝑗 if there exists a se-

quence 𝑙1, . . . , 𝑙𝑝 ∈ 𝒱 satisfying (𝑖, 𝑙1), (𝑙1, 𝑙2), . . . , (𝑙𝑝, 𝑗) ∈
ℰ𝒢 where 𝑖, 𝑙1, . . . , 𝑙𝑝, 𝑗 are distinct vertices. Given a graph
𝒢, it contains a spanning tree if there exists at least one node
𝑖 such that for any other node 𝑗, there is a path from 𝑖 to 𝑗. If
an undirected graph contains a spanning tree, it is connected.
The Laplacian matrix 𝐿 = [𝑙𝑖,𝑗 ] of the graph 𝒢 is de�ned

as that for any 𝑖, 𝑗 ∈ 𝒱 and 𝑖 ∕= 𝑗, 𝑙𝑖,𝑗 = −𝑎𝑖,𝑗 and 𝑙𝑖,𝑖 =∑
𝑗∈𝒱∖{𝑖} 𝑎𝑖,𝑗 . By denoting all the eigenvalues of 𝐿 as 𝜆𝑖,

𝑖 = 1, 2, . . . , 𝑛, some properties of the Laplacian matrix are
recalled below [21], [20]:

Lemma 2.1 For an undirected graph 𝒢 with Laplacian ma-
trix 𝐿, we have the following properties:
1) 𝜆1(𝐿) = 0.
2) 𝜆2(𝐿) > 0 if and only if 𝒢 is connected.

Lemma 2.2 Let𝐿 be the Laplacianmatrix of a digraph 𝒢 =

{𝒱 , ℰ , 𝐴}. Then 𝐿̂ Δ
= (𝐿+𝐿′)/2 is a valid Laplacian matrix

for its mirror graph1 𝒢 if and only if 𝒢 is balanced.

2.2 Concepts in logarithmic quantization
A quantizer 𝑞(⋅) : ℝ → Γ is a map from ℝ to the set Γ

of quantized levels. Γ is �nite or denumerable. 𝑞(⋅) is called
logarithmic if it has the form

Γ = {±𝑦(𝑖) : 𝑦(𝑖) = 𝜌𝑖𝑦(0), 𝑖 = 0,±1,±2, . . .} ∪ {0},

0 < 𝜌 < 1, 𝑦(0) > 0.

The associated quantizer 𝑞(⋅) is de�ned as follows:

𝑞(𝑥) =

⎧⎨
⎩
𝑦(𝑖), if 1

1+𝛽
𝑦(𝑖) < 𝑥 ≤ 1

1−𝛽
𝑦(𝑖)

0, if 𝑥 = 0
−𝑞(−𝑥), if 𝑥 < 0

(1)

where 𝛽 = 1−𝜌
1+𝜌

∈ (0, 1). The quantization density[9] for
the quantizer (1) is −2

ln 𝜌
. It is straightforward that the smaller

𝛽 is, the more the quantization levels we have in any given
subset of ℝ.
From (1) we can see that a logarithmic quantizer has the

following properties:

𝑞(𝑥) = (1 + Δ)𝑥, ∃Δ ∈ (−𝛽, 𝛽), ∀𝑥 ∈ ℝ. (2)

1See [20] De�nition 2 for the de�nition of mirror graph.

3 Problem Statement
In this section, we shall formulate the consensus problem

to be studied for multi-agent systems. The agent 𝑖 is assumed
to have the following dynamics

𝑥̇𝑖(𝑡) = 𝑢𝑖(𝑡), 𝑖 = 1, 2, . . . , 𝑁, (3)

where 𝑥𝑖(𝑡) ∈ ℝ is the state information of agent 𝑖, 𝑢𝑖(𝑡) ∈
ℝ is the control input. The communication graph is denoted
by 𝒢 = {𝒱 , ℰ , 𝐴} and the corresponding Laplacian matrix
is 𝐿.
Assume that agent 𝑖 can receive its neighbors’ quantized

state information

𝑦𝑗,𝑖(𝑡) = 𝑞(𝑥𝑗(𝑡)), 𝑗 ∈ 𝒩𝑖, 𝑖 = 1, 2, . . . , 𝑁, (4)

where 𝑞(⋅) is as de�ned in (1). According to (2), 𝑦𝑗,𝑖(𝑡) can
be written as

𝑦𝑗,𝑖(𝑡) = (1 + Δ𝑗(𝑡))𝑥𝑗(𝑡), Δ𝑗 ∈ (−𝛽, 𝛽). (5)

We call a group of controls 𝒰 = {𝑢𝑖, 𝑖 = 1, 2, . . . , 𝑁}
a distributed protocol if 𝑢𝑖(𝑡) is a function of
{𝑥𝑖(𝑠), 𝑦𝑗,𝑖(𝑠), 0 ≤ 𝑠 ≤ 𝑡, 𝑗 ∈ 𝒩𝑖}. The objective is
to design a distributed protocol for 𝒢 such that for any initial
conditions 𝑥𝑖(0), 𝑖 = 1, 2, . . . , 𝑁

lim
𝑡→∞𝑥𝑖(𝑡) =

1

𝑁

𝑁∑
𝑗=1

𝑥𝑗(0),

i.e. average consensus control.
Since the quantization is involved in the communication,

the exact average consensus cannot be easily achieved. As
such, we will introduce the concept of robust average con-
sensus with respect to the logarithmic quantization. Denote

𝑋(𝑡) = [𝑥1(𝑡), . . . , 𝑥𝑁 (𝑡)]′, Δ(𝑡) = [Δ1(𝑡), . . . ,Δ𝑁 (𝑡)]′.

Then the closed-loop system can be modeled as the follow-
ing uncertain system

𝑋̇(𝑡) = 𝐹
(
{𝑋(𝑠),Δ(𝑠), 0 ≤ 𝑠 ≤ 𝑡}

)
, (6)

where Δ(𝑡) satis�es Δ = {Δ(𝑡), 𝑡 ≥ 0} ∈ 𝑄(𝛽) and 𝑄(⋅)
is de�ned as

𝑄(𝛾) =
{
Λ = {Λ(𝑡) ∈ ℝ

𝑁 , 𝑡 ≥ 0} ∣ sup
𝑡≥0

∥Λ(𝑡)∥∞ ≤ 𝛾
}
,

0 < 𝛾 ≤ 1.

De�ne 𝐽 = 1
𝑁
11

′, 𝛿(𝑡) = 𝑋(𝑡)− 𝐽𝑋(𝑡), then we have the
following de�nition.

De�nition 3.1 A distributed protocol 𝒰 is robust with re-
spect to the logarithmic quantization if there exist 𝛽∗ > 0
such that for any 0 < 𝛽 < 𝛽∗, the closed-loop uncertain
system (6) satis�es

sup
Δ∈𝑄(𝛽)

sup
𝑡≥0

∥𝑋(𝑡)∥2 < ∞, ∀𝑋(0) ∈ ℝ
𝑁 . (7)

Moreover, if

lim
𝛽→0

sup
Δ∈𝑄(𝛽)

lim sup
𝑡→∞

∥𝛿(𝑡)∥2 = 0, (8)

𝒰 is called a robust average consensus protocol with respect
to the logarithmic quantization.
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4 Sample-Data Based Protocol

In this paper, we consider a sampled-data setting where
the measurements are made at discrete sampling times and
the control inputs are based on zero-order hold. We as-
sume that the sampling interval is ℎ, then we propose the
distributed protocol as

𝑢𝑖(𝑡) =

⎧⎨
⎩
0, 𝒩𝑖 = ∅,∑
𝑗∈𝒩𝑖

[𝑞(𝑥𝑗(𝑘ℎ))− 𝑞(𝑥𝑖(𝑘ℎ))],𝒩𝑖 ∕= ∅,

𝑡 ∈ [𝑘ℎ, (𝑘 + 1)ℎ) .
(9)

The discretized model with zero-order hold can be written as

𝑥𝑖(𝑘 + 1) = 𝑥𝑖(𝑘) + ℎ𝑢𝑖(𝑘), 𝑘 = 0, 1, . . . (10)

where we omit the sampling time interval for simplifying the
notation.

Lemma 4.1 If 𝒢 is balanced and contains a spanning tree,
there exists a set of vectors {𝜙1, 𝜙2, . . . , 𝜙𝑁−1} as a stan-
dard orthogonal basis of the column space of 𝐿. Denote
𝜙 = [𝜙1, 𝜙2, . . . , 𝜙𝑁−1], then
1) the matrix Φ = [ 1√

𝑁
, 𝜙] is a standard orthogonal ma-

trix;
2) Φ′𝐿Φ = 𝑑𝑖𝑎𝑔(0, 𝐿̃), where 𝐿̃ is an (𝑁 − 1) × (𝑁 −

1) matrix with all its eigenvalues having positive real
parts.

By de�ning 𝐿̂ = (𝐿+𝐿′)/2, we have the following result.

Theorem 4.1 The protocol (9) is applied to the system (3)-
(4). If 𝒢 is balanced and contains a spanning tree and the
sampling interval satis�es 0 < ℎ < 2𝜆2(𝐿̂)

∥𝐿∥2

2

, then protocol
(9) is a robust average consensus protocol with respect to
the logarithmic quantization. Moreover, 𝛽∗ can be chosen
as

𝛽∗ =
1−

∥∥𝐼 − ℎ𝐿̃
∥∥
2

ℎ∥𝐿∥2
,

where 𝐿̃ is as de�ned in Lemma 4.1.

Proof. Substituting (9) to the discrete-time system (10)
leads to that

𝑋(𝑘 + 1) = (𝐼 − ℎ𝐿− ℎ𝐿Δ̄(𝑘))𝑋(𝑘), (11)

where Δ̄(𝑘) = 𝑑𝑖𝑎𝑔{Δ1(𝑘),Δ2(𝑘), . . . ,Δ𝑁 (𝑘)}. Since 𝒢
is balanced, we have 1′𝐿 = 0 and

𝐽𝑋(𝑘) ≡ 𝐽𝑋(0).

Therefore

𝑋(𝑘) = 𝛿(𝑘) + 𝐽𝑋(𝑘) = 𝛿(𝑘) + 𝐽𝑋(0). (12)

Substituting (12) into (11) and noting the fact that 𝐽1 = 0,
we have

𝛿(𝑘+1) = (𝐼−ℎ𝐿−ℎ𝐿Δ̄(𝑘))𝛿(𝑘)−ℎ𝐿Δ̄(𝑘)𝐽𝑋(0). (13)

Next, we introduce the linear transformation 𝛿(𝑘) = Φ′𝛿(𝑘),
where Φ is as de�ned in Lemma 4.1. According to Lemma

4.1 and (13), we can see that 𝛿(𝑘) = [0, 𝛿′2(𝑘)]
′, where 𝛿2(𝑘)

satis�es

𝛿2(𝑘+1) = (𝐼−ℎ𝐿̃−ℎ𝜙′𝐿Δ̄(𝑘)𝜙)𝛿2(𝑘)−ℎ𝜙′𝐿Δ̄(𝑘)𝐽𝑋(0).
(14)

Then we shall prove that the above system is exponentially
stable. Now, we consider the autonomous system

𝑧(𝑘 + 1) = (𝐼 − ℎ𝐿̃− ℎ𝜙′𝐿Δ̄(𝑘)𝜙)𝑧(𝑘). (15)

Since 𝒢 is balanced and contains a spanning tree, according
to Lemma 2.1 and Lemma 2.2 we know that 𝐿̂ is positive
semi-de�nite. From Lemma 4.1 we have

Φ′𝐿̂Φ =
Φ′𝐿Φ+Φ′𝐿′Φ

2
= 𝑑𝑖𝑎𝑔

(
0,

𝐿̃+ 𝐿̃′

2

)
,

where 𝐿̃+𝐿̃′

2 is positive de�nite and

𝜆2(𝐿̂) = 𝜆2(Φ
′𝐿Φ) = 𝜆1

( 𝐿̃+ 𝐿̃′

2

)
> 0, (16)

∥𝐿∥22 = 𝜆max(Φ
′𝐿′ΦΦ′𝐿Φ) = 𝜆max(𝐿̃

′𝐿̃). (17)

Considering (16) and (17), we have

∥𝐼 − ℎ𝐿̃∥22 = 𝜆max

[
(𝐼 − ℎ𝐿̃′)(𝐼 − ℎ𝐿̃)

]
= 𝜆max

[
𝐼 − 2ℎ

𝐿̃+ 𝐿̃′

2
+ ℎ2𝐿̃′𝐿̃

]

≤ 𝜆max

[
𝐼 − 2ℎ

𝐿̃+ 𝐿̃′

2

]
+ ℎ2𝜆max(𝐿̃

′𝐿̃)

≤ 1− 2ℎ𝜆2(𝐿̂) + ℎ2∥𝐿∥22, (18)

which together with 0 < ℎ < 2𝜆2(𝐿̂)
∥𝐿∥2

2

leads to

∥𝐼 − ℎ𝐿̃∥2 < 1.

By (15), for any 𝑛 ≥ 𝑘 we have

∥𝑧(𝑛)∥2 ≤ ∥𝐼 − ℎ𝐿̃∥𝑛−𝑘
2 ∥𝑧(𝑘)∥2

+ℎ

𝑛−1∑
𝑖=𝑘

∥𝐼 − ℎ𝐿̃∥𝑛−𝑖−1
2

∥∥𝜙′𝐿Δ̄(𝑖)𝜙
∥∥
2
∥𝑧(𝑖)∥2.

(19)

For any 0 < 𝛽 < 𝛽∗, there must exist 0 < 𝜀 < 1 such that

𝛽 =
(1− 𝜀)

(
1−

∥∥𝐼 − ℎ𝐿̃
∥∥
2

)
ℎ∥𝐿∥2

. (20)

From the de�nition of Δ̄(𝑖), we know that ∀𝑖 ≥ 0,
∥Δ̄(𝑖)∥2 ≤ 𝛽. Then by (19) and (20) we have

∥𝑧(𝑛)∥2 ≤ ∥𝐼 − ℎ𝐿̃∥𝑛−𝑘
2 ∥𝑧(𝑘)∥2

+ℎ𝛽∥𝐿∥2

𝑛−1∑
𝑖=𝑘

∥𝐼 − ℎ𝐿̃∥𝑛−𝑖−1
2 ∥𝑧(𝑖)∥2

≤ ∥𝐼 − ℎ𝐿̃∥𝑛−𝑘
2 ∥𝑧(𝑘)∥2 + (1− 𝜀)

×
(
1−

∥∥𝐼 − ℎ𝐿̃
∥∥
2

) 𝑛−1∑
𝑖=𝑘

∥𝐼 − ℎ𝐿̃∥𝑛−𝑖−1
2 ∥𝑧(𝑖)∥2,

(21)
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where we use the fact that ∥𝜙∥2 = ∥𝜙′∥2 = 1. According to
Bellman inequality, we arrive at the following inequality

∥𝑧(𝑛)∥2 ≤ ∥𝐼 − ℎ𝐿̃∥𝑛−𝑘
2 ∥𝑧(𝑘)∥2

𝑛−𝑘−1∏
𝑖=0

[
1 + (1 − 𝜀)

×
(
1−

∥∥𝐼 − ℎ𝐿̃
∥∥
2

)
∥𝐼 − ℎ𝐿̃∥𝑖2

]

≤ ∥𝑧(𝑘)∥2

𝑛−𝑘∏
𝑖=1

[
∥𝐼 − ℎ𝐿̃∥2 + (1 − 𝜀)

×
(
1−

∥∥𝐼 − ℎ𝐿̃
∥∥
2

)
∥𝐼 − ℎ𝐿̃∥𝑖2

]

≤ ∥𝑧(𝑘)∥2

𝑛−𝑘∏
𝑖=1

[
∥𝐼 − ℎ𝐿̃∥2 + (1 − 𝜀)

×∥𝐼 − ℎ𝐿̃∥2
(
1−

∥∥𝐼 − ℎ𝐿̃
∥∥
2

)]
. (22)

Denoting 𝛾 = ∥𝐼 − ℎ𝐿̃∥2 + (1 − 𝜀)∥𝐼 − ℎ𝐿̃∥2
(
1 −

∥𝐼 − ℎ𝐿̃∥2
)
≥ 0, it follows that

𝛾 < ∥𝐼 − ℎ𝐿̃∥2 + (1 − 𝜀)
(
1− ∥𝐼 − ℎ𝐿̃∥2

)
< ∥𝐼 − ℎ𝐿̃∥2 +

(
1− ∥𝐼 − ℎ𝐿̃∥2

)
= 1. (23)

Then we have

∥𝑧(𝑛)∥2 ≤ ∥𝑧(𝑘)∥2𝛾
𝑛−𝑘. (24)

De�ne

Ψ(𝑛, 𝑘) =

⎧⎨
⎩
(
𝐼 − ℎ𝐿̃− ℎ𝜙′𝐿Δ̄(𝑛− 1)𝜙

)
⋅ ⋅ ⋅(

𝐼 − ℎ𝐿̃− ℎ𝜙′𝐿Δ̄(𝑘)𝜙
)
, 𝑛 > 𝑘,

𝐼, 𝑛 = 𝑘.

According to (15) and (24) we have

∥Ψ(𝑛, 𝑘)𝑧(𝑘)∥2 ≤ ∥𝑧(𝑘)∥2𝛾
𝑛−𝑘.

The arbitrariness of 𝑧(𝑘) leads to that

sup
∥𝑧(𝑘)∥2 ∕=0

∥Ψ(𝑛, 𝑘)𝑧(𝑘)∥2
∥𝑧(𝑘)∥2

≤ 𝛾𝑛−𝑘,

which means
∥Ψ(𝑛, 𝑘)∥2 ≤ 𝛾𝑛−𝑘. (25)

By considering (14) we have

𝛿2(𝑘) = Ψ(𝑘, 0)𝛿2(0)− ℎ

𝑘−1∑
𝑖=0

Ψ(𝑘, 𝑖+ 1)𝜙′𝐿Δ̄(𝑖)𝐽𝑋(0),

which together with (25) results in that

∥𝛿2(𝑘)∥2 ≤ 𝛾𝑘∥𝛿2(0)∥2 + ℎ𝛽∥𝐿∥2∥𝑋(0)∥2

𝑘−1∑
𝑖=0

𝛾𝑘−𝑖−1

≤ 𝛾𝑘∥𝛿2(0)∥2 +
(
1− 𝛾𝑘

)ℎ𝛽∥𝐿∥2∥𝑋(0)∥2
1− 𝛾

≤ 𝛾𝑘∥𝛿2(0)∥2 +
(
1− 𝛾𝑘

) ℎ𝛽∥𝐿∥2∥𝑋(0)∥2(
1− ∥𝐼 − ℎ𝐿̃∥2

)2 .
(26)

Then we have

sup
Δ∈𝑄(𝛽)

sup
𝑘≥0

∥𝛿2(𝑘)∥2 ≤max

{
∥𝛿2(0)∥2,

ℎ𝛽∥𝐿∥2∥𝑋(0)∥2(
1− ∥𝐼 − ℎ𝐿̃∥2

)2
}
,

and

sup
Δ∈𝑄(𝛽)

lim sup
𝑘→0

∥𝛿2(𝑘)∥2 ≤
ℎ𝛽∥𝐿∥2∥𝑋(0)∥2(
1− ∥𝐼 − ℎ𝐿̃∥2

)2 .
Note that ∀𝑘 ≥ 0, ∥𝛿(𝑘)∥2 = ∥𝛿2(𝑘)∥2 and ∥𝛿(𝑘)∥2 ≤
∥(𝐼 − 𝐽)𝑋(𝑘)∥2 ≤ ∥𝑋(𝑘)∥2. We can get

sup
Δ∈𝑄(𝛽)

sup
𝑘≥0

∥𝛿(𝑘)∥2 ≤ 𝑀1(ℎ, 𝛽,𝒢)∥𝑋(0)∥2, (27)

and

sup
Δ∈𝑄(𝛽)

lim sup
𝑘→0

∥𝛿(𝑘)∥2 ≤ 𝑀2(ℎ, 𝛽,𝒢)∥𝑋(0)∥2, (28)

where

𝑀1(ℎ, 𝛽,𝒢) = max {1,𝑀2(ℎ, 𝛽,𝒢)} ,

𝑀2(ℎ, 𝛽,𝒢) =
ℎ𝛽∥𝐿∥2(

1− ∥𝐼 − ℎ𝐿̃∥2
)2 .

Similar to (13), we can get the continuous dynamics of
𝛿(𝑡) during the sampling time interval which is given below:

𝛿̇(𝑡) = −𝐿(𝐼 + Δ̄(𝑡𝑠))𝛿(𝑡𝑠)− 𝐿Δ̄(𝑡𝑠)𝐽𝑋(0), (29)

where 𝑡𝑠 = ⌊ 𝑡
ℎ
⌋ℎ is the last sampling time instant. Since the

right hand side of (29) is constant within [𝑡𝑠, 𝑡𝑠+ℎ), we then
have

𝛿(𝑡) =
[
𝐼 − (𝑡− 𝑡𝑠)𝐿 − (𝑡− 𝑡𝑠)Δ̄(𝑡𝑠)𝐿

]
𝛿(𝑡𝑠)

−(𝑡− 𝑡𝑠)𝐿Δ̄(𝑡𝑠)𝐽𝑋(0).

Then according to (27) and (28) we can get

sup
Δ∈𝑄(𝛽)

sup
𝑡≥0

∥𝛿(𝑡)∥2 ≤
[
1 + (𝑡− 𝑡𝑠)∥𝐿∥2 + (𝑡− 𝑡𝑠)𝛽∥𝐿∥2

]
×∥𝛿(𝑡𝑠)∥2 + (𝑡− 𝑡𝑠)𝛽∥𝐿∥2∥𝑋(0)∥2

≤
[(
1 + ℎ∥𝐿∥2 + ℎ𝛽∥𝐿∥2

)
×𝑀1(ℎ, 𝛽,𝒢) + ℎ𝛽∥𝐿∥2

]
∥𝑋(0)∥2,

(30)

sup
Δ∈𝑄(𝛽)

lim sup
𝑡→0

∥𝛿(𝑡)∥2 ≤
[(
1 + ℎ∥𝐿∥2 + ℎ𝛽∥𝐿∥2

)
×𝑀2(ℎ, 𝛽,𝒢) + ℎ𝛽∥𝐿∥2

]
∥𝑋(0)∥2.

(31)

Note that
lim
𝛽→0

𝑀2(ℎ, 𝛽,𝒢) = 0.

Then we have

lim
𝛽→0

sup
Δ∈𝑄(𝛽)

lim sup
𝑡→∞

∥𝛿(𝑡)∥2 = 0,
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Fig. 1: Communication graph 𝒢.

which is (8). On the other hand, according to𝑋(𝑡) = 𝛿(𝑡)+
𝐽𝑋(0) and (30), we arrive at

sup
Δ∈𝑄(𝛽)

sup
𝑡≥0

∥𝑋(𝑡)∥2 ≤
[(
1 + ℎ∥𝐿∥2 + ℎ𝛽∥𝐿∥2

)
𝑀1(ℎ, 𝛽,𝒢)

+ℎ𝛽∥𝐿∥2 + 1
]
∥𝑋(0)∥2,

which completes the proof.
5 Numerical Example
In this section, we shall give an example to verify the pro-

tocol. We consider system (3) with 3 agents connecting end
to end. The communication graph is shown in Fig. 1. The
corresponding adjacency matrix 𝐴, Lalacian matrix 𝐿 and
Laplacian matrix 𝐿̂ of mirror graph are given below:

𝐴 =

⎡
⎣0 0 1
1 0 0
0 1 0

⎤
⎦ , 𝐿 =

⎡
⎣ 1 0 −1
−1 1 0
0 −1 1

⎤
⎦ ,

𝐿̂ =

⎡
⎣ 1 −0.5−0.5
−0.5 1 −0.5
−0.5−0.5 1

⎤
⎦ .

It is clear that the graph 𝒢 is balance and contains a spanning
tree. We choose

𝜙 =

⎡
⎢⎣

1√
2

1√
6−1√

2
1√
6

0 −2√
6

⎤
⎥⎦ ,

then according to Lemma 4.1, the corresponding 𝐿̃ is

𝐿̃ =

[
3
2

√
3
2

−
√
3
2

3
2

]
.

The initial values of the 3 agents are 𝑥1(0) = 1.46, 𝑥2(0) =
1.84 and 𝑥3(0) = 1.2. It is clear that the average is
1
3

[
𝑥1(0) + 𝑥2(0) + 𝑥3(0)

]
= 1.5. The consensus proto-

col (9) is applied to system (3). By Theorem 4.1, we can
calculate the upper bound of sampling interval ℎ which is
2𝜆2(𝐿̂)
∥𝐿∥2

2

= 1. So that we choose ℎ = 0.5. 𝛽∗ can be cal-
culated accordingly, which is 𝛽∗ = 0.57735. The smaller
𝛽 is, the closer the states is to the average. We then select
different 𝛽 and compare the consensus errors. The state tra-
jectories are shown in Fig. 2 and Fig. 3. In Fig. 2, 𝛽 = 0.2,
the states are uniformly bounded and the consensus errors
are relatively large comparing with the ones in Fig. 3, in
which 𝛽 = 0.02. The Fig. 2 and Fig. 3 also verify that when
𝛽 goes to 0, the average consensus errors also goes to 0.

0 2 4 6 8 10
1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

t

β=0.2

x1
x2
x3
average

Fig. 2: State trajectories with 𝛽 = 0.2.
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Fig. 3: State trajectories with 𝛽 = 0.02.

6 Conclusion

In this paper we have considered average consensus prob-
lem for multi-agent systems with logarithmic quantization
in communication channels. The agents are homogeneous
and with �rst order continuous dynamics. A protocol has
been proposed based on sampled measurements. It has been
proved that when the sampling rate is high enough and the
quantization levels are dense enough, all the states of the
agents are uniformly bounded and the average consensus er-
ror will converge to 0 as the quantization density goes to
in�nity. A numerical example has been provided to demon-
strate the results.
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