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Abstract: This paper considers the quantized in�nite-horizon LQG control system, of which the measurement signal is quantized
by a �xed-rate quantizer before going into the controller. It turns out that only weak separation principle holds for the LQG
control system with communication channels. We study the problem of quantized LQG for a single-input-single-output (SISO)
system. An adaptive �xed-rate quantizer is designed to achieve the mean-square stability and the optimal distortion performance.
For a quantizer with a �xed bit rate of R (per sample), we show that the quantization distortion order is R2−2R for a large R.
Simulation examples are given to demonstrate the effectiveness of the proposed methods.
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1 Introduction
Recently, networked control systems (NCSs) have drawn

a great deal of attention from control scientists and engineer
[7, 12, 14]. As an important component in wireless commu-
nication, quantization may cause serious problems to feed-
back systems [13]. Lots of results have been reported to ad-
dress the stability and stabilization problems with logarithm
quantization in a determinate setup [7], some researchers
studied the problem of linear quadratic Gaussian control
(LQG) with quantization data [2, 4, 6, 11, 14]. The weak
separation principle has established for �nite-horizon LQG
control, where a linear predictive code (LPC) with memo-
ryless �xed-rate quantizer is given and separation principle
is shown to hold under a high resolution quantization as-
sumption and a mild rank condition [6]. For the in�nite-
horizon LQG control, however, the LPC with memoryless
�xed-rate quantizer can not guarantee the stochastic stability
of the closed-loop system, let alone the performance. This
is caused by the saturation effect of the �nite-support of the
quantizer, as shown in [12].
There is extensive literature about quantization for autore-

gressive sources [1, 5, 8, 10]. A systematic analysis of the
optimal �xed-rate uniform scalar quantization is given for
a class of memoryless distributions in [9]. Explicit asymp-
totic formulas are presented for the distortion and optimal
quantizer length approximation, about Gamma distribution,
of which Gaussian is a special case. However the results can
not be used directly to the quantized LQG control problem
since they are based on a key assumption that |A| ≤ 1. In the
control problem, we usually consider unstable systems, i.e.
|A| > 1.
Based on results in [9], a simple LPC scheme with adap-

tive �xed-rate quantizer has been proposed for in�nite-
horizon quantized LQG control of scalar systems [3]. It has
been shown that the mean-square stability of the quantized
feedback system is achieved, and the average distortion is in
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the order of N−2 lnN, whereN = 2R, and R is the quanti-
zation bit rate.
In this paper, we extend the result in [3] to general SISO

high order systems. We will show that the LPC scheme
with the adaptive scalar �xed-rate quantizer can preserve the
mean-square stability, and achieve a small distortion, which
is in the order of N−2 lnN, where N = 2R, and R is the
quantization bit rate.

2 Preliminaries and problem statement

2.1 Fixed-rate uniform scalar quantization
In this paper, we consider the �xed-rate uniform scalar

quantizer, which is the simplest and most common form of
quantizer, and of which the asymptotic behavior has been un-
derstood recently for a class of source densities with in�nite
support, such as Gaussian [9]. In [9], explicit asymptotic for-
mulas are presented for the distortion and optimal quantizer
length approximation, about Gamma distribution, of which
Gaussian is a special case. To introduce the result, we need
some notations. Consider an N = 2R level symmetric uni-
form scalar quantizer with step size Δ. Let (−LN , LN ] be
the support of this quantizer, where LN = NΔ/2. De�ne
yi = −NΔ/2+(i−1/2)Δ and Si = (yi−Δ/2, yi+Δ/2]
for i = 1, . . . , N. The quantizer is de�ned as

QΔ(x) =

⎧⎨
⎩

y0 if x ≤ −L,
yi if x ∈ Si,
yN if x > L.

Then the MSE granular and overload distortions are de�ned
as follows

Dgran =

N∑
i=1

∫
Si

(x− yi)
2p(x)dx

Dover = 2

∫ ∞

L

(x − yN)2p(x)dx,

where p(x) is the source density function.
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We summarized some results in [9] by Lemma 1-3, which
will be used in this paper. For notational simplicity, we de-
note the PDF of a Gaussian random variable as

ρ(μ, σ2, x) =
1√
2πσ

e−
(x−μ)2

2σ2 . (1)

Lemma 1 For a Gaussian distribution with zero mean and
variance σ, the optimal quantization length for the uniform
�xed-rate quantizer is given by L ≈ 2σ

√
lnN. Moreover,

the distortions satisfy

lim
N→∞

Dover

Dgran
= 0 (2)

D ≈ Dgran ≈ Δ2
N

12
=

L2

3N2
. (3)

Lemma 2 For ρ(0, σ2, x), de�neWσ2(y) as

Wσ2(y) =
1√
2πσ

∫ ∞

y

(x− y)2e−
x2

2σ2 dx.

Then

lim
N→∞

Dover
L

2W (L)
= 1 (4)

Wσ2(y) =
2σ5

√
2π

y−3e−
y2

2σ2 (1 + oy(1)), (5)

where oy(1) tends to zero as y tends to in�nity.

Lemma 3 For any source density whatsoever

lim
N→∞

Dgran

Δ2
N/12

= 1.

2.2 Problem statement
Consider the following SISO discrete-time system

xt+1 = Axt +But + wt

yt = Cxt + vt, (6)

where xt ∈ R
n is the state, u, y ∈ R are the control input and

the measured output respectively. Assume that x0, wt ∈ R
n

and vt ∈ R are mutually independent Gaussian with zero
mean and covariances Σ0 > 0, W > 0 and V > 0, respec-
tively. The cost function is de�ned as

J = lim
T→∞

sup
1

T
E
(

T−1∑
t=0

[
xt

ut

]T [
Q H
HT S

] [
xt

ut

])
,

(7)
where S > 0, Q ≥ 0, andQ−HS−1H

′ ≥ 0.
The problem is to design an observer based controller, and

an R-bit uniform quantizer to minimize the cost J. Let P be
the solution of the following Ricatti equation

P = Q+A
′

PA−(B
′

PA+H)′(S+B
′

PB)−1(B
′

PA+H).
(8)

De�ne

K = −(S +B
′

PB)−1(B
′

PA+H). (9)

Let the optimal observer based controller is given by
KQ(x̂t), whereK is the feedback gain matrix, andQ(x̂t) is

the quantized value of the estimated state from the following
Kalman �lter

x̂t = x̂t|t−1 + Γ(yt − Cx̂t|t−1)

x̂t+1|t = Ax̂t +But. (10)

where Γ = ECT (CECT + V )−1 and E is the solution of
the following Ricatti equation

E = AEAT −AECT (CECT + V )−1CEAT +W. (11)

The weak separation principle stated below [6] suggests
that optimal quantized LQG control can be achieved by �rst
constructing the optimal estimate x̂t, which is independent
of the cost function, then quantizing it and the optimal con-
trol is given by

ut = KQ(x̂t). (12)

Lemma 4 Consider the system (6), the cost function (7), the
quantized feedback controllerKQ(x̂t), withK given by (9),
x̂t given by (10), and the R-bit �xed-rate quantizationQ(·).
Then, the quantized LQG controller is optimal if Q(x̂t) is
obtained by the quantizer that minimizes the following dis-
tortion function

D = lim
T→∞

1

T

T∑
t=0

E [(x̂t −Q(x̂t))
′

Ω(x̂t −Q(x̂t))] (13)

where Ω = K
′

(S+B
′

PB)K. The corresponding cost func-
tion is given by

J = JLQG +minD = tr(PW ) + tr(ΩE) + minD.

An LPC type quantization scheme is proposed in [6] as
below

Q(x̂t) = (A+BK)Q(x̂t−1) +Q(εt)

εt = Γ(yt − cx̂t|t−1) +A(x̂t−1 −Q(x̂t−1)) (14)

where Q(x̂−1) = 0, ε0 = Γv0, and Q(εt) is the quan-
tized value of εt with the distortion function of E [(εt −
Q(εt))

′

Ω(εt −Q(εt))].

Lemma 5 Let Q(x̂t) and Q(εt) be de�ned as (14), then we
have

E [(εt −Q(εt))
′

Ω(εt −Q(εt))]

= E [(x̂t −Q(x̂t))
′

Ω(x̂t −Q(x̂t))].

Proof. Combining (10), (12) and (14), we have

(x̂t −Q(x̂t))

= Ax̂t +But ++Γ(yt − Cx̂t|t−1)−Q(x̂t))

= εt +AQ(x̂(t− 1))− (A+BK)Q(x̂t−1)−Q(εt)

= εt −Q(εt) + BKut−1 −BKQ(x̂t−1)

= εt −Q(εt).

This completes the proof.
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3 Quantizer design
In this section, we will design the LPC type quantizer as

(14) so that not only (13) is minimized, but also the mean-
square stability is achieved. For high-resolution quantizers,
we show that the separation principle holds when A is sta-
ble, which means the optimal distortion can be achieved by
a memoryless quantizer. However, it is shown in [12] that
the feedback system is unstable in probability 1 when A is
unstable if the LPC with memoryless quantizer is used. In
this paper, we choose the LPC quantization with adaptive
quantizer.
De�ne ηt = Axt − Ax̂t. Combining the system (6), the

controller (12), the state estimator (10) and the quantizer (14)
together, we obtain the following equations

ηt+1 = (A−AΓC)ηt + ΓCwt + Γvt+1 + wt (15)
x̂t+1 = (A+BK)x̂t −BK(εt −Q(εt))

+ΓCηt + ΓCwt + Γvt+1 (16)
εt+1 = ΓCηt + ΓCwt + Γvt+1 +A(εt −Q(εt)). (17)

Remark 1 1) Since η0 = (A − AΓC)x0 − AΓv0, then ηt
is Gaussian for any t if the initial state x0, wt and vt are all
Gaussian.
2) De�ne = E(ηtη′

t). Since A−AΓC is stable, we have

Ση = (A−AΓC)Ση(A−AΓC)
′

+(ΓC + I)W (C
′

Γ′ + I) + V ΓΓ
′

,

where Ση = limt→∞ Σηt
.

3) Denote zt+1 = Cηt +Cwt+ vt+1, then zt+1 is Gaussian
with zero mean and variance σ2

t+1, where

σ2
t+1 = C(Σηt

+W )C′ + V. (18)

Denote σ2
z as

σ2
z := lim

t→∞
σ2
t = C(Ση +W )C′ + V. (19)

With the above notations, we consider the following sys-
tem in the rest of this paper

εt+1 = Γzt+1 +A(εt −Q(εt)) (20)

ξt+1 =
√
S +B′PBKεt+1 (21)

The quantized LQG control problem becomes to design a
quantizer to εt given by (20) such that the distortion

D = lim
T→∞

1

T

T∑
t=0

E [(εt −Q(εt))
′

Ω(εt −Q(εt))] (22)

is minimized. This is equivalent to design a quantizer to ξt+1

such that the distortion

D = lim
T→∞

1

T

T∑
t=0

E [ξ′t+1ξt+1] (23)

is minimized if the system is well-behaved, for example, the
variance of εt+1 is bounded for unstable A.
WhenA is small, a memoryless quantizer can be designed

to achieve the optimal distortion as stated below.

Theorem 1 For the SISO system (20-21), assume that the
system is stable andKΓ �= 0. Denote

θ = (KΓ)2(S +B
′

PB). (24)

Let the step sizeΔt of the R-bit uniform �xed-rate quantizer
Q(ξt) is given by Δt = 2Lt/N, where N = 2R and Lt ≈
2σt

√
θ lnN. When R is large, the optimal quantizer Q(εt)

is given by
Q(εt) = θ−

1
2ΓQ(ξt). (25)

Moreover, the optimal performance is

J = JLQG +Do, (26)

where Do ≈ 4θσ2
z lnN
3N2 and σ2

z is de�ned by (19).

Remark 2 Theorem 1 is a direct conclusion from [6]. The
reason we present here is to show that for unstable A, the
same performance can be achieved by an adaptive quantizer
which guarantees the mean square stability.

Remark 3 For the SISO system (6), KΓ and (S + B
′

PB)
are scalars. ξt is a one-dimensional random variable and
the quantizerQ(ξt) is a scalar uniform �xed-rate quantizer.
Note that εt is a random vector. Theorem 1 tells us that the
optimalQ(εt) minimizing (22) can be achieved by the mem-
oryless quantizer that only minimizes E [(εt−Q(εt))

′

Ω(εt−
Q(εt)) at each step.

Remark 4 When A is unstable, two problems arise. The
�rst one is that the quantization scheme (14) with memory-
less quantizers can not guarantee stability of the whole feed-
back system if A is unstable [12]. The second one is that a
small distortion E [(εt −Q(εt))

′Ω(εt −Q(εt))] may result a
large element of εt −Q(εt), because Ω is not full rank (it is
actually rank 1 for SISO systems).

For scalar systems with |A| > 1, the �rst problem in Re-
mark 4 has been solved in [3]. An adaptive quantization
scheme is proposed to keep the mean square stability and
maintain the same LQG performance (26). The basic idea is
that one can enlarge the step size of the quantizer once sat-
uration happens. Although this may increase the distortion,
the whole distortion is not changed in the sense that the prob-
ability of enlarging the step size is very small. For a scalar
system, K, Γ and A are all real numbers. There is no differ-
ence between the quantization of εt and quantization of ξt.
For a high-order system whenA is a matrix, the quantization
of εt and quantization of ξt are different, and we have to deal
with the null-space ofKεt.
Now we are ready to state the main results of this paper.

Theorem 2 For the system (20-21), assume that A is unsta-
ble and KΓ �= 0. Let a = λ̄(A′A) be the largest singu-
lar value and θ be given by (24). Let the step size Δt of
the R-bit uniform �xed-rate quantizer Q(ξt+1) is given by
Δt = 2Lt+1/N, where Lt+1 is chosen as follows

Lt+1 =

⎧⎪⎪⎨
⎪⎪⎩

Lt+1,1 ≈ (4θσ2
t+1 lnN + anL2

t )
1
2

if |ξt −Q(ξt)| > Δt

2

Lt+1,2 ≈ (4θσ2
t+1 lnN +N−2L2

t )
1
2

if |ξt −Q(ξt)| ≤ Δt

2

(27)
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with L0 ≈ 2σ0

√
θ lnN. Assume N � an/2. Then the dis-

tortion satis�es

Dt+1 ≈ 4θσ2
t+1 lnN

3N2
+

an

N2
Dt. (28)

Theorem 3 Consider the system (6), the cost function (7),
the quantized feedback controller KQ(x̂t) with K given by
(9). Let x̂t andQ(x̂t) be given by (10) and (14) respectively,
where the quantizer Q(εt) is de�ned by (27), and Q(ξt) is
de�ned in Theorem 2. When N = 2R � an/2, the whole
cost function J is given by (26).

Proof. When N = 2R � an/2, it follows from (28) that

lim
t→∞

Dt ≈
4θσ2

t+1 lnN

3N2
.

Therefore the quantization distortion is given by

Do = lim
T→∞

1

T

T∑
t=0

Dt ≈
4θσ2

t+1 lnN

3N2
.

Using Lemma 4, we know that the cost function J is given
by (26).

4 Proof of Theorem 2

Theorem 2 can be proved step by step by the following
lemmas.

Lemma 6 For the system (20-21), assume thatA is unstable
and KΓ �= 0. let the quantizer be de�ned as (27), the PDF
pst(s) of st = ξt −Q(ξt) is given by

pst(s) =

⎧⎨
⎩

ht(−s+ Lt +
Δt

2 ) s < −Δt

2

psk(s) |s| ≤ Δt

2

ht(−s− Lt − Δt

2 ) s > Δt

2 ,

(29)

where ht(s) is the PDF of ξt. Furthermore, when |s| > Δt

2 ,
pst(s) satis�es

pst(s) ≤
1

N2
ρ(0,

L2
t

4 lnN
, s) (30)

for both Lt = Lt,1 and Lt = Lt,2, where ρ(0,
L2

t

4 lnN , s) is
de�ned as (1)

Proof. The main dif�culty is the fact that εt+1 −Q(εt+1)
may be large although

E [ξ′t+1ξt+1] = E [(εt+1 −Q(εt+1))
′

Ω(εt+1 −Q(εt+1))]

is small, because Ω is not full-rank. Note that we assume the

feedback system is stabilizable, which means

⎡
⎢⎢⎢⎣

K
KA
...

KAn−1

⎤
⎥⎥⎥⎦

is of full-rank. Therefore, E [(εt+n − Q(εt+n))
′

(εt+n −
Q(εt+n))] does not depend on E [(εt−Q(εt))

′

(εt−Q(εt))].
Hence it is bounded by βan lnN

N2 , where β is a constant not
depending on a, n and N. The remaining procedure is simi-
lar to [3].
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Fig. 1 Distortion for different R.

Lemma 7 For the scalar system (20), let the quantizer be
de�ned as (27), the saturation probability satis�es

Pr(|εt − εqt | >
Δt

2
) ≤ N−2 (31)

for any t ≥ 0.

Lemma 8 For the scalar system (20), let the quantizer be
de�ned as (27), we have

Dgran
t+1 ≈ 4θσ2

t+1 lnN

3N2
+

an

N2
Dgran

t , ∀t ≥ 0. (32)

and
lim

N→∞

Dover
t+1

Dgran
t+1

= 0, ∀t ≥ 0 (33)

The proof of Lemma 7 and Lemma 8 are similar to [3].
Theorem 2 follows from Lemma 8 directly by using the fact
thatDt+1 = Dover

t+1 +Dgran
t+1 .

5 Numerical example

Consider the system (20) with A =

[
1 0
5 2

]
, K =[

1 2
]
, Γ =

[
1 1

]′
and S + B

′

PB = 1. Then we
can compute θ = 9. We use the quantization scheme (27)
with R = 6, R = 8, R = 12 and R = 16. For each case,Dt

is plotted from t = 1 to t = 3000 in Fig. 1. Table 1 shows
the total times that Q(ξt) achieves the bound (i.e. it satu-
rates) for differentR.We see that the largerR is, the smaller
the number of saturation times. Table 1 also shows the es-
timated distortion, which is consistent with the simulation
result in Fig. 1.

6 Conclusion
We have studied the in�nite-horizon quantized LQG con-

trol problem for general SISO systems. Under high resolu-
tion quantization framework, an adaptive �xed-rate quanti-
zation scheme is proposed to achieve the stochastic stability
and the LQG performance. We have shown that the aver-
age quantization distortion has the order of R2−2R under
high resolution quantization, which is the same with that of
LPC scheme with memoryless quantizer. Numerical exam-
ples have been given to illustrate the main results.
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Table 1: Saturation times of different R.

R=6 R=8 R = 12 R = 16

Q(ξt) � saturation 182 54 11 3
Q(ξt) � not saturation 2818 2946 2989 2997

R2−2R 0.018 0.0015 8 ∗ 10−6 4 ∗ 10−8
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