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Abstract: The purpose of this paper is to study stabilization problem of linear time-invariant systems subject to stochastic multi-
plicative uncertainties and time delays. We consider a structured multiplicative perturbation which consists of static, zero-mean
stochastic processes and we assess the stability of system based on mean-square criteria. The mean-square stabilization problem
for multi-input multi-output systems generally requires solving an optimization problem involving the spectral radius of a certain
closed loop transfer function matrix. This problem in general is non-convex and by and large unresolved, only approximate
solutions are available based on numerical algorithms resembling to the D-K iteration for p-synthesis. Our main contributions
include the fundamental conditions, both necessary and sufficient, which insure that the multi-input multi-output minimum phase
systems can be stabilized by output feedback in the mean-square sense. We provide a complete, computationally efficient so-
lution in the form of a generalized eigenvalue problem readily solvable by means of linear matrix inequality optimization. For
conceptual insights, limiting cases are analyzed in depth to characterize and quantify explicitly how the directions of unstable

poles may affect the mean-square stabilizability of multi-input multi-output systems.
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1 Introduction

For well over four decades, control of linear time-invariant
(LTT) systems under stochastic multiplicative noise effec-
t has attracted a great deal of research interest (see, e.g.,
[6], [7], [10], [14], [19], [20], [17], [26], [35]). Recent de-
velopment in networked control shows that stochastic multi-
plicative noises can be used to effectively model uncertain-
ties in communication channels, including packet loss ([10],
[11], [30], [36], [38]), quantization error ([25], [24], [33])
and channel fading ([2], [10], [12]). Thus, while an age-old
problem of fundamental interest by itself, the study of con-
trol under stochastic multiplicative uncertainties has a direct
linkage to networked control problems, which, undoubtedly,
has prevailed in the recent control literature (see, e.g., [21],
[28], [29], [31], [2], [25], [39] and the references therein).

Time-delay is an enduring subject in the studies of dynam-
ical systems, which may arise from sources ranging from
signal transmission delay, computation delay, to physical
transport delay. It has been known for long that delay can
lead to degraded performance, poor robustness and even in-
stability of systems. Contemporary studies reveal that such
adversary effects can be particularly conspicuous in net-
worked feedback systems. For both its intrinsic and renewed
interest, there have been considerable advances in the s-
tudy of time-delay systems, which, most notably, have made
available various time- and frequency-domain stability anal-
ysis approaches (see, e.g., [22], [3], [27], [13], [23]). Despite
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the developments in stability analysis, however, the stabi-
lization of time-delay systems proves fundamentally more
difficult and remains to be a daunting task.

In this paper we study stabilization problems for discrete-
time LTT systems subject to stochastic multiplicative uncer-
tainties and time delays. In its full generality, we model
the system uncertainty as a structured multiplicative stochas-
tic perturbation, which, unlike in robust control theory (see,
e.g., [40]), consists of static, zero-mean stochastic processes.
Under this formulation, the uncertainty can be interpreted as
state- or input-dependent random noises [20, 35], while in
the networked control setting, as parallel memoryless noisy
communication channels [10, 37]. We assess the system’s
stability based on mean-square criteria; in other words, the
stability is evaluated statistically using the system’s state
variance. We derive necessary and sufficient stabilizabili-
ty conditions for multi-input multi-output (MIMO) systems
to be mean-square stabilizable in the presence of structured
stochastic multiplicative uncertainties and time delays.

Our approach is inspired by the pioneering work of
Willems and Blankenship [35] on stochastic multiplicative
noises, who studied the closed loop stability of single-input,
single-output (SISO) systems and obtained a necessary and
sufficient condition for mean-square stability. In subsequent
works, Hinrichsen and Pritchard [14], and Lu and Skelton
[20] formulated the mean-square stability problem as one of
robust stability against stochastic multiplicative uncertain-
ties, which allowed them to obtain necessary and sufficien-
t mean-square stability conditions for MIMO systems. In
much the same spirit, Elia [10], and Xiao ef al. [37] de-
veloped similar conditions for networked control problems.
With the distinctive feature of a frequency-domain, input-



output based approach, these developments share much in
common with robust stability analysis and lead to stability
results reminiscent of small gain conditions, herein dubbed
as mean-square small gain theorems. We employ the mean-
square small gain approach to tackle our stabilization prob-
lems.

The mean-square stabilization problem for MIMO sys-
tems generally requires solving an optimization problem in-
volving the spectral radius of a certain closed loop transfer
function matrix. This problem in general is non-convex and
consequently poses a formidable technical barrier. Similar
problems of minimizing the spectral radius have been widely
known for their difficulties in robust synthesis [16, 40], and
are also found in networked feedback stabilization problems
[10, 34]. Problems in this category are by and large unre-
solved, and only approximate solutions are available based
on e.g., numerical algorithms resembling to the D-K itera-
tion for p-synthesis [10, 40]. As a main contribution of this
paper, nonetheless, we resolve this problem for minimum
phase systems. Specifically, we show that for an MIMO
minimum phase plant with time delays, it is both necessary
and sufficient to establish the mean-square stabilizability by
solving a generalized eigenvalue problem (GEVP), which
can be solved using linear matrix inequality (LMI) optimiza-
tion methods. Further investigation into limiting cases shows
that the stabilizability condition depends on not only the lo-
cations of the plant unstable poles, but also the directions
associated with the poles. Furthermore, the delays, which
may result from the plant itself, or be conjured as network
delays in the networked control setting, are seen to have a
direct, monotonically increasing effect on the mean-square
stabilizability.

We now collect the notation throughout this paper. For any
complex number z, any vector u, and any matrix A, we de-
note by z*, u*, and A* their conjugate and conjugate trans-
poses, respectively. For any square matrix A, we denote its
spectral radius by p(A). The Holder ¢5, ¢1, and ¢, induced
norms of a matrix A = [a;;] are denoted by || AJ|, || A1, and
|| A]| o0, respectively, i.e.,

Al = mj‘@XZ |ai;l], [|Alloo = mgiXZ |ais]-
i J

For any transfer function matrix G(z), we represent a state-

space realization of G(z) by G(z) = [ Al B . Let the

C|D
open unit disc be denoted by D := {z € C : |z| < 1},
the closed unit disc by D := {z € C : |z| < 1}, the unit
circle by dD, and the complements of I and D by D¢ and
D, respectively. With respect to the unit circle 9, we shall
frequently encounter the Hilbert space

Lo :{F : F(z) measurable in 0D,

1
1 (7 . 2
Fla= (5 [ 1P a0) <oo},

in which the inner product is defined as

(F,G) = % /7T Tr (FH (e7%)G(e7?)) df.

—T

It is well known [40] that Ho and Hé‘ are subspace of
Lo, and they constitute orthogonal complements in Ls.
For any F € Hy and G € Ha, (F,G) = 0. Note
that we use the same notation || - |2 for the spaces Ls,
Ho and 'Hj‘, but the the distinction will be self-evident
from the context. Define also the Hardy space Ho, =
{F : F(z) bounded and analytic in D}. A subset of H,
RHo, 1s the set of all proper stable rational transfer func-
tion matrices.

2 Problem Formation and Preliminary Results
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Fig. 1: Feedback system with multiplicative uncertainties
and delays

We consider the feedback control system depicted in
Fig. 1. Let P, (z) be a family of plants subject to delays:

Pr(2) = Po(2)A(2),

where Py (z) is the transfer function matrix of the delay free
part, and A(z) is a diagonal transfer function matrix consist-
ing of input delays:
A=diag ("™, -+, 27™),;>0i=1,....m. (1)
The control signal u(k), which is produced by LTI controller

K (z), is corrupted by the perturbation A which arises in d-
ifferent channels and assumes the form:

un (k) = (I + AF))u(k),

A(k) = diag (A (k), --- @

s Am(k))

Throughout this paper we make the following assumption-
s which are standard in the earlier studies of random multi-
plicative noises (see, e.g.,[20]):

Assumption 1 {A;(k),i = 1,...,m}, is a white noise with
variance o;.

Assumption 2 {A;(k)} and {Aj(k)} are uncorrelated pro-
cesses for i # j, i.e.,
E{A;(k1)Aj(k2)} =0, Vki, ko and i # j.

Assumption 3 {A;(k),i = 1,...,m}, is uncorrelated with
d(k).

Together with Assumptions 1-3, perturbation A in (2) ren-
ders the system in Fig. 1 as one subject to a structured s-
tochastic multiplicative uncertainty. We focus on stabiliza-
tion of the system in the mean-square sense, which means
that for any bounded initial states of the plant and controller,
the variances of these states will converge asymptotically to
the zero matrix when £ — oo. The following definition
gives an equivalent notion of internal stability from an input-
output perspective, appropriately tailored from [35], [20].
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Fig. 2: Mean square small gain theorem: Linear systems
with stochastic multiplicative uncertainty

Definition 1 The system in Fig. 2 is said to be mean-square
input-output stable if for any input sequence {d(k)} with
bounded variance E{d(k)d*(k)} < oo, the variances of the
error and output sequences {e(k)}, {y(k)} are also bounded,
ie., E{e(k)e*(k)} < oo and E{y(k)y*(k)} < oc.

The following result, herein referred to as the mean-square
small gain theorem, is adapted from [20] (see also [35],
[14]), which provides a necessary and sufficient condition
for the mean-square input-output stability. This result will
play a pivotal role in our subsequent development.

Lemma 1 (Mean-Square Small Gain Theorem) Let 7" be a
stable LTI system, and A(k) be given by (2). Then under
Assumptions 1-3, the system in Fig. 2 is mean-square stable
if and only if

2
01

T35 T2 13

P <1

1T 113 [ Tonm13

m

3

It is straightforward to show via direct manipulation that
the system in Fig. 1 can be rearranged to that in Fig. 2, with
the transfer function matrix 7'(z) given by the complemen-
tary sensitivity function of systems P, (z):

T(2) = K(2)P, () [ + K(2)P, ()] .

Thus, under Assumptions 1-3, Lemma 1 can be applied at
once to determine the mean-square stability of the system.
Let a right and left coprime factorization of the plant transfer
function matrix P;(z) be given by

P,=LM'=M"1L,
where L, M, L, M € RH satisfy the double Bezout iden-

2 -1l

for some X, Y, X , Y € IRH . It is well-known that every
stabilizing controller K can be parameterized as [40]

X ¥
L M

Xy
-L M

M Y
L X

M Y
L X

}1(4)

K=(Y ~MR)(LR— X)™!

— (RL—X)"'(Y = RM), RERH.. (5

In turn, every stable complementary sensitivity function
T'(z) can be found as

R e RHx. (6)

In light of Lemma 1, the following condition for mean-
square stabilizability is immediate.

T=—(Y - MR)L,
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Lemma 2 Let A be given by (2). Then under Assumptions
1-3, the system in Fig. 1 is mean-square stabilizable if and
only if

inf
RERM oo

p(W) <1 (7)

Pmin =
where

w
ot ll(Y = MR)L]u |13 onlll(Y = MR)L]1n3

Tpll[(Y = MR) L] I3
®

(Y — MR) |

3 Main Results

For an MIMO plant, let a complex number p € D be a
unstable pole with an output direction vector 7, ||n|| = 1 if
n M (p) = 0. In the sequel, for an all-pass transfer func-
Ain B'Ln

tion matrix M;,(z) = [ 1D,

] , we use the familiar

realization of

- Azn - BinD;«LlCin _BinD;nl
Mml (2) = [ D;nl Cin ;n1 } NG
We shall also write
A= Ay, — BinD; 1O (10)

It is useful to point out that the eigenvalues of A coincide
with the zeros of M;,,(2).

The following lemma (see, e.g., [32], [1]) will serve as the
foundation in our subsequent developments which recast the
mean-square stability problem as a scaled norm minimiza-
tion.

Lemma 3 For any nonnegative matrix W,

p(W) = inf [TWT 1 = inf [TWT o, (11)

where the infimum is taken over the set of positive diagonal
matrices I' = diag (v#, -+, 72).

We shall present a general stabilizability condition for
minimum phase systems with relative degree zero under in-
put delays. For this purpose, we consider delays described

in transfer function matrix L for; >0, ¢ =1, --- , mas
ik
L(2) = Lout() (12)
Z_Tm,
Here we assume that L (z) € RH.

Theorem 1 Suppose that Py(z) is minimum phase and has
relative degree zero, and that L is given in (12). Let

M (2) = [ ‘éf“ g’i” } be an inner of M (z). Then under

Assumptions 1-3,

A~ \Ti—1 ~
Pmin = inf {,u : O'?G:D;:lB;kn (A*> XATi_leD;nlei

<peTe;, 1=1, ---pm}, (13)



where X > 0 is the solution to the ARE Consequently,

* * * * - 2
Aj XA — X + UGy — (A7, X Bin, + C1I' D) HF% (Y — MR)Le,|| 772
% (Bi, XByy + D3yTD,) " (B X Aig + D1, TCop) = 0. L ) :
(14) = || (M (2) = Mk (00)) el + || (M ()
- - 2
Furthermore, — Mrout Moyt X + MFoutMoutRL) el Vi .
2
. . 1 A _ We proceed to calculate the Lo norm of
min = inf : i X | — =707 AT B Dy ey p >
P 1n {,u (;7 > I in © z (Mp;h(2) — My (00)) €5, which, according to (9),
) has the realization such that
-e;‘D*—lBZ‘n(A*)ﬂ >0, >0,i=1, ---, my, _ _
" ! } (Mmi(z) - MFi}L(OO)) €i
(15) _ [ Arin = BrinDp;,Crin | —BrinDpj,e: ]
where X is the solution to the Lyapunov equation . L1
- [ A | =Bi.D;'T 3¢ }
X, — AX;A* + By, D teier DI B = 0. (16) Dy, Crin | 0 '
The system in Fig. 1 is mean-square stablizable for any It follows from an standard exercise [40] that

{o%, -+, 0%} if and only if pyin, < 1. ) )
1 I (M2 (2) = M (o) e

_ oxyx—1 % —1 —2
=e; D, ~B; XB;,D, ey, ",

m

Proof. Using Lemma 2-3, we first note that

W) = inf [TWT !
(W) HFl I I where X is the solution to the

2
_ 2 i 7 —2 - .
= infmax o7 |[2(Y — MR)Le;|| %~ (A7) X — A" XA+ Cfy, Di Dt Crin = 0. (18)
Let M = M;,M,,; be an inner-outer factorization of It is readily recognized that this equation coincides with
M. Then for any I' = diag (7§, ---, %), % > 0,  the ARE (14). Let the impulse response sequence of
i =1, ---, m, the transfer function matrix I'z M;,, can Mrout Moyt X e; be denoted as { fi }; that is,

. 1
be factorized as I'2 M;,, = Mrvpj,Mroyu:, Where Mr;, =

Arin | Brin is inner with the realization [18] Mrout(2) Mout(2) X (2)e; = Z foz™".
L Crin | Drin k=0

Mrin = Since Le; has relative degree 7;, the impulse response
i A, + B, F ‘ By (D:. T D + B:, X B, )_% sequence of Mty Moyt RLe; is equal to zero for k =
I‘%Cm n F%DmF ‘ T%Dm(DfnrDm T BanBm)*% 1 , 0,1, ---, 7; — 1. Furthermore, we have
) 2
—1 <~ s
with X > 0 being the solution to the ARE (14) and H (%Min (00) = Mrout Mour X + MFfthoutRL) €i 9
Ti—1 o'} 2
_ * * —1 * * ~
F = 7(BmXBm + D,mFDm) (B”LXAm + DmFCin). _ Z ”kaQ + Z sz—k — Mryuyi M, RLe;
By using the Bezout identity (4), it follows that for any ¢ = =t k= 2
17 Ty, M, EVidently,
Hrl(y MR)Les|| 72 o0 ?
2 - Eill Vi . —k ~
f — Mrout Moys RLe; = U.
1 i 2 ) Relllr%Hw ]; frz Tout +RLe 0
= [Pt - a% = MRy 572 =i 2
1 - - 2 As such,
= H(Mljlilri - MFoutMoutX - MFoutMoutRL)ei '7272
) _ o2
inf 03y - MR)Lei| 4772
It is readily calculated that RERH o 2
Ti—1
M1, (00)T% = Mgt (00) Mous(00) X (00) = 0. = 3 IfullP2® + € Di Bry X B Dy lein .
k=1
Thus, (19)
2(Mpk(2) — Mg} (00))I'7 € Hy, We next seek to determine the impulse response sequence
= " 1 " - {fr} for k = 1, --- 7, — 1. For this purpose, denote
2(Mp;;, (00)T'2 — Moy Moyt X (00)) € Ha. the impulse response sequences of Mr;y, (2) and My} (2)e;
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by {gxr} and {hy}, respectively. From the Bezout identity
Mrin Mrow My Xe; — T3Y Le; = v¢;, and the fact that
Le; has relative degree T, it follows at once that

gJo fo Vi€
g1 go f 0
g‘f'ifl g-ri72 gO fTifl O
On the other hand, since Mr‘ian—TiiL(fi = ¢;, we have f, =

Yihg, k=0, 1, -+, 7; — 1, where {hy}, as the impulse
response sequence of My} (2)e;, is found to be

hi = =Dp Crin A" ' Brin D) e

Tin
—1 Ak—1 —1 —1
= _DrinCFinA BinDin € -
Thus,
7'7;71 Tifl

2. -2 -2 —1 Axk—1 -1
k=1 k=1

- Dpt Crin A1 B, Dy tes. (20)

In view of the Lyapunov equation (18), we then obtain

Ti—1
D el
k=1

Ti—1

=97 Y €D B AT (AT XA - X)
k=1

Ak—1 -1
. Ain Bian €;
7',5—1

=7,2>  eiD; ' B, AjE X AY, B, D e
k=1

m wm

Ti—1

—2 *—1 Axk—1 Ak—1 -1
k=1

in
—2 _xyk—1 pox gx7—1 ATi—1 —1
=1, e Dy BL AL XAL T Bin Dy e

—2 x yx—1 px* —1
=7 €Dy, B, XBinD;, €.

As a consequence,

inf w
Relﬁﬁoc p( )
_ 2
= inf infmax 01.2 HF%(Y — MR)Le; ’7;2
RERHo T i 2
_ 2
=inf inf max o? F%(Y — MR)Le;|| ~;?
I' RERHo i 2

= inf max oy 2er D B AT X AT B, D ey
Alternatively, we may write the last equality as

— L2 xmyx—1lpk fxmi—1y pTi—1 -1 -2
puin =inf {ps: o2e; DT B AT X AT B DL ey

)

:iIIlf {M : U?efoJlenA*”_1XAT"_1BmD;nlei

).

S,u7i:17

S,ue;krem Zzlu

This establishes (13). To prove (15), we calculate Dliiln Crin,
which is found to be

D_1 CFin - _(B;nXBin + DanDiTL)_1/2B;nXA'

Tin
Thus, the Lyapunov equation (18) can be rewritten as

X — A*XA+ A*X By,

and further as

X — A*(X — XB;n (B}, X By,
+ D}, I'D;,) tB;, X)A = 0.

Employing the Sherman-Morrison-Woodbury formula [15],
the Lyapunov equation (18) can be written as

. -1 .
X — A* (X—1 + By (DT Diy) " B;n) A=o,
or equivalently,

X' AX'A* 4+ B, D 'TIDIIBE, = 0. (21)
Let X; be the solution to (16). Then it is readily seen that
the solution to (21), and equivalently that to the ARE (14), is
given by

m —1
X = (Z %2)@.) :
i=1

Substitute X into the inequalities in (13). Then by a repeated
use of Schur complement [15], the inequalities in (13) are
found to be equivalent to

m 1 . .

(Z %,2XZ-> ——7;202A7' B, D; teie; D B AT > 0.
: Iz

i=1

The proof is now completed by setting ;" 2 t0 ;. [ ]

We note that the conditions (15) constitute a GEVP prob-
lem, which can be efficiently solved using LMI optimization
techniques [4, 5]. Thus, these results furnish a computation-
al and effective necessary and sufficient condition for mean
square stabilizability. Thanks to the fact that the solutions
depend only on the matrices A;,, B;,, D;,, state-feedback
mean square stabilizability problem has been solved as well.
It is worth noting that since the eigenvalues of A coincide
with the plant unstable poles, Theorem 1 captures the ef-
fect of delay on conditions for mean square stabilizability
which becomes proportionally more demanding as the de-
lays in the plant increase. It is also important to point out
that in addition to the locations of the plant unstable poles,
the realizations of the inner factor M;,, also depend on their
directions, and as such, so do the stabilizability conditions.
In particular, when BinDi_nl e; = 0, the ith inequality in (13)
is rendered moot.

In what follows we study two limiting cases of multiple
poles to analyze in further depth the dependence of the sta-
bilizability on pole direction. For simplicity, we restrict our
attention to proper plants subject to equal delay length of
each input channel. In the case of multiple poles p; € D¢
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with pole direction vectors n;, j = 1, -, n, we define
three sets with respect to 77; and e;, respectively

L={1<i<m: n;ei#()},
Ji={1<j<n: me 0},

I={1<i<m:mnp=mn;=nn"e#0}

Corollary 1 Suppose that P-(z) has no zero in D¢ and be
subject to delays of same length 7, = 7 =0, 1.

(i) Letp; € D, i = 1,--- , n, be the unstable poles of P, (z)
with parallel directions spanned by a pole direction vector 7.
Then

Pmin —

(H P ”) (H Ipil? — 1) . ()
i=1

0
Q=

i€

(ii) Letp; € D i= 1,---,n,n < m,be the unstable poles
of P,(z) with orthogonal directions spanned by 7;. Then

> P (s - 1)

j€J;
Prmin = max i .23

D2

i€l g

Proof. We prove the corollary for 7 = 1; the case 7 = 0
follows analogously and hence is omitted. It follows from
[9] that

Mm(z) H H <I 771771 1Z 7]? 77”7@)
i=1 v

=

[

where M;(z) = [ élf ! ] can be constructed as
L vV |Pi|271,’7>_k
Mz(z) - \/|p7|2 1 =

i I—(l—i—é)nm;‘
For the n parallel pole directions, we may assume that the
pole direction vectors n; = 7. In this case, the solution of

ARE (14) is given as follows

1
ﬁ
¥ 7
X = |: > 1 :| ’ XZ =
n =ty 1
7T 1y
Let H M;(z) = é’ gz },for 7 = 1, it follows from

the proof of Theorem 1 that

Pmin —1nfmaXU {’Y,L 2 >k.D}'< 1BZX2BED €;

+7;%er DY DB, BnDnlDzlei}

UM

Consequently

* yk—1 ok —1
pmm—lnfmaxa { v; eZ-D2 By Xy By Dy “e;

1
|n 61‘271, i 2
H pil*(Ipn|* = 1)
E In*eiy; = =1

—mfmaxa (H Ipi| — >

+

In*e|?y; 2
= 2
> In*ed®;
=1

The infimum is found at such v;, i € Z that for i # j, 1, j €
I’

|7] 61‘ %

() L
Z In*ei|?y;
|n el| fyl

0]%2 >ZMQP

which gives rise to the solution (22). To establish Corollary
1-(i1), it suffices to note that with mutually orthogonal pole
directions 7;, i = 1, --- , n, an all-pass factor of 'z M (z)
can be constructed as [8]

Ay ¥ zZ—p1

n 1-piz ,f/
MFm(Z) _ Ai* .. . Ai* ,
T h T
U+ I| WU
where 7; = D=2, /|0 2#,||, and [ e i U] isa

unitary matrix. Thus, we obtain

Prmin 71nfmax o? ||( Fl;(z) — M}t (OO)) 61‘”5

Tin
2 *Z * :
_mfmaxa Z| el —— +p;
j 2
. Ines| ;2
zlgfmiaxai2 Z (\pj|2 — 1) —Z 7| |; —. (24)
jed; & n;€i
Define
=iy (I - el
- P gl e
v Z ey

iel;

It follows that the minimax problem in (24) achieves the
minimum at z; = xj, for ¢ # k, i, k € I;, subject to the

constraint ; ,

> =2 (ml* -

i€l; JjE€J;
This leads to the solution (23), thus completing the proof. m

Thus, when in the extreme their directions are parallel, the

unstable poles contribute to the difficulty to stabilization col-
lectively. In contrast, when the directions are orthogonal, the
poles tend to affect the stabilizability individually in an ad-
ditive manner. This latter scenario is particularly complex
and varies widely depending on how the individual pole di-
rections are aligned with the Euclidean basis.
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Fig. 4: Pole effect on MMS: location.

4 Example

In this section, we use an example to illustrate our results.
Consider a 2 x 2 plant:

252 252 zmm
Pr(z) = (a+3)2°+(a—3)z (3a+1)z2—(3a—1)z] [ 2_7—2] .
(2=2)(z—p1) (2=2)(z—p1)

For simplicity, let 7, = 7 = 1. It is easy to find that the
plant has two unstable poles, p; with output direction vec-

1

tor n; = \/ﬁ[a, 1]* and py = 2 with output direction
1

vector 7, = —[1,1]*. As such

V2
a+1
covLlmoe) = s

We will illustrate how the unstable pole affect mean-square
stability in terms of location and direction. To this end, we
first fix p; = 3. Fig. 3 shows the regions of (0%, 03) given
by the condition (13) for different (7, 72). Note that any
values of (07, 03) under curves guarantee closed loop mean
square stability, and is indicated as the mean-square stability
(MMS) region. It is clear that the MMS region is shrink
gradually with the decrease of angle Z(71,72). Second, we
fix a = 1 and allow p; to vary. Fig. 4 demonstrates the effect
of pole location on MSS region. One can see that the farther
is the distance from the unit circle, the smaller is the MMS
region.

Next, we fix a = 1 and p; = 3, and show the necessi-
ty and sufficiency of condition (13). We use MATLAB to
generate a zero-mean white process {A;(k)} so that with
0? = 0.1. The processes {d;(k),i = 1,2} are generated to
meet E{d?(k)} = 0.1 similarly. In this case, the maximal
variance o3 of Ay (k) allowed for mean-square stabilization
is found as 03,,,, = 0.04. Fig. 5 shows that for 3 marginal-
ly less (05 = 0.038) and greater (03 = 0.043) than 0.04, the
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Fig. 5: Sensitivity of stabilizability bound
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Fig. 6: Delay effort

output variance E(y?(k)),i = 1,2 converges and diverges,
respectively; in other words, the closed loop system is and is
not mean-square stable for these values of .

Finally, consider 03 = 0.0017, the variances pair
(02, 03) = (0.1, 0.0017) belongs to MMS region; in-
deed, it is well in the MMS region. Then, there is a optimal
controller to stable the plant P.(z) in mean-square sense.
Fig. 6(a) shows the stable responses of the system. With the
same controller, however, if we change 70 = 1 to 79 = 2.
Fig. 6(b) shows that the mean-square stability is lost.

5 Conclusion

This paper investigates the mean-square stabilization
problem for LTI systems subject to delays and stochastic
multiplicative uncertainties. Our contributions include com-
putationally efficient necessary and sufficient conditions to
insure a general minimum phase MIMO systems to be mean
square stabilized over output feedback, as well as some ex-
plicit analytic conditions for limiting cases. The condition
for general case amounts to solving a GEVP problem which
is readily solvable using LMI optimization techniques, and
coincidentally furnishes a solution to state-feedback mean
square stabilizability problem as well. Deeper investigation
into limiting cases shows that for MIMO systems, the stabi-
lizability condition is sensitive to the directions of the unsta-
ble poles. Furthermore, the delays are seen to have a direct,
monotonically increasing effect on the mean-square stabiliz-
ability.
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