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Abstract: In this paper we investigate the optimal load shifting problem via electric vehicles (EVs) in a smart grid scenario
which aims at flattening the total demand curve as much as possible while each EV’s local constraints are satisfied. We assume
bidirectional energy exchange between EVs and the power grid and formulate the problem as a mixed integer quadratic program-
ming problem. To solve this problem in a decentralized fashion, we propose a decentralized optimal algorithm where EVs and
the aggregator cooperatively find the optimal solution by communicating in a star network and conducting local computation.
To implement the proposed algorithm, only limited data are exchanged and the aggregator does not need any parameter infor-
mation of EVs. The proposed algorithm converges much faster than traditional centralized methods/commercial solvers, as the
mixed integer part is broken down into local subproblems and solved in parallel by each EV. Convergence proof of the proposed
algorithm is presented and numerical experiments show the effectiveness of the proposed algorithm.

Key Words: Decentralized Algorithm, Electric Vehicle, Load Shifting, Mixed Integer Programming, Smart Grid, V2G

1 Introduction

EVs are recognized as a promising alternative to tradition-

al gas-powered vehicles due to the rising environmental con-

cerns and recent advances in battery technologies. Despite

the environmental and economic benefits, EVs pose a great

challenge to power systems in the sense that the uncoordi-

nated charging behavior of EVs can worsen the load pro-

file, e.g., adding to existing demand peaks, and consequent-

ly threaten the security and stability of power systems [1].

However, with well-designed control algorithms, EVs can

not only be safely incorporated into power systems, but also

provide demand side management services including energy

arbitrary, spinning reserve, and load shifting, since EVs can

be viewed as energy storage when plugged-in. The energy

flow between EVs and power systems can be bidirectional,

i.e., EVs can not only take energy from power grids by the

charging process, but also release energy back into power

grids through smart inverters, which are known as grid-to-

vehicle (G2V) and vehicle-to-grid (V2G), respectively [2].

Specifically, G2V can achieve “valley filling” while V2G can

be used for “peak shaving”.

Since EVs are a challenge but also a great opportuni-

ty to future smart grids, recently the energy scheduling of

EVs has been intensively investigated in a variety of scenar-

ios. Existing works can basically be divided into two cate-

gories: those only considering G2V and the other consider-

ing both G2V and V2G. The charging problem is modelled

as a finite-horizon dynamic game and a decentralized solu-

tion is proposed in [3]. In [4], a comprehensive and in-depth

analysis on EVs’ optimal charging scheduling for load shift-

ing is presented and an optimal decentralized charging al-

gorithm is proposed. A series of decentralized algorithms

for charging scheduling based on the decentralized water-

filling-based algorithm are proposed in [5–7] to optimally

flatten the load curve of low-voltage transformers in vari-
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ous scenarios. The above papers only consider G2V while

many other works have also considered V2G. Two decen-

tralized algorithms for globally and locally optimal schedul-

ing of charging/discharging are proposed in [8] which aim-

s at the minimization of aggregated charging cost of EVs

with random arrivals. The random behavior of EVs is also

considered in [9] where the expected grid operation cost is

minimized using a stochastic security-constrained unit com-

mitment model. Reference [10] considers the uncertainties

from renewable energy sources in smart grids and propose

an optimal charging and discharging scheduling algorithm

based on dynamic programming. In [11], the demand of a

single household is locally regulated through EVs such that

the system-wide demand is regulated. Our previous work

[12] is the first paper to study the optimal load shifting prob-

lem via G2V and V2G in the context of decentralized algo-

rithms. With a proper assumption, the original mixed dis-

crete programming problem is approximated as a quadratic

programming (QP) problem, and a decentralized algorithm

based on the water-filling algorithm is proposed to solve the

approximated QP problem.

This paper revisits the load shifting problem studied

in [12]. We reformulate the problem as a mixed integer

quadratic programming (MIQP) problem and proposes a

new decentralized algorithm based on the alternating direc-

tion method of multipliers (ADMM). In comparison, the

novel features of this paper include:

1. The decentralized water-filling algorithm proposed in

[12] relies on a reasonable assumption on the night de-

mand curve. However, in this paper we drop this as-

sumption and propose a decentralized optimal algorith-

m to directly solve the original problem in a decentral-

ized fashion. Therefore, the results in this paper are of

more general applicability.

2. Adopting the idea of ADMM, the optimal load shifting

problem is decomposed such that an aggregator solves

an unconstrained QP problem as the master problem,

Proceedings of the 36th Chinese Control Conference
July 26-28, 2017, Dalian, China

10708



while each EV solves a local MIQP problem as sub-

problems. To implement the iterative algorithm, on-

ly limited data are transmitted between the EVs and

the aggregator. Furthermore, the optimal load shifting

problem is NP-hard and the integer aspect is the ma-

jor source of the computational complexity. With each

EV updating the integer variables in parallel via local

computation, the proposed decentralized algorithm re-

quires much less CPU time than traditional centralized

algorithms/off-the-shelf commercial solvers.

The rest of the paper is organized as follows. Preliminar-

ies and the problem formulation are given in Section 2. We

present the ADMM based decentralized algorithm in Sec-

tion 3. Numerical experiments are presented in Section 4 to

show the effectiveness of the proposed algorithm. Finally,

we conclude our paper in Section 5.

2 Preliminaries and Problem Formulation

In this section, we first introduce some basics of ADMM.

We then present the charging/discharging model of a single

EV and the problem formulation of the optimal load shifting

problem via EVs.

2.1 Alternating Direction Method of Multipliers
Consider the following problem:

minimize f(x) + g(y),

subject to Ax + By = c,
(1)

with optimization variables x ∈ Rn and y ∈ Rm, where A,
B, and c are in proper dimensions.
We make the following assumptions for the problem (1):

Assumption 1 The functions f(x) : Rn → R ∪ {+∞} and
g(y) : Rm → R ∪ {+∞} are proper, closed and convex.
Assumption 2 The matrices A and B have full column
ranks.

The augmented Lagrangian of problem (1) is

Lρ(x, y, λ) =f(x) + g(y) + λT (Ax + By − c)

+ρ/2‖Ax + By − c‖22,
(2)

where λ ∈ R
p is the Lagrange multiplier, and ρ > 0 is a

penalty parameter. The alternating direction method of mul-

tipliers for problem (1) is given as follows [13]:

xk+1 = argmin
x

Lρ(x, y
k, λk); (3)

yk+1 = argmin
y

Lρ(x
k+1, y, λk); (4)

λk+1 = λk + ρ(Axk+1 + Byk+1 − c). (5)

Define

εk = Axk + Byk − c and εk = ρATB(yk+1 − yk)

as the primal residual and the dual residual at step k, respec-
tively. The convergence results of ADMM are given below.

Lemma 1 [13] If Assumptions 1 and 2 hold and ρ > 0,
then the ADMM iterations (3)-(5) converge to the optimal
solution x∗, y∗, and the optimal Lagrange multiplier λ∗ of
problem (1), with

lim
k→∞

‖εk‖2 = 0 and lim
k→∞

‖εk‖2 = 0.

2.2 Dynamic Model of A Single EV
Suppose the sampling interval is Δt and let t =

0, 1, . . . , T − 1 denote the time steps. The state of charge
(SOC) is defined as the energy level of a battery, given by

s(t) =
E(t)

C
,

where E(t) (kWh) is the amount of residual energy at time t
and C (kWh) is the capacity of the battery.

Let p(t) (kW) denote the rate of energy transfer between
the EV and the power grid at time t. Suppose that p(t) is
constant in the interval between t and t + 1, and{

p(t) � 0, if charging,

p(t) < 0, if discharging.

The rate of charging/discharging cannot exceed certain

limits, i.e.,

−p̄dc � p(t) � p̄c, (6)

where p̄c, p̄dc > 0 are the maximum rates of charging and

discharging, respectively. It is assumed that with smart
chargers and smart inverters, p(t) can take any continuous
value within the limits. We consider energy losses in both

directions of energy conversion, and define 0 < ηc, ηdc < 1
as efficiencies for charging and discharging, respectively.

The dynamic model of a single EV is given by

s(t + 1) = s(t) +
η(t)Δtp(t)

C
,

where η(t) is given by

η(t) =

⎧⎨
⎩

ηc < 1, for p(t) � 0,

1

ηdc
> 1, for p(t) < 0.

(7)

To increase the service life of batteries, we require that the

SOC is kept within a certain range. Therefore we have the

following constraints,

s � s(t) � s̄, t = 0, . . . , T, (8)

where s(0) is the initial SOC at time 0. In this paper we set
s =20% and s̄ =85%.
We further assume that at time T , each EV must be

charged to a targeted SOC s∗ ∈ [s, s̄]. Therefore we have
the following equality constraint,

s(T ) = s∗. (9)

2.3 Problem Formulation
Suppose there are in total n EVs in the network indexed

by i = 1, . . . , n, and denote by d(t) the base demand at time
t. Note that function (7) is not in a code-friendly fashion and
it is nonlinear since ηi(t) depends on the sign of pi(t). To
overcome this issue, we introduce a binary variable zi(t) ∈
{0, 1} to indicate the direction of energy conversion at time
t, and establish two auxiliary variables pci(t) and p

dc
i (t) such

that

pi(t) = pci(t)− pdci (t), pci(t)p
dc
i (t) = 0,

i.e., we assume that the energy rate pi(t) consists of two
components associated with the two directions of energy
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conversion, while (at least) one of them must be zero. Based

on the above definitions, we then re-write (6)-(9) for all i, t
as follows:

0 � pci(t) � p̄cizi(t), (10)

0 � pdci (t) � p̄dci (1− zi(t)), (11)

si(0) + Δt

∑T−1
t=0 (ηcip

c
i(t)− pdci (t)/ηdci )

Ci
= s∗i , (12)

s � si(0) + Δt

∑t−1
τ=0(η

c
ip
c
i(τ)− pdci (τ)/ηdci )

Ci
� s̄. (13)

One can easily verify that with the binary variable zi(t),
pci(t)p

dc
i (t) = 0 is guaranteed by constraints (10) and (11).

The load scheduling problem studied in this paper aims at

minimizing the variations in the total demand curve by con-

trolling the rate of charging and discharging of EVs within

their local constraints. The objective is given by

minimize

T−1∑
t=0

(
d(t) +

n∑
i=1

(pci(t)− pdci (t))
)2

. (14)

Therefore, the optimal load shifting problem via EVs with

both G2V and V2G are formulated as the MIQP prob-

lem (10)-(14), where each EV maintains 2nT continuous

variables and nT binary variables.

3 Main Results

In this section we first analyze the mathematical properties

of problem (10)-(14) and re-write it in an equivalent ADMM

from. We then present the decentralized algorithm based on

ADMM and its convergence analysis.

3.1 Problem Analysis
The problem (10)-(14) is a MIQP problem, as it includes

the continuous variables pci(t), p
dc
i (t) and the binary variable

zi(t). However, the binary variable zi(t) is only involved
in the constraints, while the objective function (14) itself re-

mains convex.

It is important to note that zi(t)’s are essentially auxil-
iary variables which help us describe explicitly the feasible

region of pci(t) and p
dc
i (t). To be specific, the feasible set de-

fined by the constraints (10)-(13) can be viewed as a union

of 2nT disjoint convex sets regarding the continuous vari-
ables pci(t) and pdci (t). Let us further define p and z as the
aggregated vectors of pci(t), p

dc
i (t) and zi(t) for all i, t, re-

spectively. Problem (10)-(14) can be re-written equivalently

in the following compact form:

minimize F (p),

subject to p ∈ Ω =
⋃
z

Ω(z),

z is binary,

(15)

where Ω(z) = {p : Constraints (10) − (13)} is the convex
feasible subset of p associated with a fixed realization of the
binary variable vector z; Ω is a non-convex set, since it is the
union of the disjoint convex subsets.

Since some realizations of z may lead to empty feasible
subsets of p, we defineM as the total number of the nonemp-

ty subsets. Therefore, problem (15) essentially consists ofM

convex QP subproblems. Intuitively, if the optimal solution

to each QP subproblem is obtained, then the one associat-

ed with the minimal optimal objective value is the optimal

solution to the whole problem. However, such scheme is

time-consuming and even unrealistic, for M may probably

be a very large number.

We aims at proposing a decentralized algorithm for the

problem (10)-(14), so it is important to investigate the spa-

tial correlations among EVs. One can verify that the con-

straints (10)-(13) are all local and only account for the tem-

poral correlations among local variables at each EV, while

the only source of spatial correlations is the objective func-

tion (14). For the ith EV, let us define pi as the local aggre-
gate variable and denote by Ωi the local feasible region such

that

Ω =

n∏
i=1

Ωi,

where
∏
is the operator of Cartesian product of sets. Note

that for simplicity, we omit the binary variable z and describe
the sets in an implicit fashion instead. Then problem (15) can

be rewritten as follow:

minimize F (p),
subject to pi ∈ Ωi, ∀i = 1, . . . , n.

(16)

3.2 Rewriting (15) in ADMM Form
Before presenting our ADMM-based decentralized algo-

rithm, we need to transform (15) into the ADMM form.

We establish a variable q as the duplicate of the variable p.
We label each non-empty convex feasible subset associated

with certain realization of z by m = 1, . . . ,M . For each

subset Ω(m), we define its indicator function Gm(p) as

Gm(p) =

{
0, if p ∈ Ω(m),

+∞, otherwise.

Then the indicator function of the overall feasible region Ω
is given by

G(P ) = min{G1(p), . . . , GM (p)},
where min represents the point-wise minimum of functions.

Note that the indicator functions Gm(p)’s satisfy Assump-
tion 1, as they are associated with convex subsets. However,

one can easily verify that the indicator functionG(p) is non-
convex.

With the above definitions, we can equivalently transform

problem (15) in the following ADMM form:

minimize F (p) + G(q),

subject to p− q = 0.
(17)

Applying the ADMM to problem (17) yields

pk+1 = argmin
p

Lρ(p,q
k,λk), (18)

qk+1 = argmin
q

Lρ(p
k+1,q,λk), (19)

λk+1 = λk + ρ(pk+1 − qk+1), (20)

where Lρ(p,q,λ) is the augmented Lagrangian for prob-
lem (17), given by

Lρ(p,q,λ) = F (p)+G(q)+λT (p−q)+ρ

2
‖p−q‖22. (21)
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3.3 ADMM-based Decentralized Optimal Algorithm
In this subsection we propose the decentralized optimal

decentralized based on ADMM. For implementing the pro-

posed decentralized algorithm, a cyber layer is required.

To be specific, we assume that a system aggregator which

knows the base demand data, communicates bidirectionally

with the EVs in a star network where the aggregator is the

central hub node while the EVs are the leaf nodes. It is al-

so assumed that the aggregator and EVs are capable of local

computation. The detailed steps of the proposed algorithm

are as follows.

For p-update: We have

pk+1 =argmin
p

Lρ(p,q
k,λk)

= argmin
p

(
F (p) + (λk)T (p− qk) +

ρ

2
‖p− qk‖22

)
=argmin

p

(
F (p) +

ρ

2
‖p− qk + λk‖22

)
.

(22)

One can easily verify that the p-update is an unconstrained
QP problemwhich can be easily solved by existing QPmeth-

ods, e.g., gradient method. Therefore based on qk and
λk, the aggregator performs the p-update without needing
to know each EVs’ parameters. Furthermore, note that p-
update consists of T independent subproblems

min
p(t)

(
d(t)+

n∑
i=1

(pci(t)−pdci (t))
)2

+
ρ

2
‖p(t)−qk(t)+λk(t)‖22.

Therefore the p-update can be solved in parallel for faster
convergence if the aggregator is capable of multi-core com-

puting.

For q-update: It follows that

qk+1 =argmin
q

Lρ(p
k+1,q,λk)

= argmin
q

(
G(q) +

ρ

2
‖pk+1 − q + λk‖22

)
.

=argmin
q∈Ω

‖pk+1 − q + λk‖22.
(23)

According to (23), the q-update can be written as the follow-
ing optimization problem:

minimize ‖pk+1 − q + λk‖22,
subject to q ∈ Ω,

(24)

which can be readily decomposed into n local optimization
problems, given by ∀i = 1, . . . , n,

minimize ‖pk+1
i − qi + λki ‖22,

subject to qi ∈ Ωi.
(25)

We further re-write the subproblem (24) in the following ex-

plicit form:

minimize ‖pk+1
i − qi + λki ‖22,

over qi and zi

subject to local constraints (10)− (13).
(26)

Subproblem (26) is a MIQP problem and can be solved lo-

cally at each EV using off-the-shelf methods, e.g. the branch

and bound method.

The λ-update (20) is performed by the aggregator. Note
that it can also be performed locally at each EV. But in the

latter case the communication volume is increased, since

more data (only qk+1 versus qk+1 and λk+1) need to be

transmitted between the aggregator and the EVs.

For clarity, we summarize the proposed decentralized al-

gorithm in Algorithm 1.

Algorithm 1 Decentralized algorithm based on ADMM for

the problem (10)-(14)

Input: base demand data and EVs’ local parameters;
Output: optimal charging/discharging scheduling q∗;
1: The aggregator gets base load demand d(t);
2: for k = 0, 1, 2, . . . , do
3: The aggregator performs the p-update (22);
4: The aggregator sends the corresponding pk+1

i to each EV;

5: Each EV performs the q-update by solving (26) using mixed
integer program solver;

6: Each EV sends the their qk+1
i to the aggregator;

7: The aggregator performs the λ-update (20);
8: end for

Remark 1 Algorithm 1 is decentralized in the sense that the
aggregator and EVs communicates in a star network and the
computational workload is spatially distributed among them.

Remark 2 For the MIQP problem (10)-(14) which is NP-
hard, its computational complexity usually surges with the
increase of the problem size, especially for the integer part.
However, with Algorithm 1, the original MIQP problem (10)-
(14) with nT binary variables is decomposed into n lo-
cal MIQP problems with T binary variables. As we will
show through simulations, Algorithm 1 requires much less
CPU time than off-the-shelf commercial solvers when solv-
ing (10)-(14) in a centralized fashion.

3.4 Convergence Analysis
It is important to note that ADMM is originally designed

for convex optimization problems (1), while problem (17)

is a continuous non-convex optimization problem due to the

non-convexity of function G(q). Therefore, it is not trivial
to prove the convergence of the proposed algorithm.

For Algorithm 1, the primal residual and the dual residual

at step k are given by

εk = pk − qk and εk = ρ(qk+1 − qk),

respectively. The following theorem shows the convergence

result of Algorithm 1.

Theorem 1 For any ρ > 0, the decentralized algorithm 1
converges to the optimal solution of problem (17) and

lim
k→∞

‖εk‖2 = 0 and lim
k→∞

‖εk‖2 = 0.

Due to the limited space, in this paper we only sketch the

general idea for proving Theorem 2 and a detailed proof will

be presented in an extended journal version.

Denote the optimal solution to primal problem (17) by

(p∗, q∗). One can easily verify that (p∗,q∗) is also the opti-
mal solution to the following convex optimization problem:

minimize F (p) + Gm∗(q),

subject to p− q = 0.
(27)
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where Gm∗(q) is associated with subset Ω(m∗) where q∗ ∈
Ω(m∗). Note that problem (27) is convex and therefore

strong duality holds. The unaugmented Lagrangians of prob-

lem (17) and (27) are respectively given by

L(p,q,λ) = F (p) + G(q) + λT (p− q),

Lm∗(p,q,λ) = F (p) + Gm∗(q) + λT (p− q).

Let us denote by λ∗ the optimal Lagrange multiplier of prob-
lem (27) and define

V k = (1/ρ)‖λk − λ∗‖22 + ρ‖qk − q∗‖22
as the Lyapunov function of Algorithm 1.
Similar to the proof in [13], Theorem 2 can be readily

proved if the following three inequalities hold:

O∗ −Ok � (λ∗(mk))T εk, (28)

Ok −O∗ � −(λk)T εk − (εk−1)T (qk − q∗ − εk), (29)

V k+1 − V k � −ρ‖εk+1‖22 − (1/ρ)‖εk‖22, (30)

where

Ok = F (pk) + G(qk),

O∗ = F (p∗) + G(q∗)

are the objective value at iteration k and the optimal objec-
tive value, respectively.

Combining G(q∗) = Gm∗(q∗) = 0, we have

L(p∗,q∗,λ∗) = Lm∗(p∗,q∗,λ∗).

Suppose that qk belongs to subsetΩ(mk). From the analysis
in Section 3.2, we have

Lm∗(p∗,q∗,λ∗) � Lmk(p∗(mk),q∗(mk),λ∗(mk)),

where (p∗(mk),q∗(mk),λ∗(mk)) is the saddle point of the
Lagrangian Lmk of the subproblem associated with Ω(mk).
From the saddle point property, we further have

Lmk(p∗(mk),q∗(mk),λ∗(mk)) � Lmk(pk,qk,λ∗(mk)).

Combining Gmk(qk) = G(qk) = 0, we have

L(pk,qk,λ∗(mk)) = Lmk(pk,qk,λ∗(mk)).

From the above inequalities, we have

L(p∗,q∗,λ∗) � L(pk,qk,λ∗(mk)). (31)

From p∗ − q∗ = 0, we have L(p∗,q∗,λ∗) = O∗. From

Ok = F (pk) + G(qk),

let us rewrite (31) as

O∗ � Ok + (λ∗(mk))T εk,

which gives inequality (28).

Similar to the proof of inequality (A.2) in [13], the proof

of (29) relies on the following two facts:

1) pk minimizes

F (p) + (λk + εk−1)Tp,

which can be proved by substituting

λk−1 = λk − ρεk

into Lρ(p,q
k−1,λk−1) and making some rearrange-

ments. Also, it can be proved in a similar fashion that

2) qk minimizes

G(q) + (λk)Tq.

Therefore, the same trick for proving (A.2) in [13] could

be readily applied to prove (29).

The proof of (30) only needs some substituting and re-

writing based on (28) and (29), thus it can be proved in the

same way to prove (A.1) in [13].

4 Numerical Experiments

In this section we present some simulation results of Algo-

rithm 1, which is implemented in the MATLAB environment

on a laptop with Intel Core i7-3610QM processor (8 logic

cores) and 8 GB DDR3 memory. The commercial solver

Gurobi is used for solving the QP and MIQP subproblems.

4.1 Dealing with 5 EVs
In this case we apply the proposed algorithm to the load

shifting problem of 5 EVs, whose parameters are adopted

from [12]. We assume a scheduling period of 12 hours with

sampling interval Δt = 15 mins, which gives us 48 time
steps. To implement the algorithm, we set q0 = 0, λ0 = 0,
and ρ = 25. Fig. 1 shows the performance of the load shift-
ing via EVs’ charging and discharging. Although the base

load curve is irregular and does not satisfy the assumption in

[12], peak shaving and valley filling are optimally achieved

through the proposed algorithm. The convergence results are

given in Fig. 2, which shows that after around 10 ADMM

iterations, the proposed algorithm converges with tolerable

primal and dual residuals.

2:00 4:00 6:00 8:00 10:00 12:00
50

60

70
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90

100

110

120

130

140

150

po
w

er
 (k

W
)

time (h)

Base load
Total demand

Fig. 1: Optimal load shifting using charging and discharging.

4.2 Dealing with Large Numbers of EVs
We next compare the propose algorithm in terms of con-

vergence speed with Gurobi, which is a powerful commer-

cial optimizer. For comparison, we apply both Algorithm 1
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Fig. 2: Convergence results of Algorithm 1.

Table 1: Running times of Algorithm 1 and Gurobi, applied

to various numbers of EVs

Number

Time (sec) Algorithm
Algorithm 1 Gurobi

5 9.96 2.64

15 19.97 3.73

30 28.55 57.88

60 58.14 712.61

100 92.77 3967.36

150 153.88 14682.87

200 244.66 N/A

and the Gurobi optimizer to the cases with larger number-

s of EVs. Since Algorithm 1 converges with only a few

ADMM steps, for simplicity we set the ADMM steps to be

10. To simulate the implementation on a network of EVs,

we use 1 logic core to solve each local subproblem (26),

while for the sake of fairness, 8 logic cores are dispatched

for Gurobi to solve the original problem (10)-(14). The run-

ning times required by Algorithm 1 and Gurobi are given in

Table 1. We can see that Gurobi is faster when the number of

EVs is small but the running time of Gurobi soars sharply as

the number of EV grows. It is not surprising because prob-

lem (10)-(14) is a large-scale problem. For instance, in the

case with 100 EVs, there are in total 4800 binary variables

and 9600 continuous variables. On the contrary, the pro-

posed algorithm is more scalable and much faster when the

number of EVs is over 30. The reason is that the number

of EVs only affects the complexity of the p-update which
is an unconstrained QP problem with 2nT variables, while

the MIQP subproblems solved in parallel by each EV are al-

ways with T binary variables and 2T continuous variables.

Besides, when n = 200, Gurobi returns an error message of
“out of memory”. Therefore, we conclude that the proposed

decentralized algorithm is applicable to a large population of

EVs for which centralized algorithms/solvers may fail.

5 Conclusion

This paper studies the optimal load shifting problem vi-

a EVs with both G2V and V2G which is formulated as a

MIQP problem. A decentralized optimal algorithm based

on ADMM is proposed to solve the problem in a decentral-

ized fashion. The proposed algorithm converges much faster

than off-the-shelf commercial solvers and also features pri-

vacy preservation of EVs. We also present the convergence

analysis and show the performance of the proposed algorith-

m through numerical experiments. In the future work we

may consider random behavior of EVs and also extend the

proposed algorithm to other EV scheduling problems, e.g.,

minimization of charging costs.
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