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Abstract— A considerable amount of research has been done of finite level gquantization) to approximately achieve the
on the use of logarithmic quantizers for networked feedback performance of non-quantized feedback systems.
control systems. However, most results are developed for the * , hatworked control systems, the information (control
case of a glng_le quantizer (either measurement or control . | d ts) | I h d th h
signal quantization). In this paper, we investigate the case of S'gnal and measuremen s) is generally exchange roug
simultaneous input and output quantization for SISO linear @& shared communication channel among control system
output feedback systems. Firstly, we show that the problem components (sensors, controller, actuator, etc.), thus we may
gf quagra!itcr] stabilization t\/ia quankt)ized feedb?tchk Cantbebad' dIogically suppose that both control and measurement signals
I with n nservativen mean r n :
api)ss)i\ch. Seccc))n((:jcl)y,s{/se groﬁdgsasn u{)peera;)osugd or(1a ti%crr?axir?lual are quantized [10]. HO wever, Up.t.o n.OW’ very few res_mts
admissible sector bound via a scaled B, optimization problem. have addressed S_tab'“ty and stabilization pr_oblems for |nput
and output quantized feedback systems with the exception
of [10] and [11].
I. INTRODUCTION In this paper, we extend the sector bound approach [8]
The study of quantization errors in digital control system&® cope with input and output quantization for single-input
has been an important area of research, since digital cotiPgle-output (SISO) linear time-invariant output feedback
trollers were employed in feedback systems. Early works o'f_ystems. We show that the problem of quadratl_c stabilization
quantized feedback concentrated on analyzing the effects ¢t quantized feedback can be addressed with no conser-
quantization and ways to mitigate them [1], [2]. The simplesyatism by means _of the sector bound approach.. This result
approach to analyze the effects of quantized feedback contfnverts the quantized feedback coqtrol probleminto a rqbu_st
is to model the quantizer as sector bounded time—varyirﬁf”trOI problem. Moreover, we provide a bound on admissi-
uncertainties and apply absolute stability theory tools. ble quantlz_anon densities by |_n_troducmg a scaling param_eter
Nowadays, many control systems are remotely imple2n the gquwale_r_n ropust _cc_)ndmon. In the_context of practical
mented via communication channels with limited bandwidtiuadratic stability with finite level quantized feedback, we
which we will refer to as networked control systems. |introduce a method for allocating the bandwidth of the

such systems, the communication link is shared by differefPmmunication channel, which is illustrated via a numerical

applications and a natural issue is to minimize the quanti§<@mple.

of information needed to be transmitted while achieving a Il. PROBLEM FORMULATION
;f;ilmr:g;?ghlgfsp hr;?/réoggs:gst'r;g t::} tﬁ? tsoi\ils;rile)ée?és;Consider the quantize_d feedback system in Figure 1. The
[8]. From the results proposed in [6], a new line of researc ystem to be controlled is modeled by
focuses on the quadratic stabilization problem of linear time- z(k+1) = Az(k) + Bu(k)
invariant (LTI) systems via quantized feedback [8], [9], y(k) = Ca(k)

which is referred to as the sector bound approach. In this

methodology, the quantizer is assumed to be logarithmigsghere A€ R"*", Be R"”, C € R*", x is the statey is the
static and memoryless with fixed quantization levels. One caontrol signal andy is the measurement, and the dynamic
cite several advantages in employing logarithmic quantizet®ntroller is given by

1)

such as the ease on addressing the quadratic stabilization
problem, explicit coarsest quantization density formulae, and )
the nice feature of needing only a few bits (in the context w(k) = CL(k) + D.v(k)
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Fig. 1. Feedback Control with Input and Output Quantization

A logarithmic quantizer)(-) has quantization levels given
by

V={£p; : pi=p'no, i=0,£1,£2,--- }U{0}, 1o >0 (5)

wherep € (0, 1) represents thquantization densityA small
p implies coarse quantization, and a largemeans dense
quantization. The quantize€p(-) is depicted in Fig. 2 and is
defined as follows:

P’ o, if 500 < e < 1250 o,
Qi) =<0, if =0, (6)
—Q(—¢), if <0
where
d=(1-p)/(1+p). ()
4 Qe)=(1+d0)e Qe)=¢ Qe)=(1-0)e
Q(e)

Fig. 2. Logarithmic Quantizer

The closed-loop system can be written as

{ (k+ 1) = Az(k) + BQ2(Cet(k)+DeQ1(Ca(k))

(8)

which can be shortened as

j(k+1):f(‘r(k)ag(k)’QlaQQ) )

with z = [z ¢7)T and

AJJ + BQ2(0<§+DCQ1(093))

f(xa£7Q17Q2): AC£+BCQ1(C£Z’) . (10)

In this paper, we assume that the input and output quan-
tizers are independent with possibly different quantization
densities, which is a natural setting in networked control
systems. Under these conditions, we address the quadratic
stabilization problem of the quantized closed-loop feedback
system in (9). Further, in the finite quantization setup, we
study the bandwidth allocation problem in the sense that
quantization densitieg; of the quantizers);(-), i=1,2, are
chosen to minimize the communication channel bandwidth
in some way.

Ill. PREVIOUSRESULTS

In this section, we review some key results proposed in
[8] where the quadratic stabilization problem of SISO linear
feedback systems with a single quantizer is solved through
sector bound technique arfd,, optimization.

Notice from Figure 2 that a logarithmic quantizg(s) can
be bounded by a sectdt + A)e, where A € [-4,4] and
consider two possible configurations involving the system
(1), controller (2) and a quantizer:

« Configuration |: the measurement is quantized, i.e.
v(k) = Q1(y(k)), but the control signal is not, i.e.
u(k) = w(k); and

« Configuration II: the control signal is quantized, i.e.
u(k) = Q2(w(k)), but the measurement is not, i.e.
v(k) = y(k).

If we consider the same LTI controller in (2) to either

Configuration | or Il, we extend from [8] the following result.

Theorem 3.1:Consider the system (1) and a single quan-
tizer in Configuration | or Il. For a given quantizer density
p, this system is quadratically stabilizable via the controller
(2) if and only if the auxiliary system

x(k+1) = Axz(k) + Bw(k)

(11)
v(k) = 1+ A)Cx(k), |A| <o
for Configuration I, or
z(k+1) = Az(k) + B(1 + A)w(k) (12)

y(k) = Ca(k), A <6

for Configuration Il, is quadratically stabilizable via the
controller (2), where) and p are related by (7).

For both configurations, the supremuig, of the sector
bounds for quadratic stabilization, which gives the smallest
quantization density;,¢, is given by

1
5511 - - _ (13)
O O]
where
SN G(2)H(z) - i
G(Z)_Wa H(2)=C.(2I-A,) 1Bc+lz;4)



Proof. The proof of the equivalence between the quadratiB. Quadratic Stabilization
stability of the quantized and the uncertain system can be
found in [8, Theorem 3.2]. The result of,, follows by
noting that in both configurations the closed-loop syste
can be written as an open-loop transfer funct@:)H (z)

From Theorem 4.1, it follows that the quadratic stability of
the closed-loop system (1)-(3) is equivalent to the quadratic
rE’[ablllty of the auxiliary system

and a feedback loopl+A), sinceG(z)H(z)=H(z)G(z). x(k+1) = Axz(k) + B(1 4+ Az)w(k)

The solution tods,, follows from the equivalence between o

guadratic stability andd,, optimization [12], [13]. O Sk +(1; n é (( )) Be(1+ Av)y(k) (21)
IV. MAIN RESULTS w(k) = Cl(k) + Do(1+ Ap)y(k)

In this section, we extend the results of Theorem 3.1 to tf\ﬁ
double quantizer stabilization problem. Firstly, we show fo[
guadratic stability analysis that input and output quantlzerzs
can be tackled with no conservatism by two sector bound
conditions. Secondly, a sufficient control design condition is
derived in terms of arf{,, optimization problem such that i { A+ BD.C BC. } - { B BD, }

here|A1| < 61, |Az] < d9, and the parameteiri is related
the quantization density; via §; = (1—p;)/(1+ps),

Now define the following auxiliary notation:

B =

the parameter B.C A, 0 B.
6= 51,0
max{01, 0z} . [p.Cc ¢l ~ [0 D,
is maximized without losing quadratic stabilizability, where C 0 0 0
0; is related to the quantization densip of quantizer T T
Qi()),i=1,2. gqk)=[a @], pk)=[p p2],
a1 =w(k), @2=y(k), pr=2~21q1, p2=D2q2.

A. Input and Output Sector Bound Conditions
Through standard linear fractional transformations [15],

. . . N _ =T p=
Consider a Lyapunov function candidai§z) = z* Pz the closed-loop system (21) can be recast as

with P = PT > 0 for the closed-loop system (8). We define
z(k+1) = Az + Bp(k)

_ N q(k) = Cz + Dp(k) (23)
where®:= &(z, ¢, 01, d2,¢) ande is a positive scalar. p(k) = Aq(k), A— diag{A1, As).

Then, along the trajectory of (8), we have
_ Let G(z) be the transfer function matrix fro to
V(@(k +1)) = V(@(k)) < ®(x(k),£(k), 01, 02,¢) . (16) of the o(pze)n—loop system in (23), i.e. P o)

Hence, (8) is quadratically stable if and only if there exists
someP=PT > 0 ande > 0 such that

O=f(x,,01,00) T Pf(x,€,61,05) — (1 —e)zl Pz (15)

G(z)=C(zI —A)'B+D. (24)

Then, the closed-loop system in (23) is quadratically stable

< . . ; o
®(@,€,01,05,€) <0, V, £ (17) if the following small-gain condition [16] holds:
Define . "
) A4 0 1G(2)[loc [|All2 < 1.
A(A1,Ag) = . .
0 A It turns out that for a single uncertainty block the small-

gain condition is a necessary and sufficient condition to

n B(1+A42)[0 Ce]+ De(1+A1)[C 0] (18) assure the quadratic stability of system (23) (see [17]).
B.(1+Ay)[C 0] However, for multiple uncertainty blocks the small-gain

condition can be conservative to assess the quadratic stability.

and To avoid the conservativeness, we apply a scaled small-gain

(A1, Ag) = A(A1, A)TPA(AL, Ay) — P (19) condition as follows:

. . .
The first result of this section is given below. ITGET oo [All2 < 1 (25)

Theorem 4.1:Consider the closed-loop system (8) andgvhereT is any invertible diagonal matrix [18]. Without loss

some givenP = PT > 0. Then, (17) holds for some > 0  ©f generality, we can tak& = diag{1, 7}, 7 > 0.
if and only if In view of the above, we give the following result to assess

the quadratic stability of the closed-loop system (1)-(3).

< . .
A1, 82) <0, ¥ [A1] <01, [Ag] <02 (20) Theorem 4.2:Consider the system (1) and quantizers as
The proof is given in the Appendix. in (3) with given densitiesp; and p,. This system is



guadratically stabilizable via the controller (2) if and onlycan be used, but the method demonstrated here still applies.

if the auxiliary system Hence, our optimization problem becomes

{ r(k+1) = Az(k) + B(1+A2)w(k) (26) min J(d1, 0) (29)

k) = (14A1)Cx(k), |Ai| <6, i=1,2 . o .
v(k) = (1+80)Ca(k), Al < 8, 0 subject to the quadratic stability of the quantized feedback
is quadratically stabilizable via the controller (2). This insystem.
turns is guaranteed whef < dgup, =1, 2, where Let ) A
1 G(z) =T G(z) T~ W(61,05) (30)
dsup = - (27)
P }?; ITG ()T 0o with W (d1,d2) = diag{d1,d2}. The quadratic stability of

system (1)-(3) is guaranteed for given and p,, if there
with G(z) as given in (24)7T is a diagonal and invertible €XiSt matricesk” and 7" such that

matrix and 1G(2)]loo < 1. (31)

=& B

C. D, In order to determine the pa{p, d2) that minimizes the

. cost function in (29), we can grid, from 0 to some upper
Proof. The proof of the equivalence between the quadratlﬁoundg1 which can be the maximum admissikidor one

stability of the quantized and the uncertain system is StraightﬂUantizer and computé,, K and T = diag{1, 7}, 7 >0

forward from Theprem 4.1. On the other hand, the Upp%'uch that (31) holds. The Valuéﬁandé‘; such that](é’f,é;)
bounddsyy, for 6;, i=1, 2 follows from the scaled small-gain s minimal give the best quantization densities in the sense
condition (25) and by noting thafA||> < max{di,d2}. 0 of requiring a minimized bandwidth allocation.

Remark 4.1:For a single quantizer, Theorem 4.2 becomes To demonstrate the above method, consider the following
equivalent to Theorem 3.1, since the small-gain theorem &ystem borrowed from [8, Example 3.1]
necessary and sufficient for quadratic stability. L3

Remark 4.2:The joint design o andT in Theorem 4.2 G(z) = o2 (32)
leads to a non-convek ., optimization problem. Neverthe- ] ) ]
less, for a given invertible matri’, the H., optimization The above system with one quantizer is output feedback
problem is convex and the controller can be determined, féluadratically stabilizable fof,., =0.1. To allocate the joint

instance, via the LMI framework [19]. quantization density, we grid, from 0 to 0, = 0.1 and
determine the scala¥, and the matriceg{ andT such that

C. Bandwidth Allocation sup [|G(2)]lso = 1.

The quantizer defined in (5) has an infinite number of 02,7, K

quantization levels and thus it is not practical. To obtairThe results obtained foi* = 1/.J(d7,d3) are displayed in

a finite quantizer, we can truncate the logarithm quantizeFig. 3, where we have applied Remark 4.2 to solve the

as proposed in [6]. In such case, the stability is guaranteggloblem numerically. It follows from these results that the

regionally (i.e., for some set of initial conditions) and thesmallest joint quantization density is achieved with =

system trajectory converges to a small neighborhood of thig =~ 0.05 (the point that maximizes the curve in Fig. 3),

origin in the sense of practical quadratic stability [6, Defithat isp; = p, = 0.9. We emphasize that when the system

nition 5.3]. We emphasize that finite logarithmic quantizergs subject to only one quantizer (configuration | or Il in

need just few bits to hold a similar performance of infiniteSection 1Il), the above procedure leads to the same result

guantizers [6], [9]. of Theorem 3.1, demonstrating that the proposed method is
In this setting, we are interested in allocating the joinhot conservative in the single quantizer case.

guantization density assuming that the quantizers are in-

dependent and share the same communication channel. To V. CONCLUSIONS

this end, we need a cost function to represent the joint

guantization density for the given logarithmic quantizer:

Assuming the two quantizers having sector boundsaind

02, the cost function we choose is described by

This paper has extended the sector bound approach to
S(:ope with input and output quantized linear feedback control
systems. The contribution of this paper is two fold. Firstly,
we have shown that the problem of quadratic stabilization

J(81,85) = 1/81 + 1/85. (28) Via quantized feedback can be addressed with no conser-

vatism via an auxiliary uncertain system with two sector

The above function has the property thatdif or d; ap- bound conditions. Secondly, we have used a scdied
proaches zera/(d;, d2) will approach infinity, sinced; and optimization approach to estimate the largest admissible
0o approaching zero requires an infinite bandwidth. Thusector bound condition. Finally, we have introduced a method
this cost function resembles in some way the notion of totdbr allocating the communication channel bandwidth, which
guantization density. It is obvious that other cost functionss demonstrated via a humerical example.
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APPENDIX
PROOF OF THEOREM 4.1

First, we introduce several lemmas needed for the proof
Theorem 4.1. In the sequel, we assume that P7 > 0.

Lemma 1.1:Suppose (17) holds. Then,

O(x,&, 01—€1, 02,6) <0, Va, & (33)

wheneg; > 0 is sufficiently small.

Proof. We first consider any: such thaty = Cz is fixed
andy € [1/(1+61), 1/(1—=4671)). In this case@@,(Cz) = 1.
Let

®($,$,51,527€).

g(y75275) = mC?“X

z,§,Ce=y
Note thatg(y, d2,c) does not depend ofy,. From (8), it is
clear thatg(y, d2,¢) < Oforally € [1/(1+61), 1/(1—061)).
Now consider the case that is reduced td; = §; — ¢;
with 0 < e < 8;. Fory € [1/(1+61),1/(1 —41)), we still

have®:(y) = 1 andg(y, d2,¢) remains the same and hence

9(y.d2,) < 0. That is,
O(x,¢,01,00,6) <0, Var, §: Ca€ [1/(1461),1/(1-61))
(34)

Let oy = (1 — 61)/(1 + &1). For y=Cx € [pi/(1+ by),

pi/(1—61)), we haveQ, (Cz) = f; and

q)(l‘, ga Sla 527 5) = ﬁll(I)(i'v 57 Slv 62» 5)
whered = zp;* and€ = &57° with C3 € [1/(1+61),1/(1—
51)). Using (34) (withz and¢ in lieu of z and¢), we get
®(2,€,01,02,€) 0, Va,&: Ca € [5/(1401), 4 /(1-01))

for all 7. Using the facts that0, co) is covered by the union
of all [p%/(1+61), pt/(1—01)) and thatd(x, &, 6y, 52, ¢) is
an even function ofe, the claim in the lemma follows. O
Lemma 1.2:Given a logarithmic quantize®(-) in (6)
with quantization density, let 6 be given by (7) and define

Alw)=QW)/v—1, v#0. (35)

Then, the following properties hold:
1) |A(v)| < 6 for anyv # 0;

2) For anyAq € [—4,0), there exists a unique solution
vo > 0t0 A(v)=Aginve [1/(1+6),1/(1—0)).
Moreover, all the solutions af in (0, c0) are given by
+pivg, i=0,+1,42,--- .

These properties are easily verified, so the proof is omitted.

Lemma 1.3 ([14]): Given any irrational numbaeu, there
exists a sequenc@u, d), k = 1,2,..., such thatn; and
d, are coprimed;, — oo ask — oo and

1
<

=1,2,...
<o V=12 (36)

— -

dy,

Proof of Theorem 4:1We first show the sufficiency.
Suppose2(Aq,Ag) < 0 for all |Ay] < §; and |Ag| < ds.
By continuity, there exists some small > 0 such that
Q(AhAg) +eP < 0 for all |A1| < 4§; and |A2| < bo.
Now, a direct consequence of Lemma 1.2 is tGafv)
é + Ay (v))v with |[Aq(v)] < §; for anyv. A similar result
olds for@-(-). Hence, we can write

®(x,§,01,02,¢)
= (o7 €7 (AR (01), Aa(r2) +P) 2T €717

with |Aq(v1)| < 61 and|Ax(v2)| < 2, wherev; = Cz and
Vo = CC£+DC(1+A1(’(}1))01. Hence,@(x,&,dl,ég,e) <0
for all =, ¢ for the chosere > 0.

To prove the necessity, we assume thét, £, 01, da,¢) <
0 for all x and ¢, for somee > 0. The proof is done by
contradiction. To this end, we assume that there exist some
|AY] < 61, |AY| < 62 and nonzera = [zl ¢117 such that
zFQ(AY, A)ze > 0. By continuity, this implies that there
exist somgAY| < §; and|AJ| <, (obtained by “shrinking”
the previousA{ and AY a bit if necessary) such that

7T (Q(Ag), A9) + (5/3)P>§:0 > 0. (37)

Also by continuity, in the event thatzy, =0, we may perturb
zo slightly so thatC'zy become nonzero and (37) is relaxed
to

Tl (Q(A(l’, A+ (6/2)P)a_:0 > 0. (38)

We need to show that (38) leads to a contradiction. We
first consider the case wheia p;/1lnp; is an irrational
number. Using Lemma 1.2, we know that all the solutions
to A;(vy) = AY are given by+o{pt, i = 0,41,42,... for
somev) > 0. Similarly, all the solutions ta\;(vs) = A
are given bytuvdpl, j = 0,+1,+2, ... for somev§ > 0.

Define

2@ = gozo, €9 = gobo

with go = v?/Czo. We have
Q1(Cz ) = Q1 () = 1+ AN CO.

Denote
w’ = C©® + D.(1+ AN Cz®



a=1Inpy/Inpy, B=1Imn(v]/w’)/Inp;. for some sufficiently largé. This contradicts the assumption
that ®(x,&,01,d2,6) < 0 for all z,£. This contradiction
implies thatQ(Aq, As) < 0 for all |A;| < 61 and|As| < ds.
ys Finally, we consider the case whetaps/Inp; is a
rational number. In this case, we can perturb slightly
m ‘< i to give 6, = &, — &, for some arbitrarily smalle; so
d, —d thatln po/ In g1 is irrational, wherep, is the corresponding
Sinceny, andd,, are coprime, there exists a unique solutiorP€rturbedor. Now the proof for the irrational case can apply
of (ir, ji) 10 apd we haveé)(Ay, Ay) <Of0r gll |A1] < 4; and]As| < 0.
Sinced; can be made arbitrarily close 8q, (A1, As) <0
ikdi — Jene = mg, 0 < jp <dy. still holds for |A;]| < §; and|As| < 62 by continuity. O

Using Lemma 1.3, there exists a sequence(iof, dy)
with the properties described in Lemma 1.3. We can alwa
choosem;. be such that

Using the above, we get
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