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Abstract— We propose a distributed method for weighted
least squares estimation. Our method is suitable for large-scale
systems, in which each node only estimates a subset of the
unknown parameters. As opposed to other works, our goal is
to maximize the convergence speed of the distributed algorithm.
To this end, we propose a distributed method for estimating the
optimal value of certain scaling parameter on which this speed
depends. To further speed the convergence, we use a simple
preconditioning method, and we bound the difference between
the resulting speed, and the fastest theoretically achievable
using preconditioning. We include numerical experiments to
illustrate the performance of the proposed method.

I. INTRODUCTION

A sensor network is a web of a large number of intelligent
sensing and computing devices connected via a communica-
tion network [1]. The emergence of sensor networks calls
for the development of distributed algorithms for a number
of tasks for which only centralized methods are available.
These algorithms carry out the desired task by executing
a cooperative strategy over all the nodes of the network.
In particular, the development of distributed algorithms for
parameter estimation have recently attracted a great deal of
attention [2]–[9]. They find applications in environmental
and weather monitoring, industrial process monitoring and
control, surveillance, smart grid state estimation, etc.

A division of distributed estimation algorithms is between
static and dynamic ones. In static estimation, a set of
parameters is estimated using the measurements of all nodes,
which collectively form a snapshot at a given time [2],
[4]. On the other hand, in dynamic estimation the nodes
track the evolution of a set of parameters for which a
dynamic model is available [6]–[9]. Some “hybrid” methods
exist, which permit tracking a time-varying sequence of
parameters, without a dynamic model, by somehow updating
a static estimation strategy at each time [3], [5]. Another
division of distributed estimation methods is between small-
scale and large-scale methods. In small-scale methods, all
nodes estimate a common set of parameters. In large-scale
methods, each node can only reconstruct some part of the
whole parameter vector, i.e., knowledge of these parameters
is itself distributed [7], [10]. Large-scale estimation is in
general more challenging than its small-scale counterpart.

In this paper we study static estimation of large-scale sys-
tems. We derive a method which asymptotically achieves the
global weighted least squares (WLS) estimate, as the number
of time-steps tends to infinity. As opposed to previous works,

we address the problem of maximizing the convergence
rate. Since our method is based on Richardson’s method for
solving systems of linear equations [11], its convergence rate
depends on certain scaling parameter and a preconditioning
matrix. Choosing the optimum scaling parameter requires
knowledge of the largest and the smallest eigenvalues of cer-
tain positive definite matrix (the estimation error covariance).
A distributed algorithm for estimating these values can be
obtained using the power method [11]. However, to prevent
numerical instability, this approach requires periodically exe-
cuting a normalization step, which needs to be carried out in
a distributed manner. In [12] this is done using average con-
sensus. A drawback of this approach is that consensus itself
converges asymptotically. This significantly slows down the
convergence of the eigenvalue estimation. To avoid this, we
propose a different method in which normalization is done
locally, at each node, without inter-node communication. In
this way, the optimum scaling parameter can be distributively
obtained. Our last problem is to design the preconditioning
matrix. Our distributed scenario constrains us to use a block
diagonal matrix. Choosing the optimal matrix under this
constraint, and using only distributed processing, is a very
challenging problem for which we are not able to provide a
solution. Nevertheless, we are able to bound the difference
between convergence rate achieved using this optimal matrix,
and the one resulting using a simple matrix design. This
bound turns out to have a simple expression which depends
on the network connectivity.

The rest of paper is organized as follows. In Section II
we describe distributed WLS estimation the problem. In
Section III we derive a distributed method which converges
asymptotically. In Section IV we describe a distributed
method for finding the value of the scaling parameter which
yields the fastest convergence rate. In Section V we describe
a sub-optimal choice for preconditioning matrix, and we
bound its sub-optimality. Numerical experiments are pre-
sented in Section VI.

II. PROBLEM DESCRIPTION

Consider a network formed by I nodes. For each i =
1, · · · , I , Node i has an associated parameter vector xi ∈
Rdi , and measures the vector yi ∈ Rpi , which is given by

yi =

I∑
j=1

Ai,jxj + vi, (1)
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where vi ∼ N (0, Ri) denotes the measurement noise. The
noises vi and vj are independent, whenever i 6= j. Let Ii =
{j : Aj,i 6= 0} denote the set of nodes whose measurements
involve the parameters of Node i, and Oi = {j : Ai,j 6= 0}
denote the set of nodes whose parameters are involved in the
measurements of Node i. We call Ni = Ii ∪ Oi the set of
neighbors of Node i. We do the following assumption:

Assumption 1: For each i = 1, · · · , I , the nodes in Ni
can send/receive information to/from Node i. Also, Ai,j , for
all j ∈ Oi, and Ri are available at Node i.

Let x =
[
xT1 , · · · , xTI

]
, y =

[
yT1 , · · · , yTI

]
,

v =
[
vT1 , · · · , vTI

]
, A = [Ai,j ]i,j=1,··· ,I and R =

diag {R1, · · · , RI}. Then, we can write the measurement
model of the whole network as

y = Ax+ v, (2)

with v ∼ N (0, R). The WLS estimation x̂ of x is given by

x̂ = Ψ−1α (3)

with

α = ATR−1y and Ψ = ATR−1A.

For the WLS problem to be well defined, we do the following
further assumption:

Assumption 2: The matrix A has full column rank and R
is non-singular.

Computing (3) requires global network information. Our
goal is to derive distributed methods in which Node i
computes the block components x̂i of the estimate x̂, cor-
responding to xi, using only information received from its
neighbors. In Section III, we derive an iterative method in
which this is asymptotically achieved on the limit when the
number of iterations tends to infinity.

III. DISTRIBUTED ALGORITHM

Let Π be a positive definite matrix. Let also Υ =
Π1/2ΨΠ1/2 and

0 < γ <
2

‖Υ‖
. (4)

Let α̃ = (γΠ)
1/2

α and ˜̂x = (γΠ)
−1/2

x̂. From (3) we have
˜̂x = (γΥ)

−1
α̃.

From (4), 0 < γΥ < 2I . Hence, −I < γΥ − I < I
and therefore ‖I − γΥ‖ < 1. Then, using Richardson’s
method [11], we have that ˜̂x can be recursively computed
by

˜̂x(t+ 1) = (I − γΥ) ˜̂x(t) + α̃. (5)

Then, it is straightforward to obtain

x̂(t+ 1) = (I − γΠΨ) x̂(t) + γΠα. (6)

As it will be explained in Section V, the preconditioning
matrix Π is used to increase the convergence speed of the
recursions 6. Let [Ψx̂(t)]i denote the i-th block entry of the
vector Ψx̂(t). We have,

[ΠΨx̂(t)]i =

I∑
j=1

Πi,j [Ψx̂(t)]j , (7)

where Πi,j are the block entries of Π, i.e., Π =
[Πi,j ]i,j=1,··· ,I . Suppose that [Ψx̂(t)]i is available at Node i.
Equation (7) means that, unless Π is block diagonal, the
nodes have to exchange information for the purpose of pre-
conditioning. This goes against the goal for preconditioning.
Thus, we constrain our analysis to

Π = diag {Π1, · · · ,ΠI} . (8)

We use di to denote dimension of each square matrix Πi,
i = 1, · · · , I .

Let

αi =
∑
k∈Ii

α
(k)
i , (9)

with α
(k)
i = ATk,iR

−1
k yk, for k = 1, · · · , I . Also, for i, j =

1, · · · , I , let

Ψi,j =
∑

k:i,j∈Ok

Ψ
(k)
i,j , (10)

where Ψ
(k)
i,j = ATk,iR

−1
k Ak,j , for all k = 1, · · · , I . Hence,

α =
[
αT1 , · · · , αTI

]T
and Ψ = [Ψi,j ]i,j=1,··· ,I . We have

[Ψx̂(t)]i =

I∑
j=1

Ψi,j x̂j(t)

=
∑
k∈Ii

∑
j∈Ok

Ψ
(k)
i,j x̂j(t). (11)

Then, from (6), (11) and (9), we obtain

x̂i(t+ 1) = x̂i(t)− γΠi

I∑
j=1

Ψi,j x̂j(t) + γΠiαi

= x̂i(t)− γΠi

∑
k∈Ii

∑
j∈Ok

Ψ
(k)
i,j x̂j(t)−

∑
k∈Ii

α
(k)
i

 . (12)

Notice that the matrices Ψ
(k)
i,j are only available at Node k.

Hence, the natural role of Node k is that of an intermediary
between Node j, sending x̂j(t), and Node i, receiving∑
j∈Ok Ψ

(k)
i,j x̂j(t). Considering this, we obtain the following

algorithm:
Algorithm 1 - distributed WLS estimation:
Initialization:

1) For each k = 1, · · · , I and i ∈ Ok, Node k computes
α

(k)
i and sends it to Node i.

2) On reception, Node i computes αi =
∑
k∈Ii α

(k)
i .

3) For each i = 1, · · · , I , Node i sets x̂i(1) = 0.
Main loop: At time t ∈ N:

1) For each j = 1, · · · , I and k ∈ Nj , Node j sends its
current estimate x̂j(t) to Node k.1

1Notice that, according to (12), Node j should transmit x̂j(t) to all nodes
k such that j ∈ Ok , or equivalently, to all nodes in Ij . However, Node j
does not know which nodes are in Ij . Hence it transmits to all nodes in
Nj , and it is up to the receiving Node k to detect Node j is in Ok .
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2) On reception, for each k = 1, · · · , I and i ∈ Ok,
Node k sends to Node i

x̌i,k(t) =
∑
j∈Ok

Ψ
(k)
i,j x̂j(t).

3) On reception, for each i = 1, · · · , I , Node i computes

x̂i(t+ 1) = x̂i(t)− γΠi

(∑
k∈Ii

x̌i,k(t)− αi

)
.

To implement Algorithm 1, we need to design the rescaling
factor γ and the preconditioning matrices Πi, for all i =
1, · · · , I . This is done in Sections IV and V, respectively.

IV. DESIGN OF THE RESCALING FACTOR γ

In view of (5), the value of γ that maximizes the conver-
gence rate is

γ =
2

‖Υ‖+ ‖Υ−1‖−1 , (13)

since this is the value that minimizes ‖I − γΥ‖. In this
section we derive a distributed method to find the value of γ
given in (13). To this end, we need distributed methods for
finding ‖Υ‖ and

∥∥Υ−1
∥∥−1

. We give these methods below.
These methods yield, at Node i and time step t, estimates
Υi(t) and Υi(t), of ‖Υ‖ and

∥∥Υ−1
∥∥−1

, respectively. Then,
at the same node and time step, the estimate γi(t) of γ is
obtained by

γi(t) =
2

Υi(t) + Υi(t)
.

A. Distributed method for finding ‖Υ‖
Choose any vector b(0) 6= 0 and let b(t) = Υtb(0).

Using (11), at Node i, we have

bi(t+ 1) = Π
1/2
i

I∑
j=1

Ψi,jΠ
1/2
j bj(t)

= Π
1/2
i

∑
k∈Ii

∑
j∈Ok

Ψ
(k)
i,j Π

1/2
j bj(t), (14)

where bi(t) denotes the i-th block component of b(t). Then,
using the power method [11], Node i can asymptotically
compute ‖Υ‖ as follows

‖Υ‖ = lim
t→∞

‖bi(t)‖
‖bi(t− 1)‖

. (15)

An inconvenience with the approach above is that b(t) either
increases or decreases indefinitely. To avoid this, the vector
b(t) can be periodically normalized. In [12], this was done
using average consensus (in the continuous-time case). As
we mentioned in Section I, we avoid the drawbacks of that
method by providing an alternative approach in which b(t) is
normalized at each node, without inter-node communication.

Fix t ∈ N. Let ki(t) ∈ R and

b̄i(t) = ki(t)bi(t). (16)

From (14), we have

b̄i(t+ 1) =
ki(t+ 1)

ki(t)
Π

1/2
i

∑
k∈Ii

∑
j∈Ok

ki(t)

kj(t)
Ψ

(k)
i,j Π

1/2
j b̄j(t).

Let ki(0) = 1 and

ςi(t) =
ki(t)

ki(t− 1)
,

so that ki(t) =
∏t
τ=1 ςi(τ). Then,

b̄i(t+ 1) = ςi(t+ 1)b̃i(t+ 1), (17)

with

b̃i(t+ 1) = Π
1/2
i

∑
k∈Ii

∑
j∈Ok

υi,j(t)Ψ
(k)
i,j Π

1/2
j b̄j(t),

υi,j(t) =

t∏
τ=1

ςi(τ)

ςj(τ)
.

We need to design ki(t+ 1), or equivalently ςi(t+ 1), to
avoid the indefinite increase or decrease of b(t). In principle,
this could be achieved by choosing

ki(t) = ‖bi(t)‖−1
,

so that
∥∥b̄i(t)∥∥ = 1, for all t ∈ N. From (17), this would

lead to

ςi(t+ 1) =
∥∥∥b̃i(t+ 1)

∥∥∥−1

.

However, the question then arises as to whether some of the
scalars υi,j(t) would grow to infinity. Notice that

υi,j(t) =
ki(t)

kj(t)
.

Hence, this could only happen if some vector in the
eigenspace associated to the largest eigenvalue of Υ has
zero components in the entries corresponding to bj(t). We
call a matrix satisfying this property, ill-posed. Although
the set of ill-posed matrices is nowhere dense, (i.e., it is
unlikely to have an ill-posed matrix Υ), we can avoid the
indefinite growth of υi,j(t) by choosing ςi(t + 1) so that∥∥b̄i(t+ 1)

∥∥ ≤ 1 and, for all j ∈ Bi = {j : Ψi,j 6= 0},

ςi(t+ 1)υi,j(t) ≤ 1.

This leads to

ςi(t+ 1) = max
{∥∥∥b̃i(t+ 1)

∥∥∥ , υi,j(t), j ∈ Bi}−1

.

From (15) and (16), the estimate Ῡi(t) of ‖Υ‖ at t is

Ῡi(t) =
‖bi(t)‖
‖bi(t− 1)‖

= ς−1
i (t)

∥∥b̄i(t)∥∥∥∥b̄i(t− 1)
∥∥ .

However, if Υ is ill-posed,
∥∥b̄i(t)∥∥ will tend to zero. In such

case, Ῡi(t) can be computed by

Ῡi(t) = ς−1
j (t)

∥∥b̄j(t)∥∥∥∥b̄j(t− 1)
∥∥ ,

for some neighbor node j for which
∥∥b̄j(t)∥∥ does not tend to

zero. Notice that such a neighbor always exists, for otherwise
Node i would be isolated from all other nodes.
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We summarize below the resulting algorithm.
Algorithm 2 - distributed norm estimation: For each k =
1, · · · , I , Node k, chooses b̄k(1), with

∥∥b̄k(1)
∥∥ = 1 and sets

ςk(1) = 1 and υ(k)
i,j (1) = 1, for all i, j ∈ Nk. Then, at time

t ∈ N:
1) For each j = 1, · · · , I and k ∈ Nj , Node j sends(

Π
1/2
j b̄j(t), ςj(t)

)
to Node k.

2) On reception, for each k = 1, · · · , I and i ∈ Ok,
Node k sends

(
b̌
(k)
i (t), ς̄

(k)
i (t)

)
to Node i, where

b̌
(k)
i (t) =

∑
j∈Ok

υ
(k)
i,j (t)Ψ

(k)
i,j Π

1/2
j b̄j(t),

ς̄
(k)
i (t) = max

j∈Nk
υ

(k)
i,j (t),

and
υ

(k)
i,j (t) =

ςi(t)

ςj(t)
υ

(k)
i,j (t− 1).

3) On reception, for each i = 1, · · · , I , Node i computes

b̄i(t+ 1) = ςi(t+ 1)b̃i(t+ 1),

ςi(t+ 1) = max
{∥∥∥b̃i(t+ 1)

∥∥∥ , ς̄(k)
i (t), k ∈ Ii

}−1

,

with

b̃i(t+ 1) = Π
1/2
i

∑
k∈Ii

b̌
(k)
i (t). (18)

Also, the estimate Υi(t) of ‖Υ‖ is

Υi(t) = ςi(t+ 1)−1. (19)

B. Distributed method for finding
∥∥Υ−1

∥∥−1

Let c ≥ ‖Υ‖ and Φ = cI −Υ. It follows that∥∥Υ−1
∥∥−1

= eig (Υ)

= c− eig (Φ)

= c− ‖Φ‖ .

Hence, we can find
∥∥Υ−1

∥∥−1
by applying Algorithm 2 on

Φ, to find ‖Φ‖. To this end, at Node i and time t, we choose
c = Υi(t). The resulting algorithm is similar to Algorithm 2,
with (18) replaced by

b̃i(t+ 1) = Υi(t)b̄i(t)−Π
1/2
i

∑
k∈Ii

b̌i,k(t),

and (19) replaced by

Υi(t) = Υi(t)− Φi(t),

Φi(t) = ςi(t+ 1)−1.

V. DESIGN OF THE PRECONDITIONING MATRIX Π

As mentioned above, for a given choice of Υ, the fastest
convergence rate of Algorithm 1 is achieved when γ is
chosen as in (13). It is straightforward to verify that, under
this choice of γ,

‖I − γΥ‖ =
κ (Υ)− 1

κ (Υ) + 1
,

where κ(Υ) = ‖Υ‖
∥∥Υ−1

∥∥ denotes the condition number of
Υ. Then, from (5), there exists K ≥ 0, such that

‖x̂− x̂(t)‖ ≤ K ‖I − γΥ‖t

= Ket log
κ(Υ)−1
κ(Υ)+1 .

Then, we define the time constant τ(Υ) of the distributed
WLS algorithm by

τ(Υ) =
1

log κ(Υ)+1
κ(Υ)−1

. (20)

Hence, a natural question is whether the preconditioning
matrices Πi, i = 1, · · · , I , can be chosen so that τ(Υ) is
minimized. While we are not able to answer this question, we
have the following result, which follows using an argument
similar to the one in [13, Th. 2]. Its proof is omitted, and
will appear in a journal version.

Theorem 1: If Πi = Ψ−1
i,i , for all i = 1, · · · , I , then

κ (Υ) ≤ βκ?,

where

β = max
i
|Bi|,

κ? = min
Π̃∈P

κ
(

Π̃1/2ΨΠ̃1/2
)
,

with Bi = {j : Ψi,j 6= ∅} and P denoting the set of positive
definite block diagonal matrices of the form (8).
Theorem 1 states that if the preconditioning matrices Πi,
i = 1, · · · , I , are chosen as

Πi =

(∑
k∈Ii

Ψ
(k)
i,i

)−1

, (21)

then κ(Υ) is at most β times bigger than the smallest
possible value κ? achievable using block diagonal precon-
ditioning matrices. Notice that Bi = {j : Ii ∩ Ij 6= ∅} ⊆
{j : Ni ∩Nj 6= ∅}. Hence, β is bounded by the maximum
number of two-hop neighbors over the whole network.
Hence, it does not necessarily grow with the network size.

Now, we have

lim
κ→∞

κ log

(
κ+ 1

κ− 1

)
= 2.

Hence, from Theorem 1, for large κ (Υ) we have

τ (Υ) ' κ (Υ)

2

≤ β

2
min

Π̃
κ
(

Π̃1/2ΨΠ̃1/2
)

' βτ?, (22)

where
τ? = min

Π̃∈P
τ
(

Π̃1/2ΨΠ̃1/2
)
.

Hence, if Πi, i = 1, · · · , I , are chosen as in (21), and
κ (Υ) is large, then the time constant τ (Υ) is at most β
away from the optimal one τ?.

Remark 1: In view of (21), computing Πi = Ψ−1
i,i requires

the matrices Ψ
(k)
i,i , k ∈ Ii, to be transmitted from Node k to

Node i during an initialization stage.
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Fig. 2. Network topology induced by the nodes in Figure 1.
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Fig. 3. Convergence of the distributed WLS method, without precondi-
tioning.

VI. SIMULATIONS

A. State estimation in power systems

In the first simulation we use the proposed distributed
method for state estimation in smart electricity networks
involving multi-area interconnected power systems [14]. We
use the IEEE 118-bus test system, shown in Figure 1, where
buses are represented by circles and lines by edges. Some
buses have a phasor measurement unit (PMU) installed.
These buses are shown in gray. Each PMU measures the
voltage of the bus where it is installed, as well as the currents
of the lines attached to that bus. The goal is to estimate the
voltage (a complex phasor) at each bus. We place the PMUs
using the method in [15]. This guarantees that the matrix A
in (2) has full column rank. We also assume that R = σ2I ,
with σ = 0.05. This leads to a squared estimation error of
−17.45 dB.

We cluster the buses into eight nodes, as shown in Fig-
ure 1. From the definition of Ni, it follows that j ∈ Ni if
there is a bus with a PMU installed, having a neighbor bus
(including possibly itself) in each node. Figure 2 shows the
topology of the network induced by the clustering shown in
Figure 1.

Figure 3 shows the convergence of the asymptotic method
without preconditioning. To this end, we show the modulus
of the estimated voltage of each bus at each step. We see
that the convergence is very slow. The reason for this is that
the condition number of Ψ is 478972. The preconditioning
matrix in (21) gives a condition number of 700, which leads
to a much faster convergence. This is shown in Figure 4.
Figure 5 shows the fast convergence of the estimation of
‖Υ‖ and

∥∥Υ−1
∥∥−1

at each node.
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Fig. 4. Convergence of the distributed WLS method, with preconditioning.

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 0  20  40  60  80  100

E
ig

e
n
v
a
lu

e
 e

s
ti
m

a
te

Iteration

Largest eigenvalue
Smallest eigenvalue

Fig. 5. Convergence of the distributed eigenvalue estimation algorithm.

B. Sensor localization

Sensor localization refers to the problem of obtaining the
locations of each node in a network, based on the knowledge
of the locations of a few (anchor) nodes a well as the mutual
distances between neighbor nodes. A distributed method for
carrying out this task is proposed in [16]. In this method, the
vector x of unknown node coordinates is obtained by solving
the equation y = Ax, where y is the vector of coordinates of
the anchor nodes and the matrix A is build using inter-node
distances. Due to inaccuracy in distance measurements, the
formula above can be approximately expressed as in (2). In
that case, we can use our proposed distributed method to
obtain, at each node, a WLS estimation of its coordinates.
The experiment setup is shown in Figure 6. It includes three
anchor nodes, as well and I = 20 nodes, randomly placed
in their convex hull. We use a noise covariance matrix R =
σ2Id, where Id denotes the identity matrix, and σ2 = 10−4.
This results in a localization error of

e = 10 log10

I∑
i=1

(xi − x̂i)2 + (yi − ŷi)2 = −33dB.

The convergence of the coordinate estimates at each node,
using the proposed method with the preconditioning matrix
in (21), is shown in Figure 7.
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Fig. 1. Diagram of the IEEE 118-bus test system.
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