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Abstract— This paper addresses the stability of a Kalman
filter when measurements are intermittently available due to the
non-transparent communication channel between sensor and
estimator. More specifically, we present a method to determine
whether the expected value of the estimation error covariance
is bounded for a given stochastic network model. The method
applies to general discrete-time LTI systems and adopts the
finite state Markov channel model.

I. INTRODUCTION

Characterizing the behavior of a Kalman filter when
measurements are intermittently available has attracted a
great interest in the recent years. This is partly due to
the development of communications technologies, which
today permit distributed control and monitoring in a broad
range of applications. When measurements sent through a
communication channel are subject to random losses, the
estimation accuracy of a Kalman filter deteriorates. In [1],
the authors established the mathematical foundations for
the basic problem and pointed out that the covariance of
the estimation error does not reach a steady state. Since
then, several authors have studied different aspects of the
problem, using different assumptions on network models and
protocols.

When a Kalman filter is subject to intermittent observa-
tions (KFIO), the error covariance (EC) matrix becomes of
random nature. The study of the stochastic properties of the
EC is a central issue for performance and stabitity analysis
of KFIO. Several authors have studied different properties
of the EC. In [2], [3] the authors present methods to derive
bounds on the asymptotic probability distribution of the error
covariance matrix. Although previous works were concerned
with finding these bounds, it was not until [4], [5] that the
existence of a unique and invariant APDEC was shown.

One of the first problems proposed in the area is whether
the asymptotic expected value of the EC can be bounded
by a constant matrix or not [1]. Since then, several authors
presented important contributions that permit assessing the
stability of KFIO for particular classes of systems and com-
munication channels [1], [5]–[21]. In particular, [1] described
the measurement dropout using a Bernouli process, i.e., the
dropout process is described by a sequence of independent
and identically distributed (i.i.d.) binary random variables.
Under this assumption, the authors derived a condition that
is necessary and sufficient for the stability of KFIO assciated
to systems whose observalion matrix C is invertible. The
assumption was later relaxed to only requiring that the part of
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C associated with the observable subspace has full column
ranksystems whose observalion matrix C has full column
rank [10]. The set of systems for which the necessary con-
ditions for stability are also sufficient was further extended
in [11], where the authors studied the case where the unstable
eigenvalues of A have different magnitudes.

In an attempt to account for some communication channel
phenomena, such as fading and congestion, [6] introduced
the Gilbert-Elliott model [22], [23] in the context of KFIO.
In order to do that, [6] introduced the notion of peak
covariance for the estimation error. More recently, the equiv-
alence between the two notions of stability has been studied
in [5], [7]. For scalar plants, [6] was able to provide a
necessary and sufficient for stability of KFIO. In [8], a new
sufficient condition for the stability of the peak covariance
was established. peak covariance matches the necessary one
presented in [12]. In [7], a necessary and sufficient condition
for the stability of the peak covariance for second order
systems was derived, while for higher order systems, only a
necessary condition was presented. In [9] the authors derive
a necessary and sufficient condition for the stability of the
KFIO for non-degenerate systems. A further extension on the
class of systems for which the stalility conditions are known
is by [9], where the authors showed that the condition still
holds for a larger class of systems, called non-degenerate.
Finally, in [24], the present authors presented a necessary
and sufficient condition for systems whose dynamics matrix
A can be diagonalised.

In many applications, particularly when the network condi-
tions change slowly in comparison with the sampling time,
the use of a higher order Markov process (also known as
finite state Markov channel (FSMC) [25]) produces a more
accurate description of the packet dropouts. In the context of
KFIO, this network model has been studied in [26], where
the existence of a stationary APDEC was investigated, and
in [24] where the authors provided the stability conditions
for diagonalisable systems.

In this paper we present a method for assessing the
stability of a KFIO for general discrete-time LTI systems and
semi-Markov network models. This communication model
includes the i.i.d. and Gilberto Elliott models studied pre-
viously as special cases. By doing so, we extend the class
of systems for which the stability conditions are known by
relaxing the assumption that the matrix A is diagonalisable.
That is, the result presented in this paper applies for general
discrete-time finite-dimensional LTI systems.

This problem has remained open for over a decade, and
as it may be expected the proofs are lenghty and technically
involving. Due to the limited space in this paper we supress
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the proofs of our results. A journal paper with the complete
proofs is currently under preparation.

II. PROBLEM FORMULATION

Consider the discrete-time LTI system{
xt+1 = Axt + wt

yt = Cxt + vt
(1)

where x ∈ Cn is the vector of states, y ∈ Rp is the
vector of measurements, w ∼ N(0,Q) with Q ≥ 0 is the
process noise, v ∼ N(0,R) with R ≥ 0 is the measurement
noise, A ∈ Cn×n is the state matrix and C ∈ Cp×n is the
measurement matrix. The initial state is x0 ∼ N(0,P0), with
P0 ≥ 0. The measurements are sent to an estimator through a
network subject to random packet losses, but without delays.
We assume that an error correcting scheme is used such
that if an error is introduced during transmission, it can
be detected. If the transmission error cannot be corrected,
then the corresponding measurement is discarded. Let gt be
a binary random variable describing the arrival of a valid
measurement at time t. We denote gt = 1 when yt is
available for the estimator and gt = 0 otherwise.

We run a Kalman filter to obtain an estimate x̂t of the
state xt. The update equation of the EC matrix Pt (i.e., the
covariance of the error x̃t = xt− x̂t given the measurements
received up to time t− 1) can be written as follows [1]:

Pt =

{
Φ0(Pt−1) , gt−1 = 0,
Φ1(Pt−1) , gt−1 = 1,

(2)

with

Φ0(X) = AXA∗ + Q,

Φ1(X) = AXA∗ + Q−AXC∗ (CXC∗ + R)
−1

CXA∗.

Define B , {0, 1} and let Γt be the binary sequence
indicating whether the measurements yτ , τ = 0, · · · , t − 1
are available, i.e.,

Γt , (g0, · · · , gt−1). (3)

For a given matrix 0 ≤ X ∈ Rn×n and sequence S ∈ BT ,
we define the map Ψ : Rn×n × BT → Rn×n, by

Ψ(X, S) = ΦS(T ) ◦ ΦS(T−1) ◦ . . .ΦS(1)(X). (4)

Notice that the EC at time t only depends on the initial EC
P0 and the sequence of available measurements up to time
t− 1, i.e.,

Pt = Ψ(P0,Γt) = Φgt−1
◦ Φgt−2

◦ . . .Φg0(P0). (5)

Notice that above, gt and Γt are random quantities, while S
is deterministic.

In this paper we derive a necessary condition and a
sufficient condition, with a trivial gap between them, for
the boundedness of the asymptotic value of the norm of
the expected error covariance (AEEC). The definition of this
quantity is given below.

Definition 1: For a given initial EC P0 ≥ 0, the AEEC
norm is defined as

G(P0) , lim sup
t→∞

Gt(P0), (6)

where

Gt(P0) , ‖E(Pt)‖ =

∥∥∥∥∥∑
S∈Bt

P(Γt = S)Ψ(P0, S)

∥∥∥∥∥ . (7)

The results are obtained under the assumptions that the
measurements are dropped according to the FSMC model.
We formally introduce this assumption below.

Definition 2: Let gt, t ∈ Z, be a stationary random
process. Its Markov order ν is defined as the smallest non-
negative integer such that, for all µ ≥ 1, the following holds

P(gt = 1|gt−ν−µ, · · · , gt−1) = P(gt = 1|gt−ν , · · · , gt−1).
(8)

We say that the communication channel follows the FSMC
model if the measurement drop process gt is a stationary
random process with Markov order ν.

We use the following assumption.
Assumption 1: The packet dropout process gt is station-

ary, and its Markov order ν is finite. Also, 0 < P(gt =
1|gt−ν , · · · , gt−1) < 1, for any gt−ν , · · · , gt−1.

Remark 1: Notice that the i.i.d. network model is a special
case of the FSMC model with ν = 0. It is fully characterized
by the parameter P(gt = 1) , λ [1]. Similarly, a Gilbert-
Elliott model is obtained using the FSMC model with ν = 1
and is fully characterized by two parameters: the recovery
rate q = P(gt = 1|gt−1 = 0) and the failure rate p = P(gt =
0|gt−1 = 1) [6].

Remark 2: The general FSMC model has been widely
used to model wireless channels in a variety of applications
(see [25] for a survey of principles and applications). The
problem of channel modeling, i.e., how to obtain a model of
the channel based on its statistics, has been studied by several
authors. For instance, [27] and [28] presented methods to
obtain a model given a set of observations from a channel.

III. MAIN RESULT

The results uses a particular division of the system (1) into
subsystems, or finite multiplicative order (FMO) blocks. We
assume that the system is in its upper Jordan cannonical
form, i.e., the matrix A is Jordan. Notice this is without
loss of generality since the similarity transformation used to
obtain the Jordan form is always well-defined and applying it
will not change whether the AEEC of the KFIO is bounded
or not.

Before presenting the main result, the definition of FMO
block is introduced.

Definition 3: [FMO block] Consider the following parti-
tion of A

A = diag(A1, · · · , AK), (9)

where the sub-matrices Ak are chosen such that, for any k,
the diagonal entries of Ak have a common FMO up to a
constant (i.e., there exists Nk ∈ N such that all the entries in
the main diagonal of ANk

k are equal to αNk

k , with αk ∈ C),
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and for any k and l with k 6= l, the diagonal entries of the
matrix diag(Ak,Al) do not have FMO up to any constant.
Also, consider the partition

C = [C1 · · · CK ] , (10)

such that each Ck has the same number of columns as
Ak. Then the pair (Ak,Ck) is called an FMO block of the
system (1).

Notice that if (Ak,Ck) is an FMO block, then each sub-
matrix Ak can be written as

Ak = αkÃk

Ãk = diag(exp(i2πθk,1), · · · , exp(i2πθk,Kk
)) + Jk,

where Jk is strictly upper triangular, i.e., its non-zero entries
lie above its main diagonal. Also, αk ∈ C and θk,j ∈ Q for
j = 1, · · · ,Kk. Notice that for any k and l with k 6= l,
αk/αl is not a root of unity, i.e., (αk/αl)

m 6= 1 for all
m ∈ N. For convenience, in the rest of this chapter it will
be assumed that the sub-matrices Ak are ordered such that
|α1| ≥ |α2| ≥ · · · ≥ |αK |.

Consider a sampling time interval [0, t−1] and its associ-
ated measurement arrival sequence Γt. Let ti, i = 1, · · · , s,
be all the time instants such that Γt(ti + 1) = 1. Then,
the available measurements can be written in a vector zt as
follows

zt =
[
y′t1 y′t2 · · · y′ts

]′
= O(Γt)x0 + f(Γt) (11)

where

O(Γt) ,
[
O1(Γt) O2(Γt) . . . OK(Γt)

]
, (12)

with

Ok (Γt) ,
[(

CkA
t1
k

)′ (
CkA

t2
k

)′ · · · (
CkA

ts
k

)′]′
.

(13)

Also, f (Γt) = [f ′1, · · · , f ′s]
′, with f i =

ti−1∑
j=0

CAti−1−jwj +

vti , for i = 1, · · · , s. For k = 1, · · · ,K, let N t
k denote the

subset of sequences S in Bt such that Ok(S) does not have
FCR, i.e.,

N t
k , {S ∈ Bt : Ok(S) does not have FCR}. (14)

To simplify the notation, in the rest of the paper we will use
P(N t

k) to denote P(Γt ∈ N t
k). The main result is presented

in terms of the quantity lim supt→∞ P (N t
k)

1/t
. We present

in Lemmas 2 and 3 a method compute this quantity.
We now state the main result of the paper.
Theorem 1: Consider the system (1) satisfying Assump-

tion 1. If

|αk|2 lim sup
t→∞

P
(
N t
k

)1/t
< 1, for all k ∈ {1, · · · ,K},

(15)
then the AEEC norm G(P0) is finite for any P0 ≥ 0, and if

|αk|2 lim sup
t→∞

P
(
N t
k

)1/t
> 1, for some k ∈ {1, · · · ,K},

(16)
then G(P0) is infinite for any P0 ≥ 0.

Notice that the result is valid for any initial condition
P0 ≥ 0, so we will omit the argument of G(·) in the
rest of the paper. Also, there is a trivial gap between (15)
and (16), i.e., we do not state whether G is finite or not when
|αk|2 lim supt→∞ P (N t

k)
1/t

= 1. This gap is common in the
literature, see e.g., [1], [9].

Remark 3: Notice that the result in Theorem 1 permits
carrying out the stability analysis in each FMO block inde-
pendently. This allows splitting the problem into smaller sub-
problems that are easier to analyze. This is a key property
of our decomposition of the system into FMO blocks, and
showing this property is a central issue for proving our result.

Contrary to most results available in the literature, where
the conditions for the AEEC to be finite are cast in terms
of the parameters of the network model, we state our result
in terms of the quantity lim supt→∞ P (N t

k)
1/t. This permits

stating the result for the general FSMC network model. We
now address the issue of how to evaluate this quantity. The
following 2 definitions are used to this end.

Definition 4 (Reduced FMO block): Let Lk be the num-
ber of Jordan blocks of Ak. Consider the following partition
of Ak:

Ak = diag (Ak,1, · · · ,Ak,Lk
) ,

where Ak,l is a Jordan block with size Jk,l and eigenvalue
αk,l. Also, consider the consistent partition of Ck, i.e., Ak,l

and Ck,l have the same number of columns. Let [Ck,l]1 be
the first column of Ck,l. Define

Âk = diag (αk,l, · · · , αk,Lk
) (17)

Ĉk = [[Ck,1]1 · · · [Ck,Lk
]1] . (18)

We call the pair (Âk, Ĉk) the reduced FMO block of
(Ak,Ck).

Definition 5: An FMO block (Ak,Ck) is said to be
degenerate if in its reduced FMO block (Âk, Ĉk), the matrix
Ĉk does not have FCR, and non-degenerate otherwise. Also,
the system (1) is said to be degenerate if at least one of its
FMO blocks is degenerate, and non-degenerate otherwise.

This definition differs from the one presented in [9] in two
points. In [9], the authors split the matrix A in blocks with
eigenvalues of the same magnitude, while in our approach
each block is also required to have FMO, hence the set of
systems that are non-degenerate according to Definition 5 is
slightly larger that the one in [9, Definition 5]. The second
difference is that we include systems whose dynamics matrix
A is non-diagonalizable in our classification.

Notice that according to both definitions, observable sys-
tems whose matrix A have all its eigenvalues with different
magnitudes are non-degenerate.

The computation of lim supt→∞ P(N t
k)1/t is addressed

below.
The next lemma tells us that the reduced FMO blocks can

be used to compute lim supt→∞ P(N t
k)1/t.

Lemma 1: We have

lim sup
t→∞

P
(
N t
k

)1/t
= lim sup

t→∞
P
(
N̂ t
k

)1/t
. (19)
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Degenerate and non-degenerate FMO blocks are treated
separately. The results are first derived for general FSMC
networks and then used to state the conditions for the i.i.d.
and the Gilbert-Elliott packet loss models.

For non-degenerate FMO blocks, we show in Lemma 2
that lim supt→∞ P (N t

k)
1/t is simply the recovery rate of

the network, i.e., the probability to receive a measurement
after a long sequence of lost ones. This result, together with
Theorem 1, extends the class of communication channels
for which the stability conditions of the KFIO are known.
It also recovers most known results in the literature. For the
case when the FMO block is degenerate, we cannot give a
closed-form expression for this quantity. However, we give
a method to evaluate it in Lemma 3.

A. Non-Degenerate FMO blocks

Lemma 2: Let (Ak,Ck) be a non-degenerate FMO block,
and suppose that Assumption 1 holds. Then,

lim sup
t→∞

P
(
N t
k

)1/t
= P (gt = 0|gt−ν = 0, · · · , gt−1 = 0) .

(20)
Combining Theorem 1 and Lemma 2 we obtain the

following corollary.
Corollary 1: For an i.i.d. network with P(gt = 1) = λ,

the AEEC norm G is finite, if

|α1|2(1− λ) < 1, (21)

and G is infinite if

|α1|2(1− λ) > 1. (22)

Also, for a Gilbert-Elliott network model with recovery rate
P(gt = 1|gt−1 = 0) = q, if

|α1|2(1− q) < 1, (23)

then G is finite. If

|α1|2(1− q) > 1, (24)

then G is infinite.

B. Degenerate FMO blocks

When the matrix Ck does not have FCR for some k,
then more than one measurement in the sequence Γt must
be available in order for Ok (Γt) to have FCR. Moreover,
the time when the measurement is received is important to
determine how many measurements are needed. We show
this with the following example:

Example 1: Consider the FMO block (A,C), with

A = αdiag(1,−1) C = [1 1]. (25)

Notice that if all the available measurements are from even
time instants, i.e., Γt = (1, 0, 1, 0, 1, 0, · · · ), then the matrix
O(Γt) does not have FCR:

O ((1, 0, 1, 0, 1, 0)) =

[
1 α2 α4

1 α2 α4

]′
.

More generally, since there exists a positive integer N such
that AN = αNI, if the measurement yt is available, the

measurements yt+jN , for j ∈ N, will not increase the rank
of O.
It is clear from the previous example that the probability to
observe a sequence of measurements Γt such that O (Γt) has
FCR depends on the structure of the system under analysis
as well as on the parameters of the communication channel.
Lemma 3 below states a numerical method to evaluate
lim supt→∞ P (N t)

1/t for general degenerate systems using
the FSMC channel model. Furthermore, we show in Corol-
lary 2 that this method results in a closed-form expression
when the packet loss model is i.i.d..

In order to compute the probability to observe a sequence
Γt such that Ok (Γt) does not have FCR, we first group
the sequences that share some important properties together.
Then, we build the probability transition matrix that describes
the probability that a sequence change groups when concate-
nated with a new sequence.

We start with some necessary definitions. Fix k ∈
{1, · · · ,K}. For convenience of notation we omit the
subindex k and assume w.l.g. that A is a reduced FMO
block, i.e., A = Â1. Let N ∈ N be the smallest positive
integer greater than or equal to ν (the order of the packet
drop model) such that AN = αNI. Since, for all n, l ∈ N0,
CAn and CAn+lN are linearly dependent, we can restrict
our characterization to sequences of length N . To do so, for
each t ∈ N, we define the map ψ : Bt → BN such that, for
all n = 1, · · · , N , the n-th element of ψ(S) is given by

ψ(S)(n) ,

{
1, S(n+ lN) = 1 for some l ∈ N,
0, otherwise,

(26)

i.e., ψ maps a sequence S ∈ Bt of arbitrary length t, to a
sequence ψ(S) ∈ BN of length N , such that rank (O (S)) =
rank (O (ψ (S))). Let Fi ∈ BN , i = 1, · · · , I , be the set
of all the sequences of length N such that O(Fi) does
not have FCR, i.e., NN = {F1, · · · , FI}. Let the elements
Fi be enumerated such that, for all t ∈ N and S ∈ Bt,
if ψ ((Fi, S)) = Fj , then j ≥ i. Hence, we have F1 =
(0, · · · , 0). Then, for each i = 1, · · · , I , let

Lni , {S ∈ BnN : ψ(S) = Fi}, (27)

i.e., Lni is the set of sequences S of length nN such that
its associated sequence ψ (S) equals Fi. Notice that NnN =
Ln1 ∪ · · · ∪ LnI .

Define the map δ : Bt → Bν by

δ (S) , (S (t− ν + 1) , · · · , S (t)) , (28)

i.e., δ (S) is a sequence of length ν whose elements equal the
last ν elements of S. Notice that, in view of Assumption 1,
for two sequences Sa, Sb ∈ Bt with t ≥ ν, if δ (Sa) =
δ (Sb), then for gt ∈ {0, 1}, we have P (gt|Γt = Sa) =
P (gt|Γt = Sb).

For each i = 1, · · · , I , let Hi,j ∈ Bν , j = 1, · · · , Ji,
denote the sequences such that, if S ∈ BnN , for some n ∈ N,
and ψ(S) = Fi, then δ(S) ∈ {Hi,1, · · · , Hi,Ji}. That is,
{Hi,1, · · · , Hi,Ji} is the set of all possible tails δ(S) of a
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sequence S whose length is a multiple of N and ψ (S) = Fi.
For i = 1, · · · , I and j = 1, · · · , Ji, define the set

Lni,j , {S ∈ Lni : δ(S) = Hi,j} . (29)

For every i = 1, · · · , I , we now build the Ji × Ji
probability transition matrix Di, whose (r, c)-th entry equals
the probability that Γ3N ∈ L3

i,r given that Γ2N ∈ L2
i,c, i.e.,

[Di]r,c , P
(
Γ3N ∈ L3

i,r|Γ2N ∈ L2
i,c

)
. (30)

Notice that L2
i,j is not an empty set, since

(Fi, (0)N−ν , Hi,j) ∈ L2
i,j . Let

pi = max eig (Di) . (31)

Recall that pi is a quantity associated to the FMO block k.
In general, for k = 1, · · · ,K define

σk ,

(
max
1≤i≤I

pi

)1/N

. (32)

We can now state our result for numerically evaluating
lim supt→∞ P(N t

k)1/t.
Lemma 3: Let σk be as defined in (32). We have

lim sup
t→∞

P
(
N t
k

)1/t
= σk. (33)

Example 2: Consider the FMO block in Example 1 sub-
ject to random measurement losses according to the Gilbert-
Elliott model with recovery rate q and failure rate p. We
have that N = 2 and NN = {F1, F2, F3}, with F1 =
(0, 0), F2 = (0, 1), and F3 = (1, 0). We have D1 =
P
(
Γ3N = (0)6|Γ2N = (0)4

)
= (1− q)2. For i = 2, we have

H2,1 = (0) and H2,2 = (1). Then,

[D2]1,1 = P (Γ3N = (0, 1, 0, 0, 0, 0)|Γ2N = (0, 1, 0, 0))

[D2]1,2 = P (Γ3N = (0, 1, 0, 1, 0, 0)|Γ2N = (0, 1, 0, 1))

[D2]2,1 = P (Γ3N = (0, 1, 0, 0, 0, 1)|Γ2N = (0, 1, 0, 0))

[D2]2,2 = P (Γ3N = (0, 1, 0, 1, 0, 1)|Γ2N = (0, 1, 0, 1))

D2 =

[
(1− q)2 p(1− q)
q(1− q) pq

]
,

and max eig(D2) = (1 − q)2 + pq. For i = 3, we have
H3,1 = (0). Then,

D3 = P (Γ3N = (1, 0, 0, 0, x, 0)|Γ2N = (1, 0, 0, 0))

= (1− q)2 + q(1− q)
= 1− q,

where x can be either 0 or 1. Hence,

lim sup
t→∞

P
(
N t
)1/t

= (max{(1− q), (1− q)2 + pq})1/2

=

{
(1− q)1/2, p ≤ 1− q(
(1− q)2 + pq

)1/2
, p > 1− q.

When the packet loss model is i.i.d., the following corollary
can be used to evaluate lim supt→∞ P (N t

k)
1/t.

Corollary 2: To simplify the notation, suppose that A =
A1, so we can omit the subindex k. Consider an i.i.d.
network model with packet receiving probability λ. Let

Fi ∈ BN , i = 1, · · · , I such that
I⋃
i=1

Fi = NN . Let ζi be the

number of zeros in the sequence Fi ∈ NN . Then,

lim sup
t→∞

P
(
N t
)1/t

= max
i

(1− λ)ζi/N . (34)

Example 3: Consider the system in Example 1 with an
i.i.d. network model with packet receiving probability λ. We
have that N = 2, ζ1 = 2, ζ2 = ζ3 = 1, D1 = (1 − λ)2,
D2 = D3 = (1− λ), max pi = (1− λ), and

lim sup
t→∞

P
(
N t
)1/t

= (1− λ)1/2. (35)

Using Theorem 1, the critical probability to receive a mea-
surement λc can be obtained by solving |α|2(1−λc)1/2 = 1,
hence, λc = 1− |α|−4. That is, if λ < λc, then G =∞ and
if λ > λc, then the AEEC is bounded.
The critical value obtained in Example 3 matches the result
reported in [20, Theorem 4].

C. Resulting method for assessing stability

We now present a procedure that summarizes how the
main results of the paper can be used to determine if the
KFIO corresponding to a given system and communication
channel is stable.

1) Obtain the FSMC model of the communication chan-
nel. The FSMC model is determined by the probabil-
ities

P (gν = 1|Γν = S) for all S ∈ Bν , (36)

where ν is the order of the FSMC model. There are
several methods to obtain these probabilities from a set
of channel observations, see e.g., [27] and [28].

2) Partition the system into FMO blocks (Ak,Ck), k =
1, · · · ,K, according to (9)-(10). Recall that each FMO
block has an associated scalar αk which equals the
magnitude of all the eigenvalues of Ak.

3) Determine whether the system is degenerate or non-
degenerate using to Definition 5.

a) If the system is non-degenerate: the associated
KFIO is stable if

|α1|2P (gt = 0|gt−ν = 0, · · · , gt−1 = 0) < 1
(37)

and unstable if

|α1|2P (gt = 0|gt−ν = 0, · · · , gt−1 = 0) > 1.
(38)

b) If the system is degenerate:
i) For each k = 1, · · ·K, compute σk. This in

turn requires:
A) Enumerate the sequences Fi ∈ BN , i =

1, · · · , I , such that NN
k = {F1, · · · , FI} .

B) For each i = 1, · · · , I , enumerate all the
possible tails Hi,j ∈ Bν j = 1, · · · , Ji,
such that, for any n ∈ N and S ∈ BnN ,
if ψ(S) = Fi, then δ(S) = Hi,j , for some
j.

C) For 1 ≤ r, c ≤ Ji, compute each entry
[Di]r,c using (30) and (36).
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D) Compute pi using (31).
E) Compute σk using (32).

ii) The associated KFIO is stable if

|αk|2σk < 1, for all k ∈ {1, · · · ,K}, (39)

and unstable if

|αk|2σk > 1, for some k ∈ {1, · · · ,K}.
(40)

IV. CONCLUSION

We have derived a necessary condition and a sufficient
condition, having only a trivial gap, for the boundedness of
the expected value of the estimation error covariance of a
Kalman filter subject to random measurements losses. The
results were obtained using the general finite state Markov
channel (FSMC) packet loss model. The existing literature
usually adopts either i.i.d. or Gilbert-Elliott packet loss
model and assumes non-degenerate systems or special cases
of degenerate systems. In these cases, our conditions retrieve
the known results for the boundedness of the asymptotic
expected error covariance. When the more general FSMC
packet loss model and non-degenerate systems are adopted,
we extend the known results by providing a closed-form
expression to determine the critical parameter that determines
the boundedness of the asymptotic expected error covariance.
Finally, when degenerate systems and an FSMC packet loss
model are considered, we provide a numerical method to
assess whether the asymptotic expected error covariance is
bounded or not.
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