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Abstract: In this paper, we develop a methcd for 
adaptive  stabilization  without a minimum phase 

high  frequency  gain. In contrast  to recent mrk by 
Martensson [81, we include a -tness requirement 
on the set of  possible  plants and assume that an upper 
bound on the order of the plant is hem. Under these 
additional hyphotheses, we generate a piecewise linear 
time-invariant  switching  ccntrol law which leads to a 
guarantee  of L y a p u ~ v  stability ard an e>qxmential 
rate  of  convergence  for the state. One of the main 
objectives  in this paper is to  eliminate the 
possibility  of 'Ilarge state  deviatians"  associated 
with a search over the space of  gain  matrices which is 
required in 181. 

assumprim and without laLcwletfige of the sign of the 

I. mmcmucnm 

The recent literature on adaptive  stabilization 
inclwhs a nunker of papers irdicating a variety of 
situations where one can d i m e  with some of the 
so-called  classical  assrrmptions;  e.g., see [1]-[8]. 
In contrast  to  earlier research in adaptive  control, 
the -is in this new work has been on reducing the 
a priori  infomation which is required of the system. 
That is, the issue  of cancern is  to  determine the 
extent  to which one can relax the requirements that 
the plant's degme and relative degree are known, the 
plant  is minimum phase and the sign of the high 
frequenq gain is kntmn. 

question3 involving the classical  assrrmptims  in 

absence of information on the sign of the high 

rnsnewl ineofresearchcanbet racedbackto  
a paper by Morse [I] which raised a rnrmber of open 

parameter  adaptive  control.  subsequently, in [2], 
Nusstaum paved the way for adaptive control  in the 

f w  gain. He considered the problem  of fw 
a smooth stabilizing  controller 

y(t) = x(t)  (1.2) 

with both q * 0 and a > 0 urhmn. In his paper [2], 
Nussbaum describes a whole  family  of  controllers of 
the form (1.1) which achieve the desired stabilization 
for  system (1.2). 

results emerged for  adaptive  stabilization  of higher 
0-r linear time-invariant  systems  with unlolavn high 
frequency g a i n ;  s e e ,  for  example, the papers by ~yrnes 
and Willems [31, Mudgett and brse [4],  Will- and 
Qmes [SI  and k e  and Narh [61. Another 
breakthrough is contained  in a recent paper by brse 
[71 where it is shown that  adaptive  stabilization is 
possible with even less a priori infomation than 

Follming this work, a lnrmber of  more general 

heretofore required. In his gaper, brse developed a 
"universal  controller'^ which can adaptively stabilize 
any strictly  proper, minimum phase system  with 
relative dqree not d i n g  turo. 

Another surprisirg result is due to Martensson 
[ a ] .  For a set of minimal plants,  it is established 
that adaptive  stabilization is possible with only - 
rather W assrmrption: Namly, it Is assumed that 
there exists 8cme non-negative  integer L havizq the 
property  that each possible plant admits an L-th order 
stabilizing  ccsnpensator. Shequently it is shown hau 
even this assunlption can be relaxed. As Martensson 
points  out, haever, his controller is severely 
limited  fran  an  implementation  point  of view. The 
first  limitation  stears  from the fact  that the 
controller may end up performing a rather exhaustive 
on-line search Over the space of  candidate  gain 
matrices before "latching on" to an appropriate 
stabilizer.  Ccmsequently, Lyapmov stability can not 
be guaranteed;  it is cplly sham that the state is 
bounded and converges  to zero. Hence, there is no 
control Over large excursims in the state space even 
when the initial  state is arbitrarily small. a 
practical  point  of view, the mmepzrm of this 
exhaustive on-line search may be excessive overshoot. 
This situation is illustrated in Figure 1 for the 
scalar  plant in (1.2). For this system, a suitable 
Martensson-type  controller is described by 

i(t) = y * ( t ) ;  z(0) L I; 

u(t) = y(t)h(z(t))1/4[sin  h(z(t))1'2+ 11~0s h(z(t)) 
(1.3) *re 

h(z) = 10g~'~z. 

Notice  in  Fiqure 1 that  for the initial  condition of 
x(0) * 1, z ( 0 )  = 1 and parameter values a = 1 and 

seaml practical  limitation  of the Martensson 
controller stems from the susceptibility  of the 
so-called Nussbaun gain to measwment noise. This 
limitation is also inherent in [2]-[8] where a similar 
Nussbaum structure is used. To illustrate, we again 
consider  plant (1.1) with the adaptive mbam-type 
stabilizer ( s e e  [4]) 

q = -1, the peak 0Vem-t in y(t) is 300,000! A 

i(t) = yf (t); 

u(t) = Y(t)Zf(t)ccs  z(t) (1 .4)  

and suppose that the measwd output y(t) is a- 
tively  corrupted by sane "small" additive disturhnce 
c(t); S ~ Y  for -le,  c(t) is white noise and 

Y(t) = x(t) + c(t). (1 .5 )  

Then it is easy to see from ( 1 . 4 )  that z(t) may terd 
to MMty if t (t) has non-vanishing cavariance. 
This will bppn a yt (t) is mnintegrable a8 a 

of variatiom in c (t) . Therefore, the 

'The mrk was supported by the N a t i d  Science 819 CH2344-0/86/0000-0819 $1. 
Foundation under Grant No. ECS-8419429. 
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control gain may  not  converge and we see that an 
arbitrarily smdll persistant  measurenent  perturbation 
may  destabilize the system. Figure 2  demmstrates 
this @=namcm for the initial  condition x(0) = 5 ,  
z(0) = 0, parameters  a = 1 and q = 1 and measurement 
disturtance E(t) = 0.25sin  loot. 

this paper is to develop a controller  which  not  only 
stabilizes the system (as in [21-[8])  but does so in 
the sense of Lyapunov. This distinction  is  important 
becruse with Lyapurvxr stability we can get  a on 
the types of  urdesirable  "avershoot" behavior 
described above. 

The results of this paper are obtained by 
strergthening  Martensson's hypotheses for the sake of 
generatiq a more "practical"  controller. To this 

beyona those in [El: Our first  assumption is that an 
upper baurd on the order of the plant is knawn. 
Secardly, we make a campactness assumption on the set 
of  possible  plants.  Within this famework, we achieve 
the stated  stability  objectives  using  a  switchirg 
control law vhich is a piecewise linear time-inmiant 
feedbeck.  It is s k w n  that  only  a  finite  number  of 
switches occur and #en the controller remains fixed 
with  a castant ampensator  gain  matrix. 

Given the motivation a h ,  the objective  in 

there are two mre assumpticars which we impose 

11. SySrpM AND AssmFTIoNs 

is specified an3 each possible  plant  is  a l ~ i m e  
-invariant  system 

A finite m r  baund on state dimension n < 

X(t) = &(t) + Bu(t); 

Y(t) = cx(t); *[O, m )  (2.0.1) 

with  state  x(t)eRn  for scane n I n , control u(t)d 
and measur& ou'cuut  y(  t)eRr. Thevven set of 
pcsible plants 1 consists of triples (A,B,C) and we 
use the notation x, to  denote the subset  of x 
consistirg of those plants  having dimension n; i.e., 

X, S { (A,B,C)eZ: dim A = n x n) 

for n = 1,2 ,.., n . Thmqhout this paper, it is 

that every pnible plant (A,B,C)ex is a mi%& 
realization. 

that z W-ct  for  n = 1,2,. .., and 

Remafks 2.1: The assumptiom a h  guarantee 
that  for every possible  plant (A,B,C)€Z, there exists 
an R-th order linear twinvariant dywnic ccmpen- 
sator (R is of course dependiq on the dimension of A )  

k(t) = R(t) + Gy(t); 
u(t) = m(t) + Ky(t)  (2.1.1) 

so that  with  state 

the closed loap system 

(2.1.2) 

is asymptotically  stable. Since the upper burd on 
the state dimension n is assumed to be kncwm, the 
order R of this -ampermator can be taken  to be 
same for all (A,B,C)€Z. This follaws because if 

(A,B,C)eX ard dim A = n X n, then stability can be 
guaranteed us- an n-th order Luenberger  observer 
ach implies that  a  compensator  of dimension n can 
also be used to  guarantee  stability. This h i g w  
dimensioml canpensator is trivially  obtained by 
augment- the n-th order Luenterger  observer  with a 
stable  subsystem of order n - n  with  states decoup- 
led from the states of the %&mer. This  observation 
will be used to o w  adtantage  in Lema 3.1  to  follaw. 

that the class  of  systems under cmsideratfon  not 
include singular perturbations. In another wxds, the 
model does not  handle  parasitiff. A simple -le 
illustratirg thls restriction is given by the 
singularly  perturbed  system 

The canpactness assumption on each Z implies 

cX(t) = x(t) + u(t); ce[0, c-I; 

Y(t) = x(t).  (2.1.3) 

It is straightfolward  to  verify  that 

1 1  
(2.1.4) 

which is not  rornpact.  It should also be noted  that 

bound is available on the system &meters.  his 
the canpactness  assumption on the X implies that some 

assumption is mt distinguishes #is mrk from the 
cited  literature on adaptive  stabilization. 

Notation  for the Closed Sys ten  2.2: Given 
any fixed  triple (A,B,C)eZ and a set  of  gain  matrices 
(F,G,H,K) for  an  R-th order canpensator, the closed 
loop system  is described by 

&(t) = A2qt) + Bg(t); 

Y(t, = Cx_(t); 

!4t) = E dt) (2.2.1) 

-re 
A 0   B O  c o  

- A &  [ 0 0  1 ;  [ od ;  s %  [ o I ] ;  KP= [ K H  1 ;  
G F  

- x(t) 3 [x(t)'  z(t)']';  g(t) e [u(t)'  Z(t)I]f. 

To denote the depenaence of the closed loop system 
matrix on the &asen canpensator  gain  matrix & we use 
the notation 

111. A PRELIMINARY L,B%lh 

The follawing  technical lema will be useful  in 
Section N where we cmstruct a switching  canpensator 
leading to Lyapmcw stablity  with an exponential  rate 
of convergence for the state. 

Lenma 3.1: Let (decay rate) I > 0 karbitrari- 
&-ified. Then, there exist  a  (canpewator 

number of CcmenWkr-dn matrices ,Q , . . . ,K+ dimension) R 5 n a constant % > 0, a  finite 

eR(R+m)x(R+r) - ard camact seseX: ,F$ ,. . . ,X*fsuch  that 

i) u f x; = z; 
i=l 

(3.1.1) 

ii) For each ie{1,2, ..., f} and each (A,B,C)a*. 
i 

820 



!le A * (K -i )til 5 M,e 4 t  (3.1.2) 

-- for all t ~ [ o , w ) .  

Proof: Recalling the ranarks in  Section 2.1, it 
suffices  to take the  capensator  dimension !L = n in 
the  proof  to  follow.  Note, howwer, that it m a y w  
possible  to  use a lower order capensator as far as 
.~mplementation  is  concerned;  e.g., see Ekample 1 in 
section 7. 

We first  chccse E > 0 to be any fixed  number. 
Now, givM any 1 > 0 and any triple  u=(A,B,C)EI, we 

can select K ER('*) x (R+r) so that  the  eigenvalues  of 
the closed Z a p  system  matrix 

A,(%) = & +  B K C -a- 
all have real  part less than -(I' + E ) ,  

continuity  8f  the  eigenvalues  of A*(%)  with  respect 
to the  system  matrices, we can find an open neighbor 
-hood Vu  of  systems around u (all having  dimension 
nu) satisfyirng the following cdition: For  each 
~ = ( X , , " B , E ) E V ~ ,  the  eigenvalues  of X + 3 ~ L S O  have 
real part less than -(1 + E). Consequently,  for  each 
x ( 1 , 2 ,  ..., n 1, we generate an open covering  of Z 
by taking the%ion of  the sets V, as ranges overn 

' h e  a finite set of  gain  matrices  %,l,%,2,,,.,K a, f (n) 
guaranteeing that for  each  (A,B,C)eZn, there exists 
scone i 5 f(n)  such that A,(K ) has all  its 
eigenvalues  with  real  part less than -(I + E ) . 
gain  matrices, we simply take the set (5 ,& , , . . ,K } 

as n ranges frm 1 to n Now, for any fixed 
ic { 1,2,. . . , f } , define 

Let n be the  dimension  of A and note  that by 

Now,  using  compactness  of  each In, we can extract 

I I ,  i 

To ccenplete the construction  of  the  colnpensator 

to be the union of  the  sets {%,l,%,2,...,q.f(n) f 
IMX' 

I* 5 ((A,B,C)EI: all eigenvalues  of &($) 
- have real part 5 -(I + t ) ) .  

Again,  using  ccanpactness  of  the I and continuity  of 
eigenvalues of A*(%) with  respect to the  system 
matrices,  it follows that I* is  ccmplct. Then the 
definition  of Z r  guarantees that for  each 

i 

u=(A,B,C)EZI, 

(le'* (Ki)tlleI't + 0 

as t - m .  Hence,  (3.1.2)  is  satisfied by taking 

M, e max( max IIeA*(-Ki)tlle't: i = 1,2,. . . ,f). rn 
UEX'r,t€[OP) 

m. CONSPWUCPION OF THE SWITCHING CcwENSAToR 

In this section, we provide  the  fo-1 w t m -  
tion of a switching  compensator  which  achieves  the 
desired L y a p n o v  stability  with w t i a l  W Y  
rate.  First,  however, We give Sowe heuristic motin- 
tion  for  the  basic  idea khid the wtruction: * 
-in  at  time zero with  capsnsator Saln matrix KI and 
use  the  output  information  to  construct a %mitoring 
function" V(~,T! 1 ;  see Step 4 to  follow. This func 
tion,  being  related  to the state  of the system,  is 
used to  decide when to  switch  from& to & . Once 
this  switch has taken  place, we then Use V(t,Tz)  to 
decide when to  switch f m >  to I& ; this process 
continues  with  switching  fran 5 to I to S etc. 

Eventually (see the  proof  of Theom 5.1)  the wnpen- 
sator  gain  matrix  will  "latch"  onto some 

no further  switching occurs. The pcef of  stability 
of the  canpensated  system is relegated  to  section v 
where the  main  result  of this paper is stated. 

which does irdeed  stablize the system. =::Y, 

Step 1: select  any  desired  decay  rate 1' > 0 anl 
take %,St ..., K -f  (!L+r)and IF ,If, . . . ,I; satis- 
fying the requirenents  of Lemma 3.1. 

Step  2: For each  ic(1,2, ..., f }  and each triple 
u=(A,B,C)~Xf, define  the  observability  Gramian 

using this bound, we conclude that  for  each 
ie(1,2,. . .,f},  there  exists a finite  constant Ti > 0 
such  that 

(4.0.2) 

step 4: The generation  of the controller  is 
acccanplished by defining a switchha a h ( t )  and an 
associated  sequence  of switcNna t m q  .tl , . . ,tp. 
First,  using  the  available  output y( t) , the centroller 
-rates  the signal 

i(t) e Uy(t)IlZ. (4 .0.3)  

N e x t ,  we define 

V(t,T)  @(t) - @(t - T )  (4 .0.4)  

for  tc[o,m) and TE[O,t] and initialize the controller 
by taking  toSO. Ncw, for i = 1,2, ..., f-1, define 
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ti e sup{t: t L ti-l+ ai; 

V ( t , T i )  5 Piv(t-Ti,Ti))  (4.0.5) 

and the switcNrs index 

h ( t )  P i (4.0.6) 

for *[ti-l,ti). subsequently, the control is 
recurSively  generated using the fo&a 

&(t) f !&Y(t). (4.0.7) 

In case t = - for sane i < f - 1, the generation of 
t is tenhnated the control gain matrix s(t) 

constant at qi-l. 
Remark 4.1: In effect ,  the control g(t) given 

by (4.0.7) is a piecewise linear tinne-invariant 
feedtack. In Section V below, our objective is t o  

expmential rate of ccavergence ( h e n c e  Lyapmov 
stability) for the closed loop system. 

shcw that the control g(t) abwe leads to  an 

V. MAINREWLT 

We are now prepard t o  state and prwe the main 
result of this paper. 

Theoran 5.1: Ccazsider the set of possible 
SYBtems ZA(2.0.1) w i t h  control u ( t )  given 

---- such that for all (A,B,C)eZ, all initial corditions 
z(0) = (x(0) , Z ( O ) )  and all t€[O,-) ,  it follows that 

(4.0.7).  Tkn there &st constants M > 0 and x > 0 

U ? L ( t ) l l Z  5 Me-xtlk(o)112 - (5.1.1) 

Proof: Let u=(A,B,C)EX be any possible -ten 
with arbitrary initial d t i o n x ( 0 )  and note that 
in accordaTlce with Lema 3.1, 061; for saw i 5 f .  

Cur f i r s t  claim is that the switching idex  h ( t )  
convexges t o  sane p 5 i. This claim is established by 
noting that i f   h ( t )  = i, then for all t 2 ti-l + 2ri, 
wehave 

V(t,Ti) a @(t) - +(tyi) E 

In view of this inequality and the definition of the 
switckirg instants, it follcws that t = - and 
h ( t )  = i for all t 2 t Hence, le4 t l , t z ,  ..., t 
denote the finite set & w i t c h i n g  instants which 
resultandnotethatp5iandt = - .  P 

me next step of the proof involves baurrling the 
state x( t )  . Itdeed, with U E Z ;  as abave and j 5 p -1, 
we consider the tlme interval 

Tj 4 [tj-l,tj) 

= [ t j - l , t j -1  + hj) u Vj-1 + h j , t j )  

P Tj,l u Tj,2. 

For teT we use control g(t) = K. ( t )  and catsider 
two cases vhose results w i l l  be combined at the &. j '  -? 

Note that x,& and x& are pceitive (by invariance of 
obeervability under output  feedback) and finite (by 

pect t o  0 ) .  Naw usirg the state bound (5.1.4) and the 
baunjs OD. V ( t , T j )  in (5.1.2) and (5.1.6), we obtain 

~ C t r r e s s  Of and CCKltinUity Of w(T ,u ) With reB- 

To ccmplete the analysis for case 2, we note that 
p i E ( O , l )  nrakes it p s s i b l e   t o  clmose x > 0 such that 

p j = e  -X ~ j .  .T 

j 

Hence, (5 .1 .7 )  becoars 

NWJ Using the definition of 6 in ( 5 . 1 . 5 ) ,  we can 
further bolayl the state; i.e., 
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where extend ~emna 3.1 and generate a finite nlrmber of gain 
mtrices K~ ,& , . . . ,Kf , a finite nwber of canpact  sets 
q,y ,..., x;, and a finite rarmber of Lyapunov matrices 
P, , p Z , .  . . ,pf  such  that  for each (A,B)€ZT, the 
following  condition holds: 

(A + BKi)'Pi + Pi(A + mi) < -1.  (6.1.1) 

Hence, for each (A,B)€ZZ, the L w  function 
defined by 

Vi(X) e X'PiX (6.1.2) 

decreases dm state  trajectories when control 
u(t) = Kix(t)  is used. Next, aM~OgOUS to  Section m, 
the function  Vi(X(t)) Can be used instead Of V(t,Ti) 
in the construction  of the switchirrg  control. -, 
for any arbitrarily small desired  waiting  period 7 ,  

define the switching  times 

ti P sup{t: t > tiel + T ;  

Vi(x(t)) S piVi(x(tq))) (6-1.3) 

for i = 1,2, ..., f-1 , *re 

Pi = P e-(T/x-Pil)  (6.1.4) 

Then, it can be shown that  with the switching ir&x 
given by (4.0.6) and switching  control  given by 
(4.0.7), we obtain Lyapunov stability  with m t i d  
convergence rate as in Theorem 5. I. 

Wfication for Measwmat Noise  Rejection 
- 6.2: We IEW provide a brief  sketch  indicating har the 
controller can be modlfied  to M e  measurement  noise 
as discussed  in  Section I. In this c a s e ,  the switch- 
ing index  h(t)  in (4.0.6) may nwer canverge because 
V(t,s.) m y  be daninated by noise when u(t)ll is snallt Therefore, the decreasing  property (5.1.2) of 

keep $nuping  indefinitely  leading  to  instability.  To 
overcane this problem, we modify the switching index 
in  such a way that 

i) the state  tends  to a bourded neighborhood  of 
the origin  if the maamrent noise  is baurded; 

ii) the size of the neighborhood in i)  to which 
the state  is confined vanishes as the noise  amplitude 
vanishes. 

This modification  is simply accomplished by re- 
initializing  h(t)  to 1 whenever h(t) exceeds f. m 
basic  idea behind this type of  modification can be 
heuristically  motivated:  First,  note  that the 
measurement  noise  will  not  affect the deneasing 
property  of  V(t,t.) when ly(t)ll  is  sufficiently large. 
Therefore,  for  ou+plts  with large norm, the modified 
switching  rule leads to a "good" ccsnpensator  gain 
matrix and I&(t)ll is  reduced  until  it reaches the 
point  that it is  "canplable"  to the amplitude  of the 
msasurement  noise.  It can be readily shown that the 
size  of the neighborhood  to  which the state c o n v e m  
can be bmnded in norm by MI& *re MI > 0 is a 
constant t is the uppe- of the norm of 
the measummnRioise. 

V(t,T.) be destroyed and the Witching irdex mSy 

VII. AND SMJIATIONS 

Canbihinl Cases 1 and 2 :  We claim  that the state 
bounl in (5.1.8) is actually valid Over all of T. even 
though it was d y  developed for  ET . TO -'this, 
note  that x&/"& > 1 that t < 2rj  for 
t€T j , l .  Consequently,  if  ET j , l ,  we can further bourd 
the state in (5.1.3). Namely, 

k(t)112 9 Pjk(tj-l)l12 
2 

Finally,  to  complete the p m f  of the theorem, let 

M e  Ml&lz...Mf; x B min(x, ,xt , -" ,xf} .  

N m ,  given any te[O,-),  it  follows  that  tcT  for xme 
j d p. By using (5.1.11), we obtain j 

VI. EXPPNSIONS 

In this section, we briefly  indicate t m  
extensions  of the t h e o r y :  First, the results are 
strengthened  for the special case of full state 
feedback. secondlv, the theom is extended to deal 
with  additive  measurement  noise. 

Full state  Feedback 6.1: One of the key ideas 
uxkrlyirig the switching  control (4.0.7) is the 
construction of the function  V( t,r) v&ich provides 
information Wng it  possible  to  decide when to  stop 
switching;  i.e.,  to  decide  if the controller  is  using 
the  "right"  gain  matrix.  Note, howwer, that the 
controller  "waits"  for a period  2ri before deciding 
whether  to  switch  from$  to 4+1 and also recall that 
the T~ were  chosen  to guarantee the decreasing 
property  of V( - , T ~  j which is essential  to attaimnt 
of the main  result.  In  view  of these renarks,  it  is 
of interest  to knew under  what  conditions one can 
reduce the waiting  period hi so as to "speed up" the 
system -. We claim  that d e r  the strengthened 
hypothesis of full state feedback, the "waiting 
period" can in  fact be made arbitrarily small. For 
brevity, we mit a rigorous  proof ard OIily provide a 
sketch  of the main  ideas behind this  extension  to the 

When the full state  x(t)  is  available  for 
feedback, we use a static  ccmpensator  (of  dimension R 
= 0) and can therefore d t  underbars when referring 
to  system and canpensator  matrices.  Since C = I for 
all  possible systems, we now u s e  the  notation (A,B) 
instead  of (A,E,C). First,  it  is  noted that we can 

theory 
'Itro ewmples are provided  in this section  to 

illustrate the behavior  of  systems  subjected  to the 
switching  control (4.0.7). In the first  example, we 
indicate a typical  construction  of the controller and 
provide  sample  state  trajectories  for  various  possible 
plants  in the given  collection. In the second 
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example, we return to system (1.2) and cansider  the 
problem of -t noise  rejection  recalling  the 
motivating  instability  problem  described  in  Section I. 
Using the modification  of  the  switching  control as 
prescribed  in  Section  VI, it is seen that  the  state 
trajectories are no longer unbmded. As a matter  of 
fact, the state  tends  to a baunded neighborhood  of the 
origin whcse size is canparable  with  the  amplitude  of 
measurement  noise. 

-le 1: Consider  the set of  possible system 
Z described  parametrically by the state  equation 

y(t) = 11 Olx(t); t E [ O , - ) .  (7.1.1) 

It  is  straightforward  to  verify  that  for  each 
triple (A,B,C)€Z, the  system is controllable and 
observable. Also, the system  order is fixed  at n = 2 
and x2 is  compact by inspection.  Hence, Theorem 5.1 
applies and we can use the  recipe  in  Section IV to 
obtain a stabilizing  canpensator.  First, we need to 
generate a finite  number  of  canpensator  gain  matrices 
& ,€& , . . . ,K as prescribed  in Lemma 3.1. To this e n d ,  
we const& a reduced order Luebrger observer 
(parameterized  in 9); we assign the poles of the state 
x(t)  at -1 and -2 and the  pole  of  the  observer  at -4. 
Then  the  canpensator  gain matrix has the form 

[ 
-31 + 3% 

- K(q) = 
-150@ + 18% - 56 -3C@ - 5 + 6 q  +31q -9 1 

Naw, to  satisfy  the  requirements  of Lema 3.1, we take 
f = 0.30, and perform a lengthy but straightfoh 
calculation and verify  that  the  requirements  of Lema 
3.1 are satisfied by taking f = 5 and 

r -46  -81 

-38.5  -6.5 
%= K(4.25) = 

r-31  -51 

I&= E(0.25) = 
-19.125  -3.125 

Naw, to  satisfy the requirement on the P .  ( s e e  
(4.0.2)), we increase  the T and find d t  for 

we have pi < 1 for i = 1,2,3,4,5. Hence,  the  para- 
meters  of  the  switching contml in (4.0.7) are now 
canpletely  specified.  Figures 3 - 5 are obtained by 
canpter  simulation  using  different values of  the 
parameter ~ E Q .  sample  state  trajectories and the 
switching  behavior of the control are indicated. 

TI  E 2.1, T~ = 1.8, T~ = 1.4, T, = 1.2 and T5 = 1.2, 

-le 2: we consider  system (1.2) for a = 1 
and ~ ( - I , I }  with  additive measurenent noise. Asah 
the c~mpac-  of the set  of  possible  plants and 

bourdedraEss of  the  state  dimension are trivially 
verified. The state feedback control  derived  in 
Section 6.1 is used since  the  output and the  state are 
the same. To satisfy  the  recFJirements  of Letma 3.1 
for  any 7 < 1, we use two canpensator  gains KI = 2 and 
Kt = -2. The simple Lyapuwv function 

V(X) s x2 

is chcsM to  satisfy  the cmditlon (6.1.1). The 
"waiting  period" is taken  to be T~ = T Z  = 0.5. 

system,  the same destabilizing  disturbance 
[(t) = 0.25sin lOOt  which we prwiously  considered  is 
added once again. This time, hmwer, the system  is 
capensated by the  modified  switching  control 
described  in  Section 6.2. The simulation  result  given 
in  Figure 6 indicates  that  the  state no longer  "blaws 
up." In  fact,  x(t)  settles  into a small neighborhood 
abaut  zero  as  predicted by the theory. 

To illustrate  the  behavior  of  the  closed-lwp 

VIII. -ION 

Theorem 5.1 strengtherr;  recent  results on 
adaptive  stabilization  to  include a guarantee  of 
Lyapunov stability  with an exponential  rate  of 
convergence  for  the  state.  Furthermore,  using  the 
mdification of the control law described  in  Section 
IV, the  state -ins bounded in  the  presence  of 
-t noise and the  norm bound on the  system 
state  terds  to zem as noise bound t e d s  to zem. We 
do, hmwer, pay a price  for this "more  practical" 
controller.  That  is,  to  obtain  stronger  results, we 
have  to impose additional  requirements, beyond those 
in [ 81 , on the set X of  possible  plants:  canpactness 
and an a priori  upper bound nmax on the order  of 
plants in Z. 

hum an  implementation  point  of  view,  the 
switching  controller  in (4.0.7) has the  desirable 
feature  that it is a piecewise  linear  the-invariant 
feedback. theover, after a finite  number  of 
switches,  the  controller becanes a classical  linear 
timeinvariant  feedback ard rains as such there- 
after. On the  other hand, there  is one potential 
"stumbling  block" when performing  numerical  canputa- 
tions.  Namely, the construction  of  the gain matrices 
5 ,€& , . . . ,K+ (see Lennna 3.1 ) may be canputationally 
prohibitive. As indicated  in the pmof of  the lemma, 
these  gain  matrices are obtained by extracting a 
finite  subcovering fran a specially  constructed open 
covering  of Z. In  view of this limitation, it is  felt 
that  future  research should be aimed  at  developing 
alternatives  to Lemrma 3.1. In  other words, it would 
be worthwhile investiqatim alternative  procedures  for 
construction  of  the  controller  while  preserving  the 
desirable  properties  obtained  for  the  closed  100P 
system. The stability  result  established  here  should 
really be viewed as a benchmark  against  which  to 
ccmpare new control  schemes. 

REFWENCES 

A.S .  Morse,  "Recent Problems in  Parameter 
Pdaptive  Control, 'I Proceedinus  of the CNRS 
Colloyuium on  Developnent and Utilization  of 

Belle-Isle,  France,  September 1982, pp. 733-740. 
R.D. Nussbaum, "sane Rararlcs on a Conjecture  in 
Parameter  Adaptive  Control, " %terns and Con- 
trol  Letters, Vo1.3, November 1983, p p .  243-246. 
J.C. Willems and C . I .  B y r n e s ,  "Global Adaptive 
Stabilization  in  the  Absence  of  Information  on 
the Sign  of  the  High Frequency Gain, I' Procee- 
dings  of  the INRIA Conference on Analysis and 
Optimization of -tens, Suriwer Lecture notes 
in  Control ami Informtion  Sciences, Vol. 62, 
J ~ n e  1984, p p .  49-57. 



A [ 4 ]  D.R. Mudgett and A.S. Morse,  "Adaptive  Stabili- 
zation  of  Linear  Systems  with IJnhcwn High 
Frequency Gains, 'I IEEE Transactions on Auto- 

p p .  549-554. 
[ 5 ]  C . I .  Byrnes ard J.C. Willens,  "Adaptive  Stabi- 

lization  of  Multivaraible  Linear Systems," 

- Vol. AC-30, No. 6 ,  J-, 1985, 

Proceedinqs  of the 23rd IEEE  confeience on 
Decision and ccoltrol, Las Vegas, December 1984, 
p p .  1574-1577. 

[ 6 ]  T.H. Lee and K.S. Narendra,  "RBnwing the 
High-Frequency  Gain  Assumption  in  Discrete 
Adaptive  Control,"  Proceedinus of the 24th IEE 
Conference  on  Decision and Control,  Fort 
Lauderdale, December 1985, pp. 1198-1202. 

Controller  for the Adaptive  Stabilization  of 
any  Strictly haper Minimum-Phase  System  with 
Relative  Degree  Not  Exceeding M, " 

No. 12, Decanber 1985, pp. 1188-1191. 
[E] B. -tensson, "The Order of any Stabilizing 

Regulator  is  Sufficient  Information  for 
Adaptive  Stabilization,"  Svstems and Control 
Letters, Vol. 6 ,  July 1985, p p .  87-91. 

[ 7 ]  A.S. Morse, "A Three-Dimensional  Universal 

V O ~  . AC-30, 

0 0  i5.3 30.0 t 

Figure 3: SWation for &ample I: q = -0.5 

Figure 4 :  Simulation for -le 1:  q = -0.125 
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Figure 1: Simulation  Using  Controller (1.3) 
for System ( 1 . 2 )  
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Figure 5: Simulation for Ehmple 1:  q = 0 .5  

Figure 2: Simulation  Using  Controller ( 1 . 4 )  for System 
( 1.2) with  Additive  Measurement  Disturbance 

Figure 6: Simulation for &ample 2 
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