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Abstract—This paper discusses the optimal H.. control
problem for networked systems with limited communication
constraint, The limited communication constraint in control
networks is taken into consideration in controller design by
employing the notion of communication sequence. Our ob-
jective is to find an optimal communication sequence and
the corresponding optimal controller for the given plant and
communication resource under the H,, performance index. For
a given communication sequence, the problem is formulated
into a periodic control problem for which a direct LMI design
method is developed. We also propose a heuristic search method
for seeking a sub-optimal communication sequence, which in
conjunction with the convex optimization gives a solution to the
optimal limited communication control problem. As compared
with the exhaustive search of communication sequence, our
approach greatly reduces the computational cost. Examples are
given to illustrate the design method. It clearly indicates that
the solution of the heuristic search converges to the optimal
communication sequence.

I. INTRCDUCTION

Since networks may greatly decrease the hardwiring, the
cost of installation and implementation, it is popular to use
networks in many complicated systems such as manufactur-
ing plants, platoon vehicles and robotic systems. In addition,
the more modular and more flexible structure of networked
systems makes it much ¢asier to remove, exchange, and
add parts. However there are also drawbacks in employ-
ing serial communication network to exchange information

" between different system components. The main drawbacks
are network-induced delay and the limitation on bandwidth
both of which can affect system performance. Time-delay
may be induced by networks when exchanging data among
devices connected to the shared communication medivm. The
characteristics of this kind of time delay in different control
networks can be found in [11]. On the other hand, the effects
of limited bandwidth on control system performance has
attracted a lot of interest recently, [1]-[8].

Control networks are different from data networks in that
in the former data are continuously transmitted at relatively
constant rates while in the latter, large data packets are
sent out occasionally at high data rates. Furthermore, control
networks need to meet time-critical requirement, that is to
say, message should be sent out successfully within a pre-
specified time. The primary objective of control networks is
to efficiently use the finite communication resources while
maintaining good system performance. Thus some standard
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protocols for control networks have been developed such as
Controlnet, Ethernet, Devicenet (see [12]), BACNet and Lon-
works, which have been used in many practical applications.

In classic models, it may simplify problems and still -
work well to separate the communication aspects from the
dynamics of a system. However when system performance
is limited and degraded because of propagation delay and
limited bandwidth, it is not proper without considering the
effects brought by networks. Conventionai control theories
such as synchronized control and non delayed sensing and ac-
tuation must be reevaluated prior to application to networked
control systems [1], [2]. This brings forth a lot of efforts to
investigate the effects of time-delay and finite communication
rates in control problems.

The problem of stabilizing an LTI system when only some
elements of the outputs and/or some of the control actions
can be transmitted at one time has been investigated in
[1}-f3]). The LQ control with communication constraints is
studied in [4] which indicates that an optimal communication
sequence is typically such that the sampling resources should
be focused on where they are needed most. Int [5] and (6], sta-
bilization of infinite-dimensional time-varying ARMA model
under limited data rates is considered. In [7] and [8] coding
and state estimation in limited communication channels are
taken into account. [10] has shown that information exchange
between local controllers through a network can enlarge the
class of plants to be stabilized. An explicit stability condition
dependent on the maximum time delay induced by networks
is given in [13] and [15]. Recently, [16] shows that by using
the estimated values instead of true values of system states
at other nodes, a significant saving in bandwidth is achieved
to allow more resources to utilize the network.

On the other hand, the standard H,, control problems are
tackled by assuming that all the outputs are available to the
controller at any time instant. Obviously, this is impossi-
ble due to the serial communication in control networks,
In this paper, we want to find an optimal communication
sequence and a controller to obtain the minimum H,, cost
for networked control systems with limited bandwidth. The
problem is first formulated as a periodic control problem by
employing the notion of “communication sequence”.

It is shown that under a giver communication sequence,
the design of an optimal periodic controller can be converted
to a convex optimization. We then propose a heuristic search
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approach for a suboptimal communication sequence, which
together with the convex optimization of controller, gives
a solution to the joint optimization problem. The approach
is known to be convergent. As compared to the exhaustive
search in [4], our approach greatly reduces the computationat
cost. Several examples are included to demonstrate that the
heuristic search in fact converges to a global optimal solution

although no theoretical proof is given. It is worth noting

that stabilization problem under limited communication con-
straint has been considered in [1], [2] and {10] using the
lifting technique which will deal with much higher input
and output dimensions. Our proposed direct approach has the
advantage that it can avoid this and can be extended easily
to deal with uncertain systems.

II. PROBLEM FORMULATION

Consider a networked control system (NCS) shown in Fig
1. The plant, the sensors and the controller are spatially
distributed and connected together through a control network,
whereas conventional point-to-point link may be used. Now
suppose that the spatially distributed plant is a linear time-
invariant system described by

o(k+1) = Az(k)+Biw(k) + Bou(k) (1)
k) = Ciz(k)+ Dyw(k)+ Dygu(k) @)
ylk) = Chz(k)+ Daw(k) (3)

where (k) € R" is the state vector, w(k) € R” the
disturbance input, u(k) € R™ the control input, y(k) € R"
the output, and z(k) € R7 the controlled output. All the
system matrices are with appropriate dimensions. The initial
state zp 1s considered to be known and without loss of
generality it is set to be zero. The system is assumed to
be interconnected with spatially distributed subsystems. The

output of each subsystem can only be sent to the controller’

through the network at a given time. Here we consider a
simple case in which the control « is not transmitted by
the network but in a way that it is transmitted to the plant
directly.

Controfler Sensors

¥s Controt

network

Fig. 1. Networked Control System

We assume that the control network adopts scheduled
releasing policy to transmit data. Under this policy the start-
sending time is scheduled to occur for each node and the
signal is transmitted periodically. Hence, as pointed out in

[12], time delay is little and the possibility of message
collision is much lower. However, it is clear that under this
policy the controller can’t have simultaneous access to all
outputs of the plant, but in a way that the muitiple outputs
are sequentially multiplexed from the sensors to the controller
at every step periodically. The way of multiplexing can be
described by the r switches

gy = [1 0 OJ,
o2 = [0 1 0],
g = [0 0 - 1].
The switch o;, i =1,---,7, is a 1 x r matrix with the ¢**

element being 1 and all other entries being zero. It determines
the controller to communicate with which element of the
outputs, because oyy(k) = y;(k), where y;(k) is the **
element of the outputs. '
We employ the idea of “communication sequence” which
was originally introduced in [9] to jointly formulate the
control and communication problem. Here the kt" element
of a communication sequence, s, is defined as an arbitrary
element of the above switches. Hence a communication
sequence leads the controller to read which of the output
signals at each time instant. It is reasonable to assume
that the controller communicates with the plant following
a periodic pattern, which can be specified by an N-periodic
communication sequence 8., where sy v = s, Vk € Z.
Definition 2,1: An N-periodic communication sequence

sg, k= 0,-.-,N = 1, where s € {o1,02,---,0.}, is
admissible if the following condition is satisfied
Sg
5
rank =r, (4)
SN-—l

The above definition has a more direct expression and is
more flexible in converting a NCS to a periodic system
compared with the similar definition given in [1]. This
condition requires that no more than one of the outputs
be measured by the controller at each time instant and the
controller communicate with each of the plant output at
least once within a period [2]. In this way, the bandwidth
limitation in NCS is modeled in a manner that the controller
can communijcate with only one of the sensors at a discrete-
time constant according to the communication sequence.

Remark 2.1: 1f more than one, say I, output measurements
of the sensors can be transmitted in one-packet, then s €
{5‘0,5’1,---,5‘N_1}, where
1
Gy

, ¢ie{oy,02,--,60}, 1=0,1,-.- N-1

gy
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Note that 55 needs to satisfy (4). Here we mainly consider
the case in which no element of the outputs is lumped into
one packet. But the results can be extended to the general
case easily.

Since for a given periodic communication sequence, the
NCS is in fact a periodic system, we introduce a periodic
controller of the form of (5)-(6) whose period is equal to
that of the communication sequence

Br+1) = Apd(k)+ Bigs(k) )
u(k) = Cri(k)+ Diys(k) (6)

where (k) € R" is the state of the controler, A, €
'R‘nxn’Bk € RRXI,Ck c Rmxn’Dk c Rmxl are the
controlier matrices which are N-periodic, ie.,

Aryn = Ax, Bran = B_k, Crin = Cx, Dy = Dy, Vh € 2.

For convenience, we gather all the controller parameters into

the following compact form
_[4 B '

ek = [ Ck Dk] - (7)

And y,(k) is the information which is transmitted from the

plant and fed into the controller, Notice that in general y,(k)

is not the same as y(k) because not all elements of y(k)

- are communicated to the controller at time instant k. If the

transmission delay of the data from the plant to the controller

is negligible, then y,(k) can be expressed in the following

way: :

elh) = supk) ®

where s is the communication sequence, y(k) is the output
of the system.

-By defining the augmented state vector £{k) =
[zf ‘&] ]T, then from (1)-(8) we have the following closed-
loop system (S¢) : :

Ek+1) = A&k + Byw(k) fe)
2(k) = Cy.&(k)+ Dy, w(k) (10)
where
T _ A+ ngkskc'z ’ Bgék
Ask _ [ BkS;;CQ Ak ’ (11)
B - |B + By Dysi Dy
£ Bysr Dy ’ )

Cs, = [C1+ D12DysiCa D12Ci],
Dy, = D+ DinDisiDa.

It is clear that the closed-loop system (9)-(10) is periodic in
k.

The H,, control problem can be stated as follows: find a
communication sequence sy and a periodic controller &, of
the form of (5)-(6) such that the closed-loop system (9)-(10)
is asymptotically stable and has an optimal H,. performance
under scheduled releasing policy.

III. MAIN RESULTS

With the introduction of communication sequence, the op-
timal H,, control problem under scheduled releasing policy
will be formulated as that of periodic systems. Thus we first
give the direct approach for periodic systems analysis and
design which is in comparison with the traditional lifting
technique. Now consider a linear discrete-time N-periodic
system (S ) described by the following state space model:

z(k+1) = Arx(k)+ Bew(k) (12)

2(k) = Cirx(k) + Dyw(k) 13

where z(k) € R™ is the state vector, w(k) € RP is the
disturbance input, z(k) € RY is the output of the system, .

and A, € R**", B, € R*™P (), € RI*™, Dy € RI*P are
N -periodic matrices satisfying

AN = Ar, Brin = Bi, Coun =Ck, Diun = Dg, Vk € Z.
The transition matrix of the system (12)-(13) is defined as

ah = { oA B2

The transition matrix $(k,I) is N-periodic in & and {, ie.,
Bk + N, + N) = &(k,1), Vk,I € Z. The eigenvalues
of ®(k + N, k) which are independent of k are referred to
as characteristic multipliers. Moreover the periodic system is
stable if and only if all the characteristic multipliers of Ay,
are inside the unit circle of the complex plane [18].

Definition 3.1: Given a scalar v > 0, the periodic system
{12)-(13) is said to have an H,, performance vy if it is
asymptotically stable and satisfies

cup Lzl
p
orwee, [l

(14)

<7 (15)

under zero initial state condition.

In the following we present the Periodic Bounded Real
Lemma which will play a key role for the results in this
section.

Lemma 3.1: [21] The N-periodic system {12)-(13) has an
H, performance - if and only if there exists an N-periodic
positive definite matrix X, satisfying the LA s

—TX:.«+1 Xet14r X1 Bk OT

ATXpp - X 0

BIXp4y: O —r  ppf| <% U8
0 Ck Dk —’yI

for k=0,1,---N — 1, simultanecusly.

By Lemma 3.1, the closed-loop system (9)-(10) has an
H,. performance v under a given communication s if and
only if there exists an N-periodic positive definite matrix Xy
such that

_—TXJ.-+1 Xen1ds, Xer1Bs, _UT

A Xk+1 —Xk 0 C_g ’

i i <0, 17

Bstk+1 _0 —_";’I Dgi ( )
0 Cs, Dy, —~T
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for k=0,1,--- N —1. Next we shall use the approach of
change of variables as proposed in [20] to derive an explicit
expression for the controller parameters that solve the H
control problem.

Denote

Xk: [Rk A{k], Xk—I: [Yk Nkj[ (18)

ME Uy N W
and '
e IR
Now introduce the new controller variables las below
Crn = DpspCoVi+CiNT (20
By, = Rpp1BeDy+ M1 By 2

Ay Ri1(A + ByDisiCo)Ys + Re 1 BoCiNT
+ﬂ{k+1éksk02yk + Afk+1AkN;{. (22)

Observe that given matrices Ay, By, Cx and Dy and non-
singular Arnatricesh M, and Nj, the controller parameters
Ay, By, Cy and Dy are uniquely determined by (20)-(22).

Theorem 3.1: Given a scalar v > 0, the Ho, control
problem under a given communication sequence s for the
system (1)-(3) is solvable if and only if there exist N-periodic
matrices Ry > 0, Yi > 0, Ag, Bi, C and Dy, satisfying the
following set of LMIs

R -7 R A +ABkSkC‘2 Ag
* Y A4 BaDysCo  AY + BaCy
*® * —Rk -1
*: * * ~Y
Dok * * *
* %* * *
Rei1B1 +ABkSkD21 0
B] + BQDkSkDgl . 0.
0 (C1 + Di2DysiCo)7T <0
0 (C\Y + P]QCk)T
-~I (D11 + DiaDiseDar)T
* ) —~T
(23)
for k = 0,1,---, N — 1, simultaneously, where * denotes

the entries which can be known from the symmetry of the
matrix.

Remark 3.1: 1t is clear that under different communication
sequences, the optimal achievable H, performance will be
different. Note that the optimal H., performance relies on
both the communication sequence and the periodic controller
Oy. Let 7,(s;, ©y) be the optimal H, performance under a
given communication sequence sy, then the optimal H,,, per-
formance under scheduled releasing policy can be obtained
by the following optimization

min Yo{Sk: Ok)
i,k

subject to  (23).

Remark 3.2: Tt should be noted that the above problems
are in fact non-convex optimization ones with integer and
rank constraints, and are very difficult to settle directly.
It may be solved by combining an exhaustive search [4]
with the LMI optimization (23). However when the number
of the measurements increases, the size of the search tree
will grow quickly. To avoid combinatoric expiosion, in

- the following, we shall propose a heuristic search method

for a communication sequence which, in conjunction with
a convex optimization approach for controller parameters,
gives a simple solution to the H,, control problems.

Heuristic Search Method

o Form s§ = {01,092, -+, 0. }. If the optimal H,, perfor-
mance ~y§ under this communication sequence satisfies
¥ — Pt < ¢, where ¢ is a pre-specified tolerance and
+°P* is the optimal H., performance for the system.
without communication constraint, i-e., y,(k} = y(k),
then s§ is the optimal communication sequence and the
period is r. Otherwise, proceed to the next step.

e Step i {1 <1< Ny —r, where IV, is the maximum
period which the period of the desired sequence cannot
exceed): Assume that the optimal communication se-
guence obtained in step i—1 is s?_, and the optimal cost
is ¥{_,. Add an additional sampling ¢;,7 =1,2,---,7,
to 57_; to form a set of r new switching sequences s;; =
{sf 1,05}, = 1,2,---,7 and the period is increased
by one. Calculate the H., optimal performance under
these r communication sequences by using Theorem
3.1. Assume that the optimal communication sequence
among s;;,7 = 1,2,--+,r, is 57 and the optimal cost is
V-

e Step i+ LI — P <eor |72 — 4l < € or
¢ = N, —1—r, where ¢; is the pre-specified tolerance,
then stop and record the optimal sequence s{ and the
optimal controller ©F. Otherwise, let i = ¢ + 1 and go
back to step .

Remark 3.3: From the heuristic search method, we can
see that for each period we can just consider r switching
sequences. This can avoid the combinatoric explosion and
thus reduces the computation cost greatly compared to the
exhaustive search method, especially when r and the period
of the optimal sequence are large. The example in Section
IV will show that the heuristic search method is convergent
with respect to the period of the communication sequence.

IV. ILLUSTRATIVE EXAMPLE

Consider a discrete-time linear systermn described by

1.45 0<2| 0 1]

o 04| 0 .02
e(k+1) = T o2 1T 075 | ¥R

0 -1 ' 0 04
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0
] wk) + % ull) @4
U
k) = l 0o :c(k)+w(k)+u(k) (25)
YOI [ﬁl—‘f——] x(k)+[ ]w(lc) 26)

where z(k), y(k), z(k), u(k), w{k) are the same as those in
(13-(3). It can be easily seen that the eigenvalues of the first
subsystem are {1.45, 0.4} and the eigenvalues of the second
subsystem are {1.1,0.4}. The feedback from the sensor to the
controfler is connected by a network with scheduled releasing
policy, which can transmit only one measurement within one
sampling period. From the previous section, we know that the
switches for this system are ’

=1 0],

First it can be known that the optimal H,, performance
without communication limitations is 3.9368. We start from
the sequence {o7,02} and obtain the optimal H,, per-
foriance 4.8842. Then by adding the switch &7 and the
switch o to the sequence {oq,d;} respectively, we arrive
at the sequences {oy,02,0,} and {1, 02,02}. By Theorem
3.1, we can obtain the H, performance 4.3947 under the
sequence {oy, 09,01} which is smaller than that under the
sequence {oy, 02,02} as shown in Table I. So the sequence
{o1,02,01} is the resulted sequence at this step. Proceeding
the heuristic search we have the following results shown in
Table 1, in which the sequence in boldface stands for the
resulted sequence at each step.

0‘2=[0 1]

step

period sequence Hoe norm
1=1 N = {0‘1,0’2,0’1} 4.3947
i=2 N=4 {0’1,0’2,0’1,0’1} 4.1390
i=3| N=5 {61,02,61,01,01} 3.9647
i=4d4 N=6 {0‘1,0'2,0‘1,0'1,0'1,0'1} 3.9368
step | period sequence Heo norm
i=1] N= {0’1,0’2,02} 5.6995
i=2 | N= {z1,02,01,02} 5.1950
i=3!N=5 {o1,02,01,01,02} 4.8717
i=4| N=6| {01,62,01,01,01,02} 4.6338

TABLE 1
THE RESULTS OF USING THE HEURISTIC SEARCH METHOD

From the results shown above, we can see that under
different communication sequences with the same period
the optimal H., performance are different and the more
sampling we allocate for 1y a better performance is achieved.
This may be explained by the fact that the first subsystem
is less stable than the second one. As a result, communi-
cating more often with y; will lead to better perfo:mance
Clearly, when we choose the communication sequence Sopt =
{o1,09,01,01,01,71}. we can achieve the optimal H
performance which are m fact the same as those without

limited communication. However, it should be noted that
even though the measurement of the second subsystem seems
to play a less important role, it cannot be ignored. In fact,
there does not exist any controller to stabilize the system by
only using the measurement of the first subsystem.

We can also obtain the optimal sequence and the corre-
sponding performance value by using the exhaustive search,
which will need 651691 flops in H,. control problem.
However, in the above heuristic search, only 355796 flops
is needed to get the desired sequence. When the number of
the outputs of the original system and the periods of the
desired sequence become larger, more time will be saved
by using the heuristic search method. The convergence of
the heuristic search method with respect to the period of the

communication sequence for this example is shown in Figure
2.

Fig. 2. Convergence of the heuristic search method

In the simulation, we also tried to get different systems
by changing the value of the element A(1,1) from 1.3 to
1.45 and use the heuristic search method to deal with these
systems. Here we give four typical cases and the results are
shown in Table II. It should be noted that the value of Hyo

A{1,1) | optimnal sequence || Hoo norm | flopse | flopsh
1.43 {01,02,01,01,01} 3.8559 381642 | 248268
1.4 {o1,02,01,01} 3.7336 189656 | 151772
1.38 {o1,02,01} 3.6508 75254 75254
1.3 {01,020} 3.3106 13924 13924

TABLE II

THE OPTIMAL PERFORMANCE AND SEQUENCE FOR DIFFERENT
SYSTEMS: flopse STANDS FOR THE CASE OF EXIIAUSTIVE SEARCH AND
flopsy STANDS FOR THE CASE OF HEURISTIC SEARCH

norm for each case is exactly the same as that obtained when
there is no communication constraint. It can be clearly seen
from Table II that the period of the optimal communication
sequence varies with the characteristic of the system.
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V. CONCLUSION

This paper has investigated the optimal H ., control prob-
lem for networked control systems. Based on the notion
of communication sequence and a direct controller design
approach for periodic systems, a solution to the problem is
given in terms of a set of LMIs. Given a communication
sequence, an explicit expression for the controller is provided
in terms of the solution of the LMIs. Then a heuristic search
method is provided to obtain the desired sequence under
which the H,, performance is better than that under other
sequence. More efficient algorithm to obtain the optimal
communication sequence will be investigated in the future.
Moreover, we have assumed that the control u is transmitted
to the plant directly. In practice, the controller may also
transmit the control signals to the plant via a network. The
approach of this paper can be extended to deal with this
siteation.
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