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Abstract-This paper studies the problem of robust stabi- 
lization for linear uncertain systems via logarithmic quantized 
feedback. Our work is based on a new method for the analysis 
of quantized feedback. Mom specifically, we characterize the 
quantization error using a simple sector bound. It is shown in 
our previous work that this method yields the same result on the 
coarsest quantization density as in the work of Elia and Mitter, 
when the system does not involve uncertainties. The advantage 
of this new method is that it is applicable to multi-input-multi- 
output systems and to performance control problems. In this 
paper, we apply this method to robust stabilization of linear 
uncertain systems. We give conditions under which there exists a 
quadratic stabilizing controller for a given quantization density. 
Both state feedback and output feedback are considered. For 
output feedback, we consider two cases: 1) quantization occurs 
at the control input; and 2) quantization occurs at the measured 
output. 

I. INTRODUCTION 
Control using quantized feedback can be traced back to the 

work of Kalman [l] in 1956 which studied the limit cycle 
behavior of a system with a finite-alphabet quantizer in the 
control loop. Since then, a lot of research has been done 
on understanding and mitigation of quantization effects; see, 
e.g., 121, 131, HI. 

Recently, there is a surge of interest on quantized feedback 
control, with the aim to understand the required quantization 
density or information rate for control purposes. Noticeable 
works include [7], [SI, 191, [lo], [ll].  The most pertinent 
reference to this paper is the work by Elia and Mitter [l 11. In 
[ 1 I], the problem of quadratic stabilization of discrete-time 
single-input-single-output (SISO) linear time-invariant (LTI) 
systems using quantized feedback is studied. The quantizer 
is assumed to be static and time-invariant (i.e. memoryless 
and with fixed quantization levels). It is proved in [ 111 that 
for a quadratically stabilizable system, the quantizer needs 
to be logarithmic (i.e.. the quantization levels are linear in 
logarithmic scale). Further, the coarsest quantization density 
is given explicitly in terms of the system’s unstable poles. 
The work of [ l l ]  is also generalized to some extent to 
guaranteed performance control [ 121, stabilization of two- 
input systems [13], and multi-input systems [14]. 

In Fu and Xie [15], the work of [ l l ]  is generalized 
to general multi-input-multi-output (MIMO) systems and to 
control problems requiring performances. This is done using 
the so-called sector bound method, which is based on using 
a simple sector bound to model the quantization error. For 
a SISO system with quantized state feedback (which is the 

most fundamental problem), the sector bound method gives 
an identical result as in [ 113. But the main advantage of the 
sector bound method is that it is easy to understand and easy 
to generalize to more complicated quantized feedback control 
scenarios such as those mentioned above. 

In this paper, we study the problem of robust stabiliza- 
tion for linear uncertain systems via logarithmic quantized 
feedback. Our work is based on the sector bound method. 
We give conditions under which there exists a quadratic 
stabilizing controller for a given quantization density. Both 
state feedback and output feedback are considered. For output 
feedback, we consider two cases: 1) quantization occurs at 
the control input; and 2) quantization occurs at the measured 
output. We also give an example to illustrate our results 
and to demonstrate how the required quantization density 
increases as the level of uncertainties increases. 

11. QUANTIZED STATE FEEDBACK 

The uncertain system to be considered is in the following 
form: 

~ ( k  + 1) = ( A  + AA)z(k) + ( B  + AB)u(k) (1) 

where z ( k )  E Rn is the state, u(k) E R is the (single) 
control input, A A  and AB represent the uncertainties in the 
system, and they satisfy the following: 

[AA AB] = HF(k)[Ei -&I7 llF(k)ll I 1 (2)  

for some matrices H ,  E1 and E2, where F ( k )  E RnlXn2 

represents a norm-bounded uncertainty. This description of 
uncertainty is commonly used in the robust control literature; 
see, e.g., [17]. . 

Quantized state feedback requires the control input in the 
following form: 

.(X-) = f(u(k)) (3) 

u(k) = K z ( k )  (4) 

In the above, K E RIxn is the feedback gain, and f(-) is a 
quantizer which is assumed to be symmetric, i.e., f ( - u )  = 
- f ( u ) .  Note that the quantizer is static and time-invariant. 

The set of quantized levels is denoted by 

LI = {*uz,i = 0,*1,*2,.**} U (0 )  ( 5 )  
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Denote by #y[e] the number of quantization levels in the 
interval [e, 1/61. The density of the quantizer f ( . )  is defined 
as follows: 

7% If1 vf = lim sup - 
t + ~  - h e  

Consider a logarithmic quantizer as in [l 11: 

U = {&U(')  : U ( ' )  = p@),i = *1,*2,. . .} 
U{fU(O)}  U { O } ,  0 < p < 1, U @ )  > 0 (7) 

It is easy to compute that the quantization density for (7) 

(8) n f  = - 

In particular, nf is a monotonically increasing function of p. 
For this reason, we will call p, instead of n f ,  the quantization 
density in the sequel. 

For the quadratic stabilization problem, a quadratic Lya- 
punov function V ( x )  = xTPx,P = PT > 0 ,  is used 
to assess the stability of the feedback system. That is, the 
quantizer must satisfy 

is given by 
2 

In 1 l P  

O V ( X )  = V ( ( A  + AA)x  + ( B  + A B ) f ( K z ) )  - V ( X )  

< 0, V X f O  (9) 

for all admissible uncertainties. The coarsest quantizer is the 
one which minimizes vf subject to (9). 

The density of the quantizer depends on V(x) (or P )  and 
I<. This raises the key question: What is the coarsest density 
among all possible P and K? In [l 11, this problem is studied 
for systems without uncertainties, and the answer is given for 
a specially chosen K: 

B ~ P A  I< = KGD = -- BTPB 
More specifically, for the K as above, the coarsest density 
is given by 

1 - A  
L "  p=- 
l + b  

with 

2 

where Ay are the unstable eigenvalues of A. But it is shown 
in [15] that the result on p (or 6) remains the same even 
when K is allowed to be a free variable. 

When the system is subject to uncertainties, the approach 
in [ l l ]  seems to be difficult to generalize. It turns out 
the coarsest quantization density is in general difficult to 
characterize. We therefore aim to searching for an upper 
bound of it which guarantees quadratic stabilizability. That 
is, we consider the following problem: Given a (logarithmic) 
quantization density p > 0, determine (possibly sufficient) 
conditions under which there exist a quadratically stabilizing 
quantized state feedback controller with a given quantization 
density. Once an algorithm is found for this problem, the 

required quantization density can be easily searched by 
repeatedly applying the algorithm. 

To solve the above problem, we resort to the sector bound 
method used in [15]. This method uses the following simple 
observation: For a given quantization density p > 0, the 
quantization error is bounded by 

f ( v )  - U = AV, lAl 5 b (13) 

where b is related to p by (11). When there are no un- 
certainties, it is shown in [15] that the quantized state 
feedback controller (3)-(4) is quadratically stabilizing if and 
only if the (unquantized) state feedback controller (4) is 
quadratically stabilizing in the presence of the sector bound 
uncertainty (13). That is, the quantized feedback stabilization 
problem is equivalent to well-known quadratic stabilization 
problem with a sector-bounded uncertainty. This is a key 
observation which allows [ 151 to generalize the work of [ 111 
to stabilization problem for MIMO systems and performance 
control problems. 

Now let us return to the uncertain system (1). Given a 
quantization density p > 0, we apply the sector bound (13). 
It turns out that this leads to the following auxiliary system: 

~ ( k  + 1) = Az(k)  + Bv(k)  + [B  T - ~ H ]  w ( k )  

where v(k) is the control input, < ( k )  is the controlled output, 
and T > 0 is a scaling parameter. 

Theorem I :  The system (1) is quadratically stabilizable 
for a given a quantization density p > 0 if there exists a 
scaling parameter T > 0 and a state feedback controller 

v(k) = ICx(k) (15) 

for the auxiliary system (14) such that the H ,  norm of the 
transfer function from w to < is less than or equal to 1. 
Further, the control gain K and Lyapunov matrix P for the 
auxiliary system will also work for the uncertain system (1). 

Proof. Combining (1) and (3) gives 

z ( k  + 1) = ( A  + AA)z  + ( B  + AB)(1 + A)v (16) 

Defining 

A = A / b  
E = Av=Abv 
7 = E;lx+E2vtE2J 
20 = [eT T v T ]  (17) 

The equation (16) becomes 

z ( k t - 1 )  = A z + B v + B J + H v  
A z + B v +  [B T-'H]W (18) 

200 



and . 
w = diag { A , F } <  (19) 

It is clear that 
WTW 5 ST< 

Note that (1 8)-(20) resembles the auxiliary system (14). 
It is well-known that the system (18), (19) and (15) is 
quadratically stabilizable if the H ,  norm for the transfer 
function of (14) from w to < is less than or equal to 1 for 

0 some T > 0. Hence, our result is proved. 

If the system (1) does not involve any uncertainty, Theo- 
rem 1 reduces the following result (see [E]): 

Corollary I: Suppose the system (1) does not involve any 
uncertainty (i.e., H = 0,El  = 0, E2 = 0). Then, it is 
quadratically stabilizable for a given a quantization density 
p > 0 if and only i f  there exists a state feedback controller 
(15) for the following auxiliary system 

~ ( k  + 1) = Az(k )  + B v ( k )  + B w ( k )  
S ( k )  = W k )  (21) 

such that the H ,  norm of the transfer function from w to 
is less than or equal to 1. Further, the control gain K and 

Lyapunov matrix P for the auxiliary system will also work 
for the system (1). 

111. QUANTIZED OUTPUT FEEDBACK 
The system of concern has the following form: 

z ( k  + 1) = ( A  + AA)z(k)  + ( B  + AB)u(k) 
y ( k )  = (C + AC)z(k)  + ( D  + AD)u(k)  (22) 

where z and U are as before, and y( k )  E R' is the measured 
output. 

When quantized output feedback is used for control, 
there are at least two basic cases for the location where 
quantization takes places: 

Case 1. The control input is quantized. In this case, 
the construction of a pre-quantized control signal is 
done at the output end where the measured output 
perfectly available. The control signal is then quantized 
and transmitted to the input side. We will call this case 
the output feedback with quantized input. 
Case 2. The measured output is quantized. In this case, 
the construction of the control signal is done at the input 
end using quantized output signal. No more quantization 
happens to the control input signal. We will call this case 
the output feedback with quantized output. 

Obviously, it is possible to have more complicated scenar- 
ios. For example, quantization may happen to both measured 
output and control input. But we are only concerned with 
Cases 1 and 2 for simplicity reasons. Also, the ideas for 
these cases can be easily generalized. 

Output feedback with quantized input 

In this case, we take the controller to be of the form below: 

z C ( k  + 1) = Aczc(k) + B,jj(k) + Biu(k)  
u ( k )  = C,z,(k) + D,jj(k) + DlU(k) 
U ( k )  = f(@)) (23) 

where 

j j (k)  = ~ ( k )  - h ( k )  = (C + AC)z,(k)  + A D u ( ~ )  (24) 

xC(k) is the state of the controller with its dimension and 
matrices A,, Bc,Cc,D,,B1 and D1 to be designed. Note 
that using g ( k )  instead of y(k) does not alter the available 
feedback information. 

We first consider the special case when no uncertainties 
exist in the system. This case has been studied in [MI, 
and the result is that output feedback with quantized in- 
put is equivalent to quantized state feedback for quadratic 
stabilization, provided the system is detectable. That is, if 
state feedback can quadratically stabilize the system for a 
given quantization density, so can the output feedback. The 
corresponding output feedback controller is an observer- 
based one, taking the following form: 

~ c ( k  + 1) = Az,(k) + L(f j (k)  - CzC(k)) + B u ( ~ )  
v(k) = Ks,(k) 

= f ( 4 k ) )  (25) 

where L is the observer gain and K is the state feedback 
gain. Note that L = B,, B1 = B and D1 = 0 if we compare 
(25) with (23). 

Now let us return to the uncertain system (22). Motivated 
by the above, we will also choose 

B i z  B; D1 0 (26 )  

Next, we define an auxiliary system: 

~ ( k  + 1) = Ax(k) + Bv(k)  + [B T - ~ H ~ ]  ~ ( k )  
g ( k )  = Cz(k )+  [O T-1H2]w(k) 

where S is computed from a given quantization density p > 0, 
and T > 0 is a scaling parameter. 

Theorem 2: Consider the uncertain system (22)  and a 
given quantization density p > 0. Suppose there exists an 
output feedback controller without quantization (i.e., (25)  
with U = v) for the auxiliary system (27) such that the H ,  
norm of the transfer function from w to C is less than or 
equal to 1. Then, the system (22)  is quadratically stabilizable 
via the same controller with quantized control input and 
quantization density p. 
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Proof. The proof is similar to that of Theorem 1. Using 
the definitions in (17), the system (22) is converted into the 
auxiliary system (27) with (19)-(20). Hence, the relationship 
between the quadratic stabilizability of (22) and H ,  control 
of (27) follows. 0 

When no uncertainty is involved in the system, Theorem 2 
reduces to the following [15]: 

Corollary 2: Suppose the system (22) does not involve 
any uncertainty (i.e., Hl = 0, H2 = 0 ,  El = 0 ,  E2 = 0).  
Then, the following two problems are equivalent: 

The system (22) is quadratically stabilizable via output 
feedback with quantized input and quantization density 

There exists an output feedback controller without quan- 
p >  0; 

tization for the following auxiliary system: 

z ( k  + 1) = Az(k)  + B v ( k )  + B w ( k )  
P ( k )  = Cz(k )  

c = 6v(k) (28) 

such that the H ,  norm of the transfer function from w 
to < is less than or equal to 1. 

Output feedback with quantized output 

In this case, the feedback information is 

v(k) = f(Y(k)) (29) 

and the controller has the following form: 

z c ( k  + 1) = Aczc(k) + Bcv(k) 
u ( k )  = Ccz,(k) + Dcv(k )  (30) 

Note that the terms I31 and D1 are not needed because the 
mapping from U to U is linear. 

The corresponding auxiliary system is now given by 

~ ( k  + 1) = Az(k)  + Bu(k)  + [0 H l ] w ( k )  
v(k) = C z ( k )  + D u ( k )  + ET-' H2] w(k) 

Tlieoreni 3: Consider the uncertain system (22) and a 
given quantization density p > 0. Suppose there exists an 
output feedback controller (30) for the auxiliary system (31) 
such that the H ,  norm of the transfer function from U )  to C is 
less than or equal to 1. Then, the system (22) is quadratically 
stabilizable via the same controller with quantized output and 
quantization density p. 

Proof. The proof is similar to that of Theorem 2. 0 

When system uncertainties disappear, again we have the 
following special result [ 151: 

Corollary 3: Suppose there is no uncertainty in (22). Then 

The system (22) is quadratically stabilizable via output 
feedback with quantized output and quantization density 

There exists an unquantized output feedback controller 

the following are equivalent: 

p > 0. 

for the following auxiliary system 

~ ( k  + 1) = A z ( k )  + B u ( ~ )  
v(k) = Cz(k )  + Du(k )  + +W(k)  
C ( k )  = b(Cz (k )  + DU(k))  (32) 

such that the H ,  norm of the transfer function from w 
to C is less than or equal to 1. 

IV. AN EXAMPLE 

In this section, we give an example to show the effects of 
three quantization schemes as studied before. The system to 
be considered is given by (22) with 

H~ = E [ ] ; H2 = E ;  El = [l 01; E2 = 1 (33) 

In the above, the parameter E > 0 represents the size of 
uncertainties. 

When E = 0, the uncertainties vanish and the transfer 
function of the system becomes G(z) = C(z1-  A)-'B = 
( z  - 3 ) / z ( z  - 2). This example is analyzed in [15]. When 
quantized state feedback is used, the coarsest quantization 
density is computed to be p = 1/3. The same quantization 
density is reached when output feedback with quantized 
control input is used. For output feedback with quantized 
output, the coarsest quantization density tums out to be 
p = 0.8182. That is, the latter scheme requires a much denser 
quantizer. 

When E > 0, Theorems 1-3 are applied and the coars- 
est quantization densities are searched by solving the H ,  
control problems associated with the auxiliary systems for 
various 7 and p. The results are plotted in Figure 1. 

It is clear that increasing E will increase the required 
quantization density. Also, output feedback with quantized 
output requires a denser quantizer compared with output 
feedback with quantized input. Finally, although the output 
feedback with quantized input requires the same quantization 
density as the quantized state feedback when there is no 
uncertainty, the former requires a denser quantizer when E 

increases. This is because the existence of uncertainty makes 
it difficult to recover the state information from the output 
measurement. 
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Size of Uncertainty: E 

Fig. 1. Required Quantization Density vs. Size of Uncertainty 

V. CONCLUSIONS 

We have studied three robust stabilization problems associ- 
ated with logarithmic quantized feedback, namely, quantized 
state feedback, output feedback with quantized input, and 
output feedback with quantized output. In each of these cases, 
we have shown the connection between quadratic stabiliz- 
ability for a given quantization density and H ,  control for 
a corresponding auxiliary system. This allows us to use the 
standard H ,  design tools to deal with quantized feedback 
control for uncertain systems. 

In the output feedback control case, we have noted an 
interesting phenomenon that the quadratic stabilizability de- 
pends on where the quantization occurs. In particular, a 
coarser quantization density can be achieved in general when 
quantization occurs at the control input rather than at the 
measured output. Intuitively, this is because the measured 
information is better preserved in the former case. 

Although the sector bound method gives only sufficient 
conditions for quantized feedback stabilization, we make 
two points: 1) The results become non-conservative when 
uncertainties are not present, as shown in Corollaries 1-3. 2) 
The technical difficulties for quantized feedback stabilization 
of the uncertain systems as in Theorems 1-3 are essentially 
the same as quadratic stabilization of systems with two 
blocks of uncertainties (one from F and one from A). This 
problem has been studied for a long time in the robust control 
literature, and there is no non-conservative solution to it. 
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