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Abstract— Expander networks are highly connected sparse
graphs, which play an important role in designing efficient com-
munication networks. In this paper, we consider consensus con-
trol of discrete-time first-order agents with the communication
graph being an expander network. Each agent has a real-valued
state but can only exchange symbolic data with its neighbors.
A distributed protocol is designed based on dynamic encoding
and decoding with finite level uniform quantizers. The choice of
the control parameters only depends on the number of agents,
the maximum degree and the isoperimetric constant of the
network. It is shown that under the protocol designed, average-

consensus can be achieved with an exponential convergence rate
based on a single-bit information exchange between each pair
of adjacent nodes at each time step. A performance index is
given to characterize the total communication energy cost to
achieve average-consensus and it is shown that the minimization
of the communication energy cost leads to a tradeoff between
the convergence rate and the number of quantization levels.

I. INTRODUCTION

In recent years, consensus problem with quantized com-

munication has attracted more and more attention in the

control community. In [1]-[3], average-consensus algorithms

were designed with each agent having an integer-valued state.

These algorithms can drive each agent to some interger

approximation of the average of the initial states. In [4]-

[7], quantized average-consensus problems were studied with

real-valued states. In [4]-[6], algorithms with uniform and

logarithmic quantizers of infinite levels were proposed to

ensure the boundness of the consensus error. Furthermore,

an algorithm based on dynamic quantization was proposed in

[7]. The number of quantization levels, however, will diverge

as the number of agents increases. In [8], random dither

was used to make the quantization error a “white” noise.

Then the distributed stochastic approximation method ([9]-

[11]) was applied to achieve approximate average-consensus.

For distributed cooperative control of multi-agent systems
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under communication constraints, though various kinds of

algorithms have been presented as mentioned above, some

fundamental theoretic problems are still open. For example,

to achieve consensus of the network, how many bits of infor-

mation does each pair of adjacent agents need to exchange

at each time step ?

In [12], the average-consensus control was considered

for discrete-time first-order undirected networks with a fi-

nite communication date rate. The communication between

agents is based on dynamic encoding and decoding with

finite-level quantization. It was shown that if the network

is connected, then for any given number of quantization

levels, the control gain and the scaling function can be chosen

properly such that average-consensus can be asymptotically

achieved. In particular, the control parameters can be prop-

erly chosen such that average-consensus can be achieved by

using a single-bit quantizer. However, in [12], the algebraic

connectivity of the communication graph is required to be

known a prior for choosing suitable control parameters,

which may be difficult when the communication graph is

of a large scale.

In this paper, we show that instead of the exact value of

the algebraic connectivity, we only need to know a positive

lower bound of the algebraic connectivity for designing

the protocol proposed in [12], and for an important class

of complex networks, called expander networks, the lower

bound of the algebraic connectivity can be worked out by

using the isoperimetric constant. We also give a performance

index to characterize the total communication energy cost to

achieve average-consensus and show that the minimization

of the communication energy cost leads to a tradeoff between

the convergence rate and the number of quantization levels.

The remainder of this paper is organized as follows. In

Section II, we present the network model and our proposed

distributed protocol. In Section III, we recall the main

results of [12]. In Section IV, we consider how to select

the control parameters for an important class of complex

networks called expander networks. In Section V, we give a

performance index to characterize the total communication

cost to achieve average-consensus and minimize its upper

bound with respect to the control parameters. In Section VI,

we give some concluding remarks.

The following notation will be used throughout this paper:

1 denotes a column vector with all ones. I denotes the

identity matrix with an appropriate size. For a given set S, the

number of its elements is denoted by |S| . For a given vector

or matrix A, its transpose is denoted by AT , its Euclidean

norm is denoted by ‖A‖2. For a given positive number x, the
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maximum integer less than or equal to x is denoted by ⌊x⌋;

the minimum integer greater than or equal to x is denoted

by ⌈x⌉.

II. PROBLEM FORMULATION

A. Average-consensus problem

In this paper, the dynamics of each agent is modeled as a

discrete-time first-order integrator:

xi(t + 1) = xi(t) + hui(t), t = 0, 1, ..., i = 1, 2, ..., N, (1)

where xi(t) ∈ R is the ith agent’s state, ui(t) ∈ R is the

ith agent’s control input, and h is the control gain. The

information flow among agents are modeled as an undirected

graph G = {V , E ,A}, where V = {1, 2, ..., N} is the set

of nodes with i representing the ith agent, EG is the set

of edges and A=[aij ]∈R
N×N is the weighted adjacency

matrix of G. An edge denoted by the unordered pair (j, i)
represents a communication channel from j to i. Note that

A is a symmetric matrix. For any i, j ∈ V , aij=aji ≥ 0,

and aij > 0 if and only if j ∈ Ni. Also, degi =
∑N

j=1 aij

is called the degree of i, and d∗=maxi degi is called the

degree of G. The Laplacian matrix of G is defined as L =
D − A, where D = diag(deg1, ..., degN ). A sequence of

edges (i1, i2), (i2, i3), ..., (ik−1, ik) is called a path from

node i1 to node ik. The graph G is called a connected graph

if for any i, j ∈ V , there is a path from i to j.

The dynamic system (1) together with the communication

graph G is usually called a dynamic network ([13]). A group

of controls U = {ui, i = 1, 2..., N} is called a distributed

protocol if for all i, ui(t) only depends on xi(s) and xj(s),
j ∈ Ni, s ≤ t. The average-consensus control is to design a

distributed protocol for the dynamic network, such that for

any initial values x1(0), ..., xN (0), all the agents asymptoti-

cally reach an agreement with 1
N

∑N
j=1 xj(0) when t → ∞.

That is, 1
N

∑N
j=1 xj(0) can be computed asymptotically in

a distributed manner.

B. Protocol design

In [12], we proposed a distributed protocol based on

dynamic encoding and decoding.

The encoder Φj of the jth agent is given by





ξj(0) = 0,
ξj(t) = g(t − 1)∆j(t) + ξj(t − 1),
∆j(t) = q(g−1(t − 1)(xj(t) − ξj(t − 1))),

t = 1, 2, ...

(2)

where ξj(t) is the internal state of Φj , and ∆j(t), which is

the output of Φj , is sent to the neighbors of the jth agent.

Here, q(·) is a finite-level uniform quantizer, and g(t) > 0
is a scaling function.

The quantizer q(·): R → Γ is a map from R to the set Γ
of quantized levels. In this paper, we consider a finite-level

uniform quantizer with

Γ = {0,±i, i = 1, 2, ...K}.

The number of quantization levels is 2K +1. The associated

quantizer q(·) is given by

q(y) =






0, −1/2 < y < 1/2,
i, 2i−1

2 ≤ y < 2i+1
2 ,

i = 1, 2, ..., K − 1,
K, y ≥ 2K−1

2 ,
−q(−y), y ≤ −1/2.

(3)

Remark 1: The encoder Φj is a scaled difference encoder,

and ξj(t) is a one-step predictor. In this difference encoding

algorithm, at each time step the “prediction error”, xj(t) −
ξj(t−1), is quantized. Generally speaking, the amplitude of

the prediction error is smaller than that of state xj(t) itself,

so it can be represented by fewer bits.

Remark 2: If consensus is achieved, then the prediction

error xj(t) − ξj(t − 1) vanishes as t → ∞. Therefore,

intuitively the scaling function g(t) should satisfy the follow-

ing properties. On one hand, g(t) should converge to zero

asymptotically to make the quantizer persistently excited,

such that the agents receive the their neighbors’ information

continuously. On the other hand, g(t) should be large enough

such that the quantizer will not be saturated.

For each communication channel (j, i) ∈ E , the ith agent

receives ∆j(t), and then uses the following decoder Ψji to

estimate xj(t):




x̂ji(0) = 0,
x̂ji(t) = g(t − 1)∆j(t) + x̂ji(t − 1),

t = 1, 2, ...
(4)

where x̂ji(t) is the output of Ψji.

Remark 3: When the output ∆j(t) of the quantizer is zero,

the jth agent does not send any information, so for a (2K +
1)-level quantizer q(·), the communication channel (j, i), i ∈
Nj is required to be capable of transmitting ⌈log2(2K)⌉ bits

without error at each time step. In particular, the quantizer

q(·) given by

q(y) =





0, −1/2 < y < 1/2,
1, y ≥ 1/2,
−1, y ≤ 1/2

(5)

is a one-bit quantizer.

The distributed protocol is given by

ui(t) =
∑

j∈Ni

aij(x̂ji(t) − ξi(t)), t = 0, 1, ...,

i = 1, 2, ...N. (6)

Denote

X(t) = [x1(t), ..., xN (t)]T ,
X̂(t) = [ξ1(t), ..., ξN (t)]T ,
e(t) = X(t) − X̂(t),
δ(t) = X(t) − JNX(t), (7)

where JN = 1
N 11

T .
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Substituting the protocol (2), (4) and (6) into the system

(1) leads to





X(t + 1) = (I − hL)X(t) + hLe(t),

X̂(t + 1) = g(t)Q[g−1(t)(X(t + 1) − X̂(t))]

+X̂(t).

(8)

III. FINITE-LEVEL QUANTIZED CONSENSUS

For the protocol designed and the resulting closed-loop

system (8), it is shown that if the network is connected, then

for any given number of quantization levels, the control gain

and the scaling function can be chosen properly such that

average-consensus can be asymptotically achieved with an

exponential rate ([12]).

We need the following assumptions:

A1) G is connected.

A2) maxi |xi(0)| ≤ Cx, maxi |δi(0)| ≤ Cδ, where Cx and

Cδ are known nonnegative constants.

Lemma 3.1: If Assumption A1) holds and h < 2
λN (L) ,

then ρh < 1, where ρh = max2≤i≤N |1 − hλi(L)|. Further-

more, if h < 2
λ2(L)+λN (L) , then ρh = 1 − hλ2(L).

Lemma 3.2: Suppose Assumptions A1)-A2) hold. For

any given h ∈ (0, 2
λN (L)) and γ ∈ (ρh, 1), let

K1(h, γ) = ⌊M1(h, γ) − 1

2
⌋ + 1, (9)

M1(h, γ) =

√
Nh2λ2

N (L)

2γ(γ − ρh)
+

1 + hλN (L)

2γ
, (10)

and

g0 > max{ Cx

K + 1
2

,
2(γ − ρh)(Cδγ + hCxλN (L))

hλN (L)
}. (11)

Then for any given K ≥ K1(h, γ), under the protocol (2),

(4) and (6) with the (2K+1)-level uniform quantizer (3) and

the scaling function g(t) = g0γ
t, the closed-loop system (8)

satisfies

lim
t→∞

xi(t) =
1

N

N∑

j=1

xj(0), i = 1, 2..., N.

Theorem 3.1: Suppose Assumptions A1)-A2) hold. For

any given K ≥ 1, let

ΩK = {(α, β)| α ∈ (0,
2

λ2(L) + λN (L)
), β ∈ (ρα, 1),

M1(α, β) < K +
1

2
}, (12)

where ρα = max2≤i≤N |1−αλi(L)| and M1(α, β) is defined

by (10). Then, (i) ΩK is nonempty. (ii) For any (h, γ) ∈ ΩK ,

under the protocol (2), (4) and (6) with g(t) = g0γ
t and the

(2K+1)-level uniform quantizer (3), the closed-loop system

(8) satisfies

lim
t→∞

xi(t) =
1

N

N∑

j=1

xj(0), i = 1, 2..., N,

where g0 is a constant satisfying (11).

The convergence rate of average-consensus ([14]) is de-

fined as

rasym = sup
X(0) 6=JN X(0)

lim
t→∞

(
‖X(t) − JNX(0)‖2

‖X(0)− JNX(0)‖2
)1/t.

For the convergence rate of our algorithm, we have the

following theorem.

Theorem 3.2: Suppose the conditions of Lemma 3.2

hold, then under the protocol (2), (4) and (6) with the

(2K+1)-level uniform quantizer (3), the closed-loop system

(8) satisfies

‖δ(t)‖2 = O(γt), t → ∞,

and rasym ≤ γ, where δ(t) is the consensus error defined by

(7).

Remark 4: Theorem 3.2 gives an estimate for the conver-

gence rate of the consensus. The smaller the γ, the faster the

consensus error converges to zero. Note that γ can be made

arbitrarily close to ρh, which is the convergence rate for the

case with perfect communication ([14]).

IV. PARAMETER SELECTION FOR EXPANDER NETWORKS

From Theorem 3.1, it can be seen that to ensure average-

consensus by using any given ⌈log2(2K)⌉-bit quantizer, the

spectrum radius and the algebraic connectivity have to be

known a prior for the choice of the control gain h and the

scaling factor γ. In fact, we can show that by making the

set ΩK smaller, the choice of h and γ only depends on a

positive lower bound of the algebraic connectivity and the

degree of the communication graph. We have the following

result.

Theorem 4.1: Suppose Assumptions A1)-A2) hold. For

any given K ≥ 1, let

ΩK = {(h, γ)| h ∈ (0,
1

2d∗
), γ ∈ (1 − hλ∗, 1),

M1(h, γ) < K +
1

2
}

where

M1(h, γ) =
2
√

Nh2(d∗)2

γ[γ − (1 − hλ∗)]
+

1 + 2hd∗

2γ
,

and λ∗ is a positive lower bound of λ2(L). Then, ΩK ⊆ ΩK

and ΩK is nonempty.

The proof of Theorem 4.1 is omitted here.

Below we show that for an important class of regular

networks, a lower bound of the algebraic connectivity can

be worked out by using other physical parameters.

Definition 4.1: ([15]) The isoperimetric constant or ex-

pander constant of an equally weighted graph G = {V , E ,A}
on N vertices is

ic(G) = min{ |∂F|
|F| : F ⊆ V , 0 < |F| ≤ N

2
},

where the boundary ∂F of F is the set of edges with one

vertex in F and the other in V − F .
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Definition 4.2: ([15]) Let c be a positive constant. A

d-regular graph G = {V , E ,A} is called a c-expander, if

ic(G) ≥ c.

Expander graphs are highly connected sparse graphs,

which play an important role in designing efficient commu-

nication networks ([16],[17]). From Corollary 2.3 of [18], a

key property of a c-expander is

λ2(L) ≥ d −
√

d2 − c2. (13)

For expander networks, we have the following result.

Theorem 4.2: Let G = {V , E ,A} be a d-regular c-

expander. Suppose Assumption A2) holds. For any given

h ∈ (0, (2d)−1) and γ ∈ (1 − h(d −
√

d2 − c2), 1), let

K2(h, γ) = ⌊M2(h, γ) − 1

2
⌋ + 1, (14)

M2(h, γ) =
2
√

Nh2d2

γ[γ − 1 + h(d −
√

d2 − c2)]

+
1 + 2hd

2γ
, (15)

and

g0 > max{ Cx

K + 1
2

,
4hd(d2 +

√
d2 − c2)(Cδ + Cx)

hc2
}. (16)

Then for any given K ≥ K2(h, γ), under the protocol (2),

(4) and (6) with the (2K+1)-level uniform quantizer (3) and

the scaling function g(t) = g0γ
t, the closed-loop system (8)

satisfies

lim
t→∞

xi(t) =
1

N

N∑

j=1

xj(0), i = 1, 2..., N. (17)

Proof: Note that for a c-expander, Assumption A1) holds.

From the property of graph Laplacian ([19]), we know that

λN (L) ≤ 2d. Then by Lemma 3.1 and h ∈ (0, (2d)−1), we

get

ρh = 1 − hλ2(L). (18)

This together with (13), (14), (15), (9) and (10) leads to

K2(h, γ) ≥ K1(h, γ). (19)

By (18) and the property of graph Laplacian ([19]), we have

γ − ρh,G ≤ 1 − (1 − hλ2(L)) ≤ 2hd,

which together with hλN (L) < 1, and λN (L) ≥ λ2(L) ≥
d −

√
d2 − c2 gives

2(γ − ρh,G)(Cδγ + hCxλN (L))

hλN (L)

≤ 4hd(d +
√

d2 − c2)(Cδ + Cx)

hc2
.

By this, (16), (11), (19) and Lemma 3.2, we have (17).

Theorem 4.3: Let G = {V , E ,A} be a d-regular c-

expander. Suppose Assumption A2) holds. For any given

K ≥ 1, let Ωc
K = {(α, β)| α ∈ (0, 1

2d ), β ∈ (1 − α(d −√
d2 − c2), 1), M2(α, β) < K + 1

2}, where M2(α, β) is

given by (15). Then, (i) Ωc
K is nonempty. (ii) For any given

(h, γ) ∈ Ωc
K , under the protocol (2), (4) and (6) with

g(t) = g0γ
t and the (2K + 1)-level uniform quantizer (3),

the closed-loop system (8) satisfies

lim
t→∞

xi(t) =
1

N

N∑

j=1

xj(0), i = 1, 2..., N,

where g0 is a constant satisfying (16).

Proof: (i) Noting that

lim
α→0

[
2
√

Nαd2

d −
√

d2 − c2
+

1 + 2αd

2
] =

1

2
,

we know that for any given K ≥ 1, there exists α∗ ∈ (0, 1
2d )

such that

2
√

Nα∗d2

d −
√

d2 − c2
+

1 + 2α∗d

2
< K +

1

2
. (20)

By this and (15), we get

lim
γ→1

M2(α
∗, γ) =

2
√

Nα∗d2

d −
√

d2 − c2
+

1 + 2α∗d

2
.

Then by (20), we know that there exists γ∗ ∈ (1 − α∗(d −√
d2 − c2), 1), such that

M2(α
∗, γ∗) < K +

1

2
.

Therefore (α∗, γ∗) ∈ Ωc
K , that is, Ωc

K is nonempty.

(ii) For any (h, γ) ∈ Ωc
K , by the definition of Ωc

K , we

know that

1

2
< M2(h, γ) < K +

1

2
.

Thus, by (14), one gets K2(h, γ) ≤ K , which together with

Theorem 4.2 leads to the conclusion of the theorem.

To choose (h, γ) from Ωc
K for any given K ≥ 1, we have

the following algorithm.

Algorithm:

(i) Choose a constant ǫ0 ∈ (0, 1).
(ii) Choose the control gain h ∈ (0, h̃c(ǫ0)), where

h̃c(ǫ0) = min{ 1

2d
, 2Kǫ0(

√
Nd2(d +

√
d2 − c2)

c2

+2dǫ0 + 2(2K + 1)dǫ0(1 − ǫ0))
−1}

(iii) Let γ = 1 − (1 − ǫ0)h(d +
√

d2 − c2).

Remark 5: A Ramanujan graph G is defined as a d-regular

graph with λ2(L) ≥ d − 2
√

d − 1 ([20]-[21]). Ramanujan

graphs are expanders which achieve the largest possible

algebraic connectivity, and so are optimal expanders from

the spectral point of view ([15], [22]). Recently, it is found

that in fact, Ramanujan graphs are close to optimal graphs

with best synchronizability ([16]). For a Ramanujan graph G
with d ≥ 3, λ2(L) ≥ 3− 2

√
2. This property is of particular

importance, since λ2(L) is lower bounded, independent of

the graph G. So by Theorem 4.3, for the case with a d-regular

Ramanujan graphs with d ≥ 3, we can choose h and γ, such

that h ∈ (0, h̃c(ǫ0)) and γ = 1− (1− ǫ0)(3− 2
√

2)h, where

h̃c(ǫ0) = min{ 1

2d
,
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2Kǫ0√
Nd2

3−2
√

2
+ 2dǫ0 + 2(2K + 1)dǫ0(1 − ǫ0)

},

for any given K ≥ 1.

V. MINIMIZATION OF COMMUNICATION ENERGY COST

Average-consensus protocols can be viewed as distributed

least-mean-squares estimation algorithms in sensor networks

([23]). Limited power is perhaps the most critical constraint

for applications of wireless sensor networks. Simulations

show that for a large-scale sensor network, communications

between nodes consume far more power than computation

([24]). For power saving, reducing the communication load

for distributed estimation is a critical issue. This motivates

us to consider how to minimize the total communication en-

ergy cost for average-consensus. We define the convergence

time constant as τasym = (ln(1/raysm))−1, which gives

the asymptotic number of steps for the consensus error to

decrease by 1/e. 1 For a (2K + 1)-level quantizer, at each

time instant, ⌈log2(2K)⌉ bits are sent by each sending node

and are received by each receiving node. For simplicity, we

assume that the transmission power and receiving energy cost

for each node are the same. Therefore, if a (2K1(h, γ)+1)-
level quantizer is used, then the communication energy of

the whole sensor networks to achieve consensus is given by

Φ = Bh(c1|V| + 2c2|EG |)
where Bh = ⌈log2(2K1(h, γ))⌉τasym, and c1 and c2 are

respectively the energy costs for transmitting and receiving

a single bit data. Minimizing Φ is equivalent to minimizing

Bh. By Theorem 3.2, we know that

Bh ≤ B∗
h,

where

B∗
G,h = ⌈log2(2K1(h, γ))⌉(ln(1/γ))−1,

which is a function of γ for given network topology G
and the control gain h. The smaller the γ, the smaller the

(ln(1/γ))−1, but the larger the ⌈log2(2K1(h, γ))⌉. Choosing

γ to minimize B∗
h, we can get a good solution for γ.

Example 1: We consider a network with 30 nodes and

0 − 1 weights 2 shown in Fig. 1. The edges of the graph

are randomly generated according to P{(i, j) ∈ EG} = 1
2 ,

for any unordered pair (i, j). Suppose h is chosen as 0.2.

The curve of B∗
0.2 with respect to γ is given by Fig. 2. It

can be seen that B∗
0.2 arrives at the minimum when γ is

approximately 0.8896. The curves of B∗
h when h = 0.5 and

h = 0.8 are shown in Fig. 3. The discontinuity of the curves

is due to the rounding up and down operators. It is shown

that the suboptimal value of γ decreases as h increases.

Remark 6: In many scenarios ([25]), the dynamics of a

group of autonomous robots under feedback linearization can

be modeled as continuous-time first-order integrators

ẋi = ui(t), t ≥ 0, i = 1, 2, ..., N.

1 Note that the term convergence time is used in [14], but we believe that
calling it the convergence time constant is more appropriate.

2 0 − 1 weights means that aij = 1, if (i, j) ∈ E , otherwise, aij = 0.

Fig. 1. Network topology of Example 1.
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Fig. 2. Curves of B∗

0.2 versus γ.

Then the model (1) can be viewed as the associated discrete-

time model with zero-order holder functions, where h is the

sampling period. In the case of sampled-data control, besides

the total communication load, we also want to minimize the

bit rate requirement for each communication channel. From

Lemma 3.2, we know that the bit rate of each communication

channel can be made as low as

inf
h∈(0,2(λN (L))−1),γ∈(ρh,G,1)

⌈log2(2K1(h, γ))⌉
h

.

VI. CONCLUDING REMARKS

In this paper, the average-consensus control problem has

been considered for an undirected network of discrete-time

first-order agents under finite bit-rate communication. Based

on scaled uniform quantization, a dynamic difference en-

coding and decoding scheme is used for the communication

between each pair of agents. A distributed protocol has been

proposed, where the control input of each agent is a weighted
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Fig. 3. Curves of B∗

h
versus γ when h = 0.5 and h = 0.8.

sum of the difference between the estimate of its neighbor’s

state and the internal state of its own encoder. We show

that when the communication graph belongs to the family of

expander graphs, the choice of the control parameter only

depends on the number of agents, the maximum degree

and the isoperimetric constant of the network. It has been

shown that under the protocol designed, average-consensus

can be achieved with an exponential convergence rate based

on a single-bit information exchange between each pair of

adjacent nodes at each time step.
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