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Abstract— This paper investigates the optimality of the log-
arithmic quantizer on stabilization of linear systems. It is
shown that a finite-level logarithmic quantizer can asymptot-
ically achieve the well-known minimum average data rate for
stabilizing an unstable MIMO linear discrete-time system. A
time-sharing protocol is proposed to allocate bits to subsystems,
each associated with an unstable eigenvalue of the system,
and the stability of the system is established using a single
logarithmic quantizer and controller.

I. INTRODUCTION

Research on quantization has received resurgent interest in
recent years due to the emergence of network based control
systems. Traditional technique of modeling quantization er-
rors as additive white Gaussian noises began to be challenged
in the new environment where only very coarse information
is allowed to propagate through the network.

The change of view on quantization can be traced back
to the seminal paper [1]. In the paper, the author treated
quantization as partial information of the quantized entity,
rather than its approximation and showed the significance
of the historical values of the quantizer output. After that,
methods for studying quantization effects on control and
estimation have been developed.

The current research on quantized feedback control can
be categorized depending on whether the quantizer is static
or dynamic. A static quantizer is a memoryless nonlinear
function while a dynamic quantizer takes up memory and is
more complicated and potentially more powerful. Following
[1], Brockett and Liberzon studied a dynamic finite-level
uniform quantizer for stabilization in [2] and pointed out
that there exist a dynamic adjustment policy for the quantizer
sensitivity and a quantized state feedback to asymptotically
stabilize an unstable system. One then raised the fundamental
question: how much information needs to be communicated
between the quantizer and the controller to stabilize an un-
stable system? Various authors have addressed this problem
under different scenarios, e.g., [3]–[7] and the appealing data
rate theorem states that the minimum average data rate R
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required for the quantizer to achieve stability should satisfy
the following inequality:

R > ∑
|λi(A)|≥1

log2|λi(A)| := H, (1)

where λi(A) denotes an eigenvalue of the open-loop matrix
A.

Perhaps one of the most interesting static quantizers is
the logarithmic quantizer introduced in [8], [9], which is
proved to be the coarsest quantizer to quadratically stabilize
an unstable SISO linear system. A finite-level logarithmic
quantizer is proposed in [10] where a simple dynamic scaling
scheme for the quantizer input and output is proposed.
Though the study of logarithmic quantizer bears a vast body
of literature, e.g., [8], [9], [11]–[14], it is not clear if a
logarithmic quantizer can achieve the well-known minimum
average data rate required for stabilizing an unstable linear
system.

The above motivates the study on the optimality of the
logarithmic quantizer which can be formulated in this way:
does the logarithmic quantizer require a higher date rate for
stabilization? The main result of this paper show that the
answer is negative. We confirm the result by showing that
the use of a finite-level variable rate logarithmic quantizer
for stabilization can asymptotically achieve the minimum
average data rate.

Our solution adopts the philosophy that it is more efficient
to use more accurate information on some specific states than
to use coarser information on all states. That is, it is better
to assign different bits to different states rather than to pool
total bits among all states. To stabilize an unstable system
with bounded disturbance, a static finite-level logarithmic
quantizer is explicitly designed and periodically applied on
the state that is scaled by a constant scaling factor and a
corresponding control law is proposed based on the quantized
state. More precisely, the control input is generated by mul-
tiplying a constant control gain on the scaled back quantized
signal. The striking feature is that the scaling factor remains
static in the whole process, rather than dynamically changes
as in [10]. For asymptotic stabilization of an unstable system
without disturbance, a dynamic quantizer is needed, where
the scaling factor evolves with time. However, the quantizer
takes the same form as the static one. Meanwhile, a time-
sharing protocol for the quantizer is proposed to allocate bits
to subsystems, each associated with an unstable eigenvalue
of the open-loop matrix, and ensure the feasibility of the
proposed control law. Note that an earlier attempt has been
made for scalar systems in [15].
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The rest of the paper is organized in the following fashion.
The problem of interest is formulated in Section II. Section
III constitutes the main part of the paper, where the opti-
mality of the logarithmic quantizer is proved by designing
a finite-level quantizer and a corresponding control law to
stabilize the unstable system. The concluding remarks are
drawn in the last section.

II. PROBLEM FORMULATION

Consider a discrete time-invariant linear system,

xk+1 = Axk +Buk +wk, ∀k ∈ N, (2)

where xk ∈ Rn is the state, uk ∈ Rm is the control input,
and wk ∈ Rn is a bounded additive disturbance satisfying
‖wk‖∞ ≤ d with ‖ ·‖∞ denoting the l∞ norm for vectors and
the induced matrix norm for matrices. (A,B) is a stabilizable
pair. To make the problem nontrivial, we further assume that
A has at least an unstable eigenvalue.

We are interested in the problem of stabilizing the system
using a control law with limited information about the
state. In particular, there is a quantizer that observes xk
and generates a discrete-valued sequence {bk,k = 0,1, . . .}
at sampling times {k = 0,1, . . .}. The control law to stabilize
the system is designed solely from the quantized value bk by
a pair of quantizer/controller, see Fig. 1, where the encoder
and decoder are lumped into the quantizer and controller
respectively.

Before proceeding, some definitions are needed.
Definition 1: [9] A quantizer is called logarithmic quan-

tizer if it has the form:

U = {±u(i) : u(i) = ρ iu(0), i =±1,±2, · · ·}
∪{±u(0)}∪{0}, 0 < ρ < 1,u(0) > 0.

(3)

The associated quantizer Q∞(·) is defined as follows:

Q∞(v) =





u(i), if 1
1+δ u(i) < v≤ 1

1−δ u(i),v > 0;
0, if v = 0;
−Q∞(−v), if v < 0

(4)
where ρ is called the quantizer density and

δ =
1−ρ
1+ρ

. (5)

However, the logarithmic quantizer in (4) has an infinite
number of quantization levels and needs an infinite number
of bits to represent the quantizer. In the sequel, we shall
concentrate on the design of a finite-level logarithmic quan-
tizer that asymptotically achieves the minimum average data
rate in (1) and a corresponding control law for stabilizing
the system (2). Define a (2N−1)-level logarithmic quantizer
with quantization density 0 < ρ < 1 as:

QN(x) =





ρ i(1−δ ), if ρ i+1 < x≤ ρ i,
0≤ i≤ N−2;

0, if 0≤ x≤ ρN−1;
undefined, if x > 1;
−QN(−x), if x < 0.

(6)

For simplicity, we have chosen u(0) = 2ρ
1+ρ .
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Fig. 1. System structure.

The key problem is to determine the quantizer parameters
and the corresponding control law as well as a communica-
tion protocol to achieve the stabilization.

III. MAIN RESULT

In this section, we show that it is possible to design
a finite-level static logarithmic quantizer to asymptotically
reach the minimum average data rate to stabilize the unstable
system in (2) and the corresponding control law takes a
simple form.

The main difficulties involve optimally allocating bits to
subsystems, each associated with an unstable eigenvalue of
the open-loop matrix A. It is straightforward to show that
when A has a stable A-invariant subspace, there is no need
to assign bits to the associated stable subsystem since on that
subspace, the corresponding state variables will converge to
a bounded region (or zero when wk = 0 in (2)). As such, we
focus on the most interesting case in which all eigenvalues
of A are unstable. Assume that A has distinct unstable
eigenvalues λ1, . . . ,λ f (if λi is complex, its conjugate λ ∗i
is excluded from the list) with the corresponding geometric
multiplicities d1, . . . ,d f . The real Jordan canonical form of
A is given by the following lemma.

Lemma 1: There exists a real nonsingular matrix S∈Rn×n

such that
SAS−1 = J = diag{J1, . . . ,J f }.

The Jordan block Ji associated with the real eigenvalue λi
takes the form

Ji =




λi 1
λi 1

. . .
λi




di×di

,

while the Jordan block J j associated with the complex
eigenvalue λ j = r j(cosθ + isinθ) takes the form

J j =




D j I2
D j I2

. . .
D j




2d j×2d j

,

where D j =
[

r j cosθ r j sinθ
−r j sinθ r j cosθ

]
and I2 is the standard

identity matrix with dimension 2×2.
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Proof: See [16, pp. 150-153].
Define the indices ni, i = 1, . . . , f as follows:

ni =
{

di, if λi ∈ R;
2di, otherwise.

The following lemma establishes the relationship between
‖Jm

i ‖∞ and |λi|,m,ni.
Lemma 2: There is a positive ζ such that ∀i ∈ [1, . . . , f ],

‖Jm
i ‖∞ ≤ ζ

√
nimni−1|λi|m := κ(m,λi). (7)

Obviously, if ni = 1, we can choose ζ = 1.
Proof: Note that there is a ζ > 0, independent of Ji,ni,

and m, such that [6]

‖Jm
i ‖ ≤ ζ mni−1|λi|m,

where ‖ · ‖ is the spectral norm induced from the Euclidean
norm. Together with the relationship between ‖·‖ and ‖·‖∞,
see [16, pp.313],

‖A‖∞ ≤
√

l‖A‖, ∀ A ∈ Cl×l .

The proof is completed.
Since all of the eigenvalues of A are assumed unstable, we
have n1 + . . .+n f = n. Use the nonsingular real matrix S in
(1) and define the transformed state zk := Sxk, the dynamical
equation for the transformed systems is written as

zk+1 = Jzk +SBuk +Swk. (8)

It is trivial that the stability of the above system in (8) is
equivalent to that of the original system (2). Due to that
(A,B) is a stabilizable pair and all eigenvalues of A are
assumed unstable, (A,B) is a controllable pair, implying that
(J,SB) is a controllable pair as well. Let the controllability
index of (J,SB) be µ which is the least integer such that

rank[SB,JSB, . . . ,Jµ−1SB] = n.

To utilize the distinct features of the real Jordan form, we
partition the transformed state vector into z(i)

k , i = 1, . . . , f
respectively corresponding to each Jordan block of A. The
dynamical equation of each subsystem can be rewritten as

z(i)
k+1 = Jiz

(i)
k +(SBuk)(i) +(Swk)(i), i ∈ [1, . . . , f ]. (9)

The optimality of the logarithmic quantizer is shown in
the following theorem, where a finite-level static logarithmic
quantizer and a simple control law are explicitly designed.
Meanwhile, a time-sharing protocol is proposed to allocate
bits to each subsystem in (9).

Theorem 1: Given the stabilizable system (2), stabiliza-
tion can be achieved using a finite-level logarithmic quantizer
if and only if the average data rate exceeds H in (1).

Proof: The necessity part has been well established in
[6], [7].

Sufficiency: To better illustrate the quantizer and control
law, we use the following way to deliver the proof.
Step 1: Parameter selection for the finite-level logarithmic
quantizer in (6).

Let R be a given average data rate greater than H in (1), then
there exists an α > 1 satisfying

R≥
f

∑
i=1

ni log2(α|λi|).

For any ε > 0, it is feasible to select a pair of sufficiently
large τ (τ > µ) and Ni, i = 1, . . . , f to satisfy

log2
(
1+

2log2 κ(τ,λi)

log2
κ(τ,λi)+ε+1
κ(τ,λi)+ε−1

)
< log2(2Ni−1)

≤ τ log2 α−µR+ log2 |λi|τ ,
(10)

where κ(τ,λi) is defined in (7).
Remark 1: The strict inequality in (1) is shown in (10),

where we require α > 1 to ensure the existence of quantizer
parameters τ and Ni, i ∈ [1, . . . , f ]. More precisely, we have
proved the following equality in the appendix:

lim
τ→∞

(
1+

2log2 κ(τ,λi)

log2
κ(τ,λi)+ε+1
κ(τ,λi)+ε−1

) 1
τ = |λi|, (11)

which implies that for a sufficiently large τ ,

log2
(
1+

2log2 κ(τ,λi)

log2
κ(τ,λi)+ε+1
κ(τ,λi)+ε−1

)∼ log2 |λi|τ .

Since α > 1, τ log2 α−µR→∞ as τ →∞. Thus, it is possible
to select an Ni to satisfy (10).

For each state variable of the i-th subsystem in (9), we use
the same finite-level logarithmic quantizer with the following
parameters: N = Ni, δi = 1

κ(τ,λi)+ε and

ρi =
κ(τ,λi)+ ε−1
κ(τ,λi)+ ε +1

, i ∈ [1, . . . , f ].

Step 2: Algorithms on the quantizer and controller.
(1) Quantizer:

Divide times k ∈N into cycles [ jτ, . . . ,( j+1)τ−1], j ∈
N. At the start of a cycle with time k = jτ , the quantizer
receives the state z jτ from the observation of the system.
Choosing a scaling factor 4 to make the quantizer well-
defined on the scaled state, i..e. ‖ z jτ

4 ‖∞ ≤ 1, the scaled
state will be quantized as follows:

σ (i,h)
jτ := QNi(z

(i,h)
jτ /4),

∀h ∈ [1, . . . ,ni] and ∀i ∈ [1, . . . , f ], where z(i,h)
jτ is the

h−th component of z(i)
jτ in (9). The quantized signals

σ (i,h)
jτ will be sent to the controller in a specified

sequence.
(2) Controller: In view of (10), it can be verified that

f

∑
i=1

nid log2(2Ni−1)
R

e< n+
∑ f

i=1 ni log2(2Ni−1)
R

≤ τ ∑ f
i=1 ni log2(α|λi|)

R
−n(µ−1)

≤ τ− (µ−1), (12)

ThAIn5.3

4077



j j  !
1j  ! "

Control  Input

j  #! "

log (2 1)2 1
1

N
n

R

"$ %
& '& '

log (2 1)2 2
2

N
n

R

"$ %
& '
& '

Fig. 2. Time-sharing protocol within one cycle.

where the ceiling function d·e is given by

dxe= min{n ∈ Z : n≥ x}.
With the average data rate R, the transmission of σ (i,h)

jτ
can be completed within the transmission slots of du-
ration d log2(2Ni−1)

R e. The total time with respect to the
unstable mode λi would be nid log2(2Ni−1)

R e. In light of
(12) and neglecting the computation time, the quantized
signals could reach the controller before the time

jτ + τ−µ;

See Fig. 2 for the illustration. Assume that the channel
is noiseless. The control law within one cycle can be
given as




u jτ+τ−1
...

u jτ+τ−µ


 =−4C T (C C T )−1Jτ Q(

z jτ

4 ), (13)

where the controllability matrix is defined as

C := [SB,JSB, . . . ,Jµ−1SB].

and
u jτ+t = 0,∀t ∈ [0, . . . ,τ−µ−1]. (14)

The vector quantizer Q(·) is given by

Q(x) =




QN1(x
(1,1))

...
QN1(x

(1,n1))
...

QN f
(x( f ,1))
...

QN f
(x( f ,n f ))




,∀x ∈ Rn.

Step 3: Proof of the stability.
Inserting the control law in (13) and (14) into the trans-

formed system in (8), we obtain

z( j+1)τ = Jτ z jτ +
τ−1

∑
t=0

Jτ−1−t(SBu jτ+t +Sw jτ+t)

= Jτ z jτ +
τ−1

∑
t=τ−µ

Jτ−1−tSBu jτ+t +g jτ

= Jτ(z jτ −4σ jτ)+g jτ , (15)

where the uniformly bounded g jτ with respect to j is given
by g jτ = ∑τ−1

t=0 Jτ−1−tSw jτ+t and its upper bound is computed

as

‖g jτ‖∞ = ‖
τ−1

∑
t=0

Jτ−1−tSw jτ+t‖∞

≤ d‖S‖∞

τ−1

∑
t=0
‖J‖τ−1−t

∞ := D.

The vector σ jτ is compatibly stacked as

σ jτ := [σ (1,1)
jτ , . . . ,σ (1,n1)

jτ , . . . ,σ ( f ,1)
jτ , . . . ,σ ( f ,n f )

jτ ]T .

We now prove the stability of (15) using arguments of the
mathematical induction.

First, the initial state z0 is assumed to belong to the
bounded region

Ω0 = {z,‖z‖∞ ≤4}.
Then, if ‖z jτ‖∞ ∈Ω0, it is easy to verify that

|z(i,h)
jτ | ≤ ‖z(i)

jτ ‖∞ ≤ ‖z jτ‖∞ ≤4.

Thus, it is well-defined for the quantizer to quantize the
scaled state z(i,h)

jτ with scaling factor 4.
Consider subsystem of (15), we have the following results:

‖z(i)
( j+1)τ‖∞

= ‖Jτ
i [z(i)

jτ −4σ (i)
jτ ]+g(i)

jτ ‖∞

≤ ‖Jτ
i ‖∞‖z(i)

jτ −4σ (i)
jτ ‖∞ +D (16)

≤
{
‖Jτ

i ‖∞‖z(i)
jτ ‖∞ +D, if ‖z(i)

jτ /4‖∞ ≤ ρNi−1
i

‖Jτ
i ‖∞δi‖z(i)

jτ ‖∞ +D, if ρNi−1
i < ‖z(i)

jτ /4‖∞ ≤ 1

≤
{

κ(τ,λi)ρNi−1
i 4+D, if ‖z(i)

jτ /4‖∞ ≤ ρNi−1
i

κ(τ,λi)δi4+D, if ρNi−1
i < ‖z(i)

jτ /4‖∞ ≤ 1
.

Sufficient conditions for the existence of a 4 > 0 to make
‖z(i)

( j+1)τ‖∞ ≤4 for i = 1, . . . , f are

4≥max{ D

1−κ(τ,λi)ρNi−1
i

,
D

1−δiκ(τ,λi)
, i = 1, . . . , f}

(17)
and {

κ(τ,λi)ρNi−1
i < 1

δiκ(τ,λi) < 1
,∀i ∈ [1, . . . , f ]. (18)

With the choices of quantizer parameters δi = 1
κ(τ,λi)+ε and

ρi =
κ(τ,λi)+ ε−1
κ(τ,λi)+ ε +1

,

we have δiκ(τ,λi) < 1 and

κ(τ,λi)ρNi−1
i = 2log2 κ(τ,λi)+(Ni−1) log2 ρi < 1,

since by (10), it is easy to verify that

Ni > 1+
log2 κ(τ,λi)

log2 ρi
⇒ log2 κ(τ,λi)+(Ni−1) log2 ρi < 0.

Therefore, the selection of 4 to satisfy (17) implies that

‖z( j+1)τ‖∞ ≤4; See Fig. (3).
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Hence, z jτ will be uniformly bounded at all times j ∈ N.
Since τ < ∞, simple calculation shows that supk∈N ‖zk‖∞ < ∞
as well.

Finally, we remove the boundedness assumption of the
initial state z0. To this end, we consider the auxiliary system
whose stability property is equivalent to that of the system
(15). Choose a scaling factor

γ > max{ζ
√

n1|λ1|, . . . ,ζ√n f |λ f |} (19)

and define

y j =
{

γ− jτ z jτ , j < j0 < ∞,
γ− j0τ z jτ , j ≥ j0,

where j0 is to be determined later. At times before j0, the
quantizer keeps quiet and there is no feedback control signal
injected to the system. For the introduced state y j, j < j0, we
obtain

y j = γ− jτ z jτ = (
J
γ
) jτ z0 +(

J
γ
) jτ

jτ−1

∑
k=0

J−1−kSwk. (20)

Since J = diag{J1, . . . ,J f }, using the definition of the induced
matrix norm ‖ · ‖∞ [16] yields

‖J‖∞ = max
i∈[1,..., f ]

‖Ji‖∞.

Thus, there is a ν ∈ [1, . . . , f ] such that

ν := arg max
i∈[1,..., f ]

‖Ji‖∞.

Based on the assumption ‖wk‖∞ ≤ d, ∀i∈ [1, . . . , f ], we have

‖y(i)
j ‖∞ = ‖(Ji

γ
) jτ z(i)

0 +
1

γ jτ (
jτ−1

∑
k=0

J jτ−1−kSwk)(i)‖∞

≤ ‖Ji‖ jτ
∞

γ jτ ‖z0‖∞ +
d‖S‖∞

γ jτ

jτ−1

∑
k=0

‖J‖ jτ−1−k
∞

=
‖Ji‖ jτ

∞

γ jτ ‖z0‖∞ +
d‖S‖∞

γ jτ

jτ−1

∑
k=0

‖Jν‖ jτ−1−k
∞

≤ ‖z0‖∞(
ζ√ni|λi|

γ
) jτ

+
d‖S‖∞

γ jτ

jτ−1

∑
k=0

(ζ
√

nν |λν |) jτ−1−k

≤ ‖z0‖∞(
ζ√ni|λi|

γ
) jτ

+
d‖S‖∞

ζ√nν |λν |−1
(

ζ√nν |λν |
γ

) jτ → 0, (21)

as j → ∞ due to the choice of γ in (19). Consequently,
we can find a finite j0 such that y j0 eventually goes into
the bounded region Ω0. Once y j0 enters Ω0, the following
modified control law will be applied to the system:




u jτ+τ−1
...

u jτ+τ−µ


 =−4γ j0τC T (C C T )−1Jτ Q(

y j

4 ), (22)

and
u jτ+t = 0,∀t ∈ [0, . . . ,τ−µ−1] for j ≥ j0. (23)

The rest of proof is the same as the case of bounded initial
state z0 ∈Ω0.

The use of the same quantizer in Theorem 1 and a
slightly modified control law can asymptotically stabilize the
unstable system in (2) with wk = 0.

Corollary 1: When d = 0 in (2), asymptotic stabilization
can be achieved using a finite-level logarithmic quantizer in
(6) if and only if the average data rate exceeds H in (1).

Proof: It is obvious that only the sufficiency part needs
to be shown. Define a scaling factor

η := max{κ(τ,λi)ρNi−1
i ,κ(τ,λi)δi, i ∈ [1, . . . , f ]}, (24)

which is strictly less than one by (18), i.e., η < 1 and the
dynamic equation for 4 j,

{ 4 j+1 = η4 j;
40 > 0.

The control law within the cycle [ jτ, jτ +1, . . . ,( j+1)τ−1]
is modified in the following way:




u jτ+τ−1
...

u jτ+τ−µ


 =−4 jC

T (C C T )−1Jτ Q(
z jτ

4 j
) (25)

and
u jτ+t = 0,∀t ∈ [0, . . . ,τ−µ−1].

Assume that ‖z0‖∞ <40, replacing 4 in (16) with 4 j yields

‖z( j+1)τ‖∞ ≤ η4 j =4 j+1.

Thus, z jτ can be asymptotically driven to zero since

lim
j→∞

‖z jτ‖∞ ≤40 lim
j→∞

η j = 0.

Due to τ < ∞, it follows that

lim
k→∞

‖zk‖∞ = 0.

The removal of the boundedness assumption for the initial
state is the same as what we have done in Theorem 1.

Remark 2: From Corollary 1, it is clear that the conver-
gence rate is determined by 0 < η < 1. The larger the average
data rate R, the larger α could be chosen. By (10), it is more
likely to select a larger Ni. According to the definition of
η in (24), it may result in a smaller η and thus a faster
convergence rate.
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Remark 3: Although the results are derived for the state
feedback case, they can be extended to the output feedback
case as well. Consider the system of the form:

xk+1 = Axk +Buk +wk

yk = Cxk + vk,

where (A,B) and (C,A) are stabilizable and detectable pairs,
respectively. The measurement noise is assumed to be uni-
formly bounded, i.e., supk∈N ‖vk‖∞ < ∞. In this case, we can
first design an observer of the form

x̂k+1 = Ax̂k +Kk(yk−Cx̂k), x̂0 = x0

to estimate the state, where Kk is the observer gain such that
the observer error is stable. Using the triangular inequality

‖xk‖∞ ≤ ‖x̂k‖∞ +‖xk− x̂k‖∞,

and repeating the above proof on the fully observed x̂k
concludes that

sup
k∈N

‖x̂k‖∞ < ∞.

Since ‖xk− x̂k‖∞ is uniformly bounded, supk∈N ‖xk‖∞ < ∞ as
well.

IV. CONCLUSION

We addressed the optimality of the logarithmic quantizer
in the sense of achieving the minimum average data rate
to stabilize an unstable discrete-time linear system. In par-
ticular, a pair of the finite-level logarithmic quantizer and
controller were constructed to stabilize the system assuming
that the state is accessible (or could be estimated with an
observer) by the quantizer.

However, our consideration was restricted to a purely de-
terministic framework, where the boundedness was required
for the noise disturbance. One of the future directions is to
explore whether the optimality of the logarithmic quantizer
continues to work in a stochastic setting by attaching proba-
bility distributions to the initial state and noise disturbance.

V. APPENDIX: PROOF OF (11)

We give a sketch of its proof.
It is trivial for |λi| = 1. The focus will be on the strictly

unstable eigenvalue.
Note that |λi|> 1, then |λi|τ →∞ and κ(τ,λi)→∞ as τ →

∞. It is well known that limx→∞
(
1+ 1

x

)x = e, which implies

log2
κ(τ,λi)+ ε +1
κ(τ,λi)+ ε−1

∼ 2κ−1(τ,λi) log2 e,

if τ is sufficiently large. Substituting the above into (11)
yields

(
1+κ(τ,λi) lnκ(τ,λi)

)1/τ

=
(
1+ζ

√
niτni−1|λi|τ lnκ(τ,λi)

)1/τ

≥ |λi|(ζ√ni)1/τ(lnκ(τ,λi))1/τ(τ1/τ)ni−1

= |λi| as τ → ∞,

since τ goes to ∞, 1≤ (lnκ(τ,λi))1/τ and

(lnκ(τ,λi))1/τ = (ln(ζ
√

ni)+(ni−1) lnτ + τ ln |λi|)1/τ

≤ (τ2)1/τ → 1.

On the other hand,
(
1+κ(τ,λi) lnκ(τ,λi)

)1/τ

≤ (
2ζ
√

niτni−1|λi|τ lnκ(τ,λi)
)1/τ

≤ |λi|(2ζ
√

ni)1/τ(τ1/τ)ni+1

= |λi| as τ → ∞.

In view of the above inequities, we get the limit

lim
τ→∞

(
1+κ(τ,λi) lnκ(τ,λi)

)1/τ = |λi|.
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