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Abstract— Sensor quantization is one of the key factors that
deteriorate the tracking performance of positioning systems
with low-resolution optical encoders. This paper presents a reset
kinematic state estimator (RKSE) by merging an accelerometer
to improve the performance of such systems. The RKSE is
immune to both system perturbations and input disturbances
and offers more accurate state estimation than the standard
state estimator (SSE) without reset. The estimated state is fed
back for sinusoidal position tracking control. Experimental
results demonstrate the improved tracking accuracy and the
robustness with the use of RKSE.

I. INTRODUCTION

Optical encoders are typically integrated into a linear

motor (LM) system to detect the position of a moving

object. The encoder is based on evenly spaced divisions or

line counts on a glass or metal disk, which is simple in

construction and easy to manufacture. However, the interval

of the divisions adversely leads to the resolution limitation.

When the encoder output is used as the feedback signal in a

servo system, the encoder quantization noise will degrade the

achievable position accuracy and even cause self-sustained

oscillations (i.e., limit cycle) [1].

Quantization is inherently a nonlinear feature. In order to

alleviate the sensor quantization effect, numerical algorithms

that can be simply implemented on a digital signal processor

(DSP) have been reported. For instance, Kalman filters have

been employed to suppress the sensor quantization effects

under the assumption that quantization effects could be

modeled as a white Gaussian noise [2], [3]. However, in

motion control systems, signals tend to be more determin-

istic and exhibit stronger correlation over time. Thus, the

quantization noise behaves as highly colored noise, which

makes the Kalman filter impractical to employ. In such

circumstances, other approaches based on observer theory

have been extensively studied in [4] and [5], in which extra

useful information is extracted from the quantizer model and

then used to enhance the estimation. This paper also presents

a solution to this problem along this line by resetting the

estimated state based on the encoder output.

In the presence of plant uncertainty, the state estimator

becomes unreliable due to the nonlinear quantization noise.

A cost-effective way to improve the performance is to incor-

porate acceleration sensing. There are two main reasons for

this option. Firstly, the performance of linear accelerometers

have recently improved a lot while the cost and size are
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Fig. 1. Experimental setup of an LM positioning system.

both reduced significantly due to mass fabrication and micro-

electro-mechanical systems (MEMS) technology. Secondly,

the use of accelerometers in state estimation can yield a

kinematic model from the acceleration to the position, which

is independent of the plant parameters [6].

This paper considers an LM positioning system integrated

with a low-resolution linear encoder and augmented by an

accelerometer. The acceleration signals are used in two ways.

One is in the design of a disturbance observer (DOB), the

roles of which are for disturbance and friction compensation

and for overcoming payload variations. The other is in the

design of a reset kinematic state estimator (RKSE). It will

be shown that the kinematic state estimator is more or

less independent of the system model, thus, is not only

robust against plant parameters but also insensitive to the

input disturbance and friction force. Moreover, we attempt to

further decrease the estimation error by extracting additional

information from the quantized output, which is then used to

update the estimated state by a reset technique [7]. Finally,

we apply the RKSE to a feedback controller and verify its

effectiveness by experiments.

II. PLANT MODELING

The experimental setup for an LM positioning system (by

Baldor Electric Company) is shown in Fig. 1. The LM has

a 0.5 m travel range with a mounted optical encoder (by

Renishaw PLC), and a power amplifier. A simplified plant

model of the LM system is described in Fig. 2. The friction

model g(v) can be represented by

g(v) = kvfv + kcfsgn(v) + ksfsgn(v)e−|v/σ| + ∆f , (1)
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Fig. 2. A plant model of the LM positioning system.

TABLE I

PLANT MODEL PARAMETERS

Parameter Description Value Unit

kf voltage-to-force constant 50 N/V
ky position sensor gain 106 µm/m
M moving mass of linear motor stage 3.31 kg
∆m gain variation due to load mass [0 1)
∆ position encoder resolution 10 µm
kvf viscous friction coefficient 8.6 Ns/m
kcf Coulomb friction level 11.5 N
ksf static friction level 3.3 N
σ static friction velocity constant 0.023 m/s

where sgn(·) denotes the sign function, ∆f represents the

unmodeled friction force. Table I lists the LM physical

parameters. The friction model is also shown in Fig. 5 later.

The linear optical incremental encoder model is given in

Fig. 3, where n represents the encoder imperfections due to

optical, mechanical and electrical inaccuracy [8]. Typically,

n can be characterized by uniformly distributed noise over

[−δ,+δ] [9]. The uniform quantizer is defined by

yq = i · ∆, if yn ∈ [(i − 0.5)∆, (i + 0.5)∆] (2)

where i ∈ Z and the constant quantization step size ∆ de-

notes the encoder resolution. We assume that the quantization

range is infinite. Apparently, the linear encoder introduces a

bounded sensing noise (also referred to as quantization noise

in this paper) as follows:

ε(t) = y(t) − yq(t). (3)

The physical optical encoder in our setup has a resolution

of 1 µm. But we pass its output through the encoder model

in Fig. 3 performed in DSP to simulate a lower resolution

encoder with ∆ = 10 µm and δ = 1 µm. Hence, the

high-resolution encoder output is approximated as the actual

position y and used for monitoring only, while the artifical

low-resolution encoder output yq is used for control purpose.

The linear accelerometer (by Crossbow Inc., see Fig. 1)

offers a ±39.2 m/s2 measurement range with a DC−100 Hz

frequency bandwidth. Its sensing noise na is as small as with

RMS = 0.027 m/s2.

III. CONTROL STRUCTURE

The control task is to make the LM position output

follow a sinusoidal reference input under the constraints of

friction, load mass variations and the position quantization

noise. Fig. 4 shows the overall control structure, where the

controller is comprised of three components: the DOB, the
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Fig. 3. Model of a linear optical encoder, where n represents encoder

imperfections characterized by uniformly distributed noise, ∆ represents
encoder resolution.
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Fig. 4. Overall position control structure for the LM positioning system.

RKSE, and the state feedback controller based on the internal

model principle (IMP). Here, the DOB is firstly designed

to compensate for external disturbance, friction, and load

mass variations. The RKSE aims to suppress the quantization

noise and thus to obtain the accurate position and velocity

information, which is then used as the input to the state

feedback controller for position tracking.

IV. DISTURBANCE OBSERVER (DOB)

The control structure of the DOB based on acceleration

feedback is shown in Fig. 4. The reason for employing

acceleration instead of encoder feedback is to avoid intro-

ducing the quantization noise into the DOB loop. From Fig.

4, the sensed signals u and am go into the DOB and the

output signal ud from the low-pass filter Q(s) is fed back

to the control input. The dynamics from uc to the actual

acceleration a is then given by

a =
1 − ∆m

1 − ∆mkfQ
·

(

kf

M
· uc + kfQ · na

+
kfQ − 1

M
· (d + Ff)

)

. (4)

Ideally, given that Q(s) ≡ 1/kf , we have

a =
kf

M
· uc + na.

Thus, the external disturbance and friction force are perfectly

canceled, although the measurement noise is all-pass. This

again explains the reason for using the acceleration signal as

the input instead of the quantized position that contains much

a higher level of noise. Practically, Q(s) is selected to be a
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Fig. 5. Experimental friction model.

low-pass filter to balance the compensation of sensing noise

and disturbance. Since the nominal model from uc to a can

be treated as a constant gain, there is no specific requirement

for the order of Q filter. One simple choice of Q(s) can be

Q =
1

τs + kf
, (5)

where τ is a positive time constant chosen as 5 to 10 times

the servo bandwidth such that the filter can be approximated

as Q ≈ 1/kf within the frequency of interest. When the

Q filter is applied, the input-output transfer function of the

DOB is given by

a =
1 − ∆m

τs + kf (1 − ∆m)

(

(τs + kf)
kf

M
· uc

+kf · na −
τs

M
· (d + Ff)

)

. (6)

It is clear that the DOB (6) is stable provided that ∆m < 1.

Therefore, there exists an ω̄ > 0 such that

a =
kf

M
· uc + ω, |ω| < ω̄, (7)

where ω represents an equivalent residual disturbance that

is beyond the capability of the DOB to reject. Generally, ω
contains high frequency components, which can be further

filtered by the low-pass featured plant model.

Fig. 5 shows the effectiveness of the DOB on friction

compensation by experiments. Accordingly, the LM plant

model behaves as a second-order linear system given by

Pn(s) = y(s)
uc(s)

=
kf ky

M · 1
s2 , which is employed as the

nominal model for the design of the state feedback controller

in Section VI.

V. RESET KINEMATIC STATE ESTIMATOR (RKSE)

The acceleration and velocity are the two principal quanti-

ties which describe how the position changes. A purely kine-

matic model in the state space that relates the acceleration

a(t) to the position y(t) can be presented as follows:

ẋ(t) = Arx(t) + Bra(t), x(0) = x0

y(t) = Crx(t)
yq(t) = Crx(t) − ε(t)

am(t) = a(t) − na(t)

(8)

where x = [y v]T and

Ar =

[

0 ky

0 0

]

, Br =

[

0
1

]

, Cr = [1 0]. (9)

Note that the acceleration is treated as the input, and the

system matrices involves none of the plant parameters. Thus,

It is clear that the kinematic model has two advantages: it

is a simple and exact representation of the system states;

while it involves neither physical parameters nor external

disturbance, friction, and model uncertainties.

In order to achieve a smooth and accurate estimate of

the state using the measured acceleration and the quantized

position, the most common way is to use the standard state

estimator (SSE) as follows:

˙̂x(t) = Ar x̂(t) + Bram(t) + L
(

yq(t) − ŷ(t)
)

(10)

ŷ(t) = Crx̂(t), (11)

where x̂ and ŷ are, respectively, the estimate of the state

and controlled output, and L ∈ R
2×1 is the estimator gain.

Conventionally, L can be artificially selected by using the

pole placement method or optimally designed using the

Kalman filter technique. However, we find that more accurate

state estimate is possible if the quantization scheme is fully

employed.

In Fig. 3, suppose n is very small relative to ∆ and is

thus negligible, then we can extract some useful information

from the quantized output yq based on two observations: 1)

At the time when the quantized output transits from one step

to another, the actual position is measured exactly, which

locates at the mid-points of the two consecutive quantization

levels. 2) At the time when the quantizer holds its output

equivalent to a certain quantization step, the actual position

relative to the quantized output is always bounded by ∆/2.

This implies that any estimate of y at these times must

be bounded by ∆/2 relative to the instantaneous quantized

output. We note that these observations can be used to

improve the estimate of the state.

A. Reset Kinematic State Estimator

For the purpose of estimator design, we first assume that

the encoder imperfection n is ignored. Then, it is accounted

in simulation and experiment later to reveal its effect on the

state estimation.

Firstly, we introduce a constant vector H ∈ R
2×1, which

is given by

H = P−1CT
r (CrP

−1CT
r )−1, (12)

where P ∈ R
2×2 is a positive definite symmetric matrix,

which is the solution of the following Lyapunov function

(Ar − LCr)
T P + P (Ar − LCr) + I = 0, (13)

where the estimator gain L is designed such that Ar − LCr

is stable.

Next, we modify the SSE (10) to incorporate the exacted

information from the quantized output. Namely, we reset the

estimated state in two cases:
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1) At the reset time tk,1, which is defined as

tk,1 : yq(tk,1) �= yq(t
−
k,1), (14)

the estimated state is reset by

x̂(tk,1) = x̂(t−k,1) − H
(

ŷ(t−k,1)

−
1

2
(yq(tk,1) + yq(t

−
k,1)

)

. (15)

Then, the new estimated state leads to

ŷ(tk,1) =
1

2

(

yq(tk,1) + yq(t
−
k,1)

)

= y(tk,1). (16)

2) At the pre-specified reset time tk,2 defined by

tk,2 = kT, k ∈ Z
+ (17)

where T indicates a predefined reset interval (e.g.,

sampling period), the estimated state is then reset by

x̂(tk,2) = x̂(t−k,2) − H
(

ŷ(t−k,2) − yq(tk,2) −

Sat∆

2

(ŷ(t−k,2) − yq(tk,2))
)

, (18)

where Sat(·) is the saturation function with the satura-

tion level of ∆/2. We can see that the new estimated

state can lead to

ŷ(tk,2) =







yq(tk,2) + Sat∆

2

(ŷ(t−k,2) − yq(tk,2)),

if |ŷ(t−k,2) − yq(tk,2)| > ∆
2 ;

ŷ(t−k,2), otherwise.
(19)

Hence, it can be seen that over-estimation of ŷ is

prevented while the estimated output is unchanged if

over-estimation is not detected.

By incorporating the preceding reset schemes into the SSE

(10), we can obtain a hybrid system named by RKSE, which

has the form:

˙̂x(t) = Ar x̂(t) + Bru(t) + L
(

yq(t) − ŷ(t)
)

,

t /∈ {tk,1; tk,2}; (20)

x̂(tk,1) = x̂(t−k,1) − H
(

ŷ(t−k,1) −
1

2
(yq(tk,1) + yq(t

−
k,1)

)

,

tk,1 : yq(tk,1) �= yq(t
−
k,1); (21)

x̂(tk,2) = x̂(t−k,2) − H
(

ŷ(t−k,2) − yq(tk,2) −

Sat∆

2

(ŷ(t−k,2) − yq(tk,2))
)

, tk,2 = kT ; (22)

ŷ(t) = Crx̂(t). (23)

where x̂(tk,1) and x̂(tk,2) are the new estimated states at

time tk,1, tk,2 respectively.

B. Stability Analysis

In the following, we analyze the stability of the RKSE

(20)-(23). Define the estimator error

e(t) � x(t) − x̂(t). (24)

Subtracting the estimator (20)-(22) from the kinematic model

(8) yields the estimator error system:

ė(t) = Aee(t) + Brna(t) + Lε(t), e(0) = e0,

t /∈ {tk,1; tk,2}

e(tk,1) = De(t−k,1), (25)

e(tk,2) = De(t−k,2) + Hψ(tk,2),

where

Ae = Ar − LCr, D = I − HCr,

ψ(tk,2) = ε(tk,2) − Sat ∆

2

(ŷ(t−k,2) − yq(tk,2)).

We have the following result regarding to the stability of

system (25):

Lemma 1: The estimator error system (25) is uniformly

bounded-input bounded-state (UBIBS) stable. More specifi-

cally, for any α ≥ 0 and n̄a ≥ 0, there exists µ > 0 such

that

||e(0)|| ≤ α, |na(t)| ≤ n̄a, ∀t ≥ 0 ⇒ ||e(t)|| ≤ µ, ∀t ≥ 0.
(26)

Proof: The proof can be easily completed following [7].

C. Simulated Comparison of RKSE and SSE

We carry out simulation studies on the LM plant model to

show the effectiveness of the reset actions in state estimation.

The performance index compared is the root mean square

(RMS) of the sampled position estimation error ey , which

is defined by RMS(ey) =
√

∑N
k=1 e2

y(k)/N , where ey =

y − ŷ, and N is the number of the samples. The estimator

gain L for the RKSE and SSE is chosen as

L = [4πζfn 4π2f2
n/ky]

T , (27)

where ζ = 0.707, and fn is referred to as the estimator

bandwidth that is tuned iteratively to achieve the smallest

RMS(ey).
During the simulation, the LM is assumed to rest at an

initial position with y(0) = 23 µm. A simple PID controller

with actual position as feedback is designed such that the

position output y follows a sinusoidal reference command

yr = rSin(2πf0t) (28)

with r = 50 µm and f0=10 Hz. The linear encoder is with

∆ = 10 and δ = 1 and its output yq together with the

acceleration signals added by a white noise with a variance

of 7.3 m/s2 are then input to the RKSE and SSE, respectively.

The sampling length is set to be one cycle of the reference,

i.e., 0.1 s. The reset interval for RKSE is 50 µs. The RKSE

and SSE are run simultaneously.

Fig. 6 shows the achievable estimation errors versus es-

timator bandwidth. It is obvious that RKSE can achieve a

significant smaller least RMS(ey) than those by either the

SSE or the quantizer. We can also see that a lower bandwidth

(equivalent to smaller L) is allowed for RKSE to alleviate

the quantization noise. The corresponding time traces of the

position estimation are shown in Fig. 7, which indicates

that RKSE has a faster transient convergence to the actual
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Fig. 6. Position estimation error versus estimator bandwidth.
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position and a smaller maximal estimation error in steady

state. Since the RKSE relies on the edges of the quantized

position to reset the estimate, we also study the effect of the

encoder imperfections on the state estimation. Fortunately,

Fig. 8 shows that the RKSE still outperforms the SSE

even with δ = 40%∆, which is beyond the amount of the

imperfections in a real linear encoder (typically, δ = 10%∆).

VI. STATE FEEDBACK CONTROL USING IMP

The state feedback controller using the IMP [10] is

designed to make the LM follow a sinusoidal reference

command (28) with a known frequency. From Fig. 4, the

nominal plant model can be represented in state-space as

ẋ(t) = Ax(t) + Buc(t) + Γw(t)
y(t) = Cx(t)
x̂(t) = x(t) − e(t)

(29)
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Fig. 8. Position estimation error versus encoder imperfections.

where x = [y v]T and

A =

[

0 ky

0 0

]

, B =

[

0
kf

M

]

, Γ =

[

0
1

]

, C = [1 0].

(30)

Note that ω is the residual disturbance from the DOB as

shown in (7), and e is the estimation error (24).

For the purpose of control design, we first assume that the

full state feedback is available and w(t) is ignored, which,

however, are accounted in system analysis later. For the

reference input (28), we then have the differential equation

ÿr + ω2
0yr = 0. (31)

Define the tracking error as et = yr −y, and a new state and

control input as follows:

ξ � ẍ + ω2
0x, (32)

µ � üc + ω2
0uc, (33)

which relate the original plant state and control input to the

differential equation of the reference (31). Accordingly, an

overall system state equation can be described as

ż =





0 1 01×2

−w2
0 0 −C

02×1 02×1 A



 z +

[

02×1

B

]

µ

� Fz + Gµ, (34)

where z � [et ėt ξ]T . It is easy to verify that (F, G) is

controllable, which implies that the error system (34) can

have arbitrary dynamics by state feedback. Therefore, there

exists a control law

µ = −[k1 k2 k3 k4]z � −Kz, (35)

such that the error system (34) has arbitrary dynamics by

pole placement. Expressing the control law in terms of uc

and x gives that

uc = −
k2s + k1

s2 + ω2
0

· e − [k3 k4]x. (36)

The actual state is unavailable in practice, which should be

replaced by the estimated state from either the SSE or RKSE.
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acc and RKSE; Light gray lines: without acc and with SSE, dashed lines:
reference).

VII. EXPERIMENTAL RESULTS

Experiments are conducted on the LM positioning system

to demonstrate the advantages of the DOB and RKSE with

accelerometer and compare with the conventional DOB and

SSE without accelerometer. In the experiments, the same

state feedback controller is used in all cases. The state

feedback gain K in (35) is designed such that the bandwidth

of the overall closed-loop system is 20 Hz. For the control

scheme using accelerometer, the bandwidth of the Q filter

(5) in the DOB is chosen as 600 Hz, while the bandwidth of

RKSE is chosen to minimize the RMS of tracking error.

The linear encoder is again with ∆ = 10 and δ = 1.

For the control scheme without accelerometer, the DOB

is replaced by our previous design in [11] that uses the

quantized position signals as input. Further, the SSE uses the

control signals uc and quantized position as inputs and its

bandwidth is chosen to minimize the RMS of tracking error.

Interestingly, we find that the bandwidth of SSE that achieves

the smallest RMS of estimation error does not always lead to

the smallest RMS of tracking error. This is mainly because

the quantization noise in the case of sinusoidal position

tracking is nonstationary and harmonic.

The overall controller was discretized and implemented on

a real-time DSP system (dSPACE-DS1103, dSPACE GmbH,

Paderborn, Germany) with the sampling period 0.2 ms. Fig.

9 shows the position tracking result, which indicates that

the tracking error with acc and RKSE is much smaller than

that without acc and with SSE. Moreover, the middle plot

indicates that the control input with RKSE is smoother and

has less signal chattering than that with SSE. We believe that

the chattering is mainly caused by the quantization noise

that enters the DOB without using accelerometer. This is

TABLE II

EXPERIMENTAL ROBUST TRACKING PERFORMANCE

Performance with acc and RKSE without acc and with SSE

index w/o load w/ load w/o load w/ load

RMS(et) 6.00 5.62 8.13 7.25

max(|et|) 15.52 16.79 18.97 15.97

because the chattering occurs at the points where the rate

of change of the position is fast, which implies the corre-

sponding quantization noise features frequent zero crossings

at these points. Finally, we evaluated the performance with

a 1 kg payload. The results are shown in Tab. II, which

indicates that the controller with accelerometer and RKSE

has better robustness in terms of smaller difference between

with payload and no payload. This verifies the effectiveness

of the DOB on the compensation for gain variations.

VIII. CONCLUSIONS

This paper has attempted to enhance the tracking perfor-

mance of an LM control system by incorporating a cost-

effective accelerometer. The controller is composed of the

DOB, the RKSE, and the IMP-based feedback controller,

which are sequentially designed based on the fusion of

the acceleration and quantized position signals. Particularly,

we apply the reset technique to the RKSE to enhance

the suppression of the quantization noise. Simulated and

experimental results have demonstrated that the use of ac-

celerometer and RKSE can significantly enhance the position

tracking performance and maintain the robustness to system

gain variations caused by payload.
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