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Abstract— In this paper we study statistical properties of the
error covariance matrix of a Kalman filter, when it is subject to
random measurement losses. We introduce a sequence of tighter
upper bounds for the asymptotic expected error covariance
(EEC). This sequence starts with a given upper bound in
the literature and converges to the actual asymptotic EEC.
Although we have not yet shown the monotonic convergence
of this whole sequence, monotonic convergent subsequences are
identified. The feature of these subsequences is that a tighter
upper bound is guaranteed if more computation is allowed.
An iterative algorithm is provided for computing each of these
upper bounds. A byproduct of this paper is a more compact
proof for a known necessary condition on the measurement
arrival probability for the asymptotic EEC to be finite. A similar
analysis leads to a necessary condition on the measurement
arrival probability for the error covariance to have a finite
asymptotic variance.

I. INTRODUCTION

The low cost and high flexibility of networked systems

has encouraged its use in wide areas, including control

systems where information must be shared between sensors,

controllers, and actuators. Under the control systems’ per-

spective, this new technology has imposed new challenges,

concerning how to deal with the effects of quantisation,

delays and loss of packets, leading to the development of

a new networked control theory [1].

The study of state estimators when measurements are

subject to random delays and losses finds its application in

both control and signal processing. Most estimators are based

on the well-known Kalman filter [2]. In order to cope with

network induced effects, the standard Kalman filter paradigm

needs to undergo modifications. In this paper we consider

this problem in the case of random missing measurements.

In order to cope with missing measurements, the update

equation of the Kalman filter is dependent on whether a

measurement arrives or not. When a measurement is avail-

able, the filter performs the standard update equation. On the

other hand, if the measurement is missing, it must produce

an open loop estimation, which as pointed out in [3], can

be interpreted as the standard update equation when the

measurement noise is infinite. The knowledge of the expected

error covariance (EEC) of a state estimator is important to

assess the performance of the estimator. Besides that, a clear

understanding of how the system parameters and network

delivery rates affects the EEC, permits a better system design,

where the tradeoff between conflicting interests must be

evaluated.
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Studies on how to compute the EEC can be dated back at

least to [4], where upper and lower bounds for the EEC were

obtained by using a constant gain on the estimator. In [3],

the same upper bound was derived as the limiting value of

a recursive equation that computes a weighted average of

the next possible error covariances. A similar result which

allows partial observation losses was presented in [5]. In [6],

[7], it is showed that a system in which the sensor sends the

state estimate instead of the raw measurement will provide

a better error covariance. However, this scheme requires the

use of more complex sensors.

In this paper we study the limit (i.e., asymptotic) value of

the EEC for a discrete-time system, in which the arrival of a

measurement is a Bernoulli process with known probability.

As the exact calculation of the limit EEC requires very large

computational resources, we introduce a sequence of upper

bounds for this matrix. The properties of this sequence are

that its first element equals the upper bound stated in [3], and

the sequence converges to the limit EEC. We also identify

subsequences of this sequence which convergence to the limit

EEC monotonically. Each element of this sequence is the

solution of a non-linear equation, which does not involve

the previous elements of the sequence, but whose numerical

evaluation increases with the sequence index. We show that

recursively evaluating this equation leads monotonically to

its solution. Numerical experiments show that the first few

elements of this sequence provide upper bounds which are

much tighter than the bound stated in [3].

The authors of [3] also stated a condition on the measure-

ment arrival probability, which is necessary for the EEC to

have a finite limit value. We give an alternative derivation of

this result, which not only is more compact, but also permits

deriving a similar condition to study the limit value of the

variance of the error covariance. This is a relevant study since

in most applications it is desirable to have both finite mean

and finite asymptotic variance for the error covariance.

The rest of the paper is organized as follows. In Section II

we formulate the state estimation problem in the presence of

random measurements losses. In Section III we derive the

aforementioned sequence of upper bounds for the EEC, and

give a monotonically convergent subsequence. In Section IV

we provide an iterative algorithm for computing the elements

of this sequence. In Section V we study conditions on

the measurement arrival probability which are necessary

for the error covariance matrix to have finite asymptotic

mean and variance. In Section VI we present the numerical

experiments. Concluding remarks are reached in Section VII.

49th IEEE Conference on Decision and Control
December 15-17, 2010
Hilton Atlanta Hotel, Atlanta, GA, USA

978-1-4244-7746-3/10/$26.00 ©2010 IEEE 5881



II. PROBLEM STATEMENT

Consider the discrete-time linear system:
{

xt+1 = Axt + wt

yt = Cxt + vt
(1)

where x ∈ ℜn is the state having initial value x0 ∼ N(0, P0)
with P0 > 0, y ∈ ℜp is the measurement process, w ∼
N(0, Q) with Q ≥ 0 is the process noise and v ∼ N(0, R)
with R ≥ 0 is the measurement noise. The measurements

are sent to an estimator through a network subject to random

packet losses, but without delays. Let γt be a binary random

variable describing the arrival of a measurement at time t.
We define that γt = 1 when yt was received at the estimator

and γt = 0 otherwise. We also assume that γt is independent

of γs for t 6= s. The probability to receive a measurement is

given by

λ = P(γt = 1). (2)

Let Pt be the error covariance matrix (or error covariance

for short) of the state estimate at time t, which is updated

according to

Pt+1 =

{

Φ1(Pt) = APtA
′ +Q−AKtCPtA

′ , γt = 1
Φ0(Pt) = APtA

′ +Q , γt = 0
(3)

with Kt = PtC
′(CPtC

′ + R)−1. Let SN
m , m = 1, . . . , 2N

be the set of all possible binary sequences of length N .

We define the function φ(Pt, S
N
m) as the update of Pt

according to the sequence SN
m = {γt, γt+1, . . . , γt+N−1} of

measurement arrivals, i.e.,

Pt+N = φ(Pt, S
N
m) = Φγt+N−1 ◦Φγt+N−2 ◦ . . .Φγt

(Pt) (4)

where ◦ denotes the composition of functions (i.e. f ◦g(x) =
f(g(x))).

Using (4), with t = 0, we can compute the exact error

covariance matrix PN for a given known arrival sequence.

When this sequence is formed by random variables, PN

becomes a random matrix. In this case, we are interested

in computing the expected error covariance (EEC). To do

so, we average the error covariances for all possible arrival

sequences, according to their probabilities, i.e.,

P̄N = E{PN} =

2N
∑

m=1

φ(P0, S
N
m)P(SN

m), (5)

where P(SN
m) = λΛ(1 − λ)N−Λ is the probability of the

arrival sequence SN
m , with Λ =

∑N−1
p=0 γp being the number

of measurements received between instants 0 and N − 1. As

N tends to infinity, the EEC tends to its limit value

P̄ = lim
N→∞

P̄N . (6)

It was shown in [3] that, if the system (1) is unstable,

detectable, and the pair (A,Q1/2) is controllable, there exists

a constant 0 ≤ λ1 ≤ 1, called the critical measurement

arrival probability, such that P̄ < ∞ if and only if λ > λ1.

Moreover, the limit P̄ is independent of P0.

The direct computation of (6) is impractical, since its

complexity grows exponentially with N . To cope with this,

we introduce below a method for deriving a sequence of

upper bounds for P̄ , which converges to P̄ on the limit.

III. A SEQUENCE OF UPPER BOUNDS FOR THE EEC

We state below two Lemmas that will be used to prove

the main results of this section, namely, Theorems 2 and 1.

Lemma 1: The following statements hold for the functions

Φ0(·) and Φ1(·) defined in (3):

a) If Xi ≥ 0 and λi ≥ 0 for i = 1, 2, · · · , I and
∑I

i=1 λi = 1, then

Φ0

(

I
∑

i=1

λiXi

)

=

I
∑

i=1

λiΦ0(Xi) (7)

Φ1

(

I
∑

i=1

λiXi

)

≥

I
∑

i=1

λiΦ1(Xi) (8)

b) If Y ≥ X , then

Φ0(Y ) ≥ Φ0(X) (9)

Φ1(Y ) ≥ Φ1(X) (10)

Proof: The properties (7) and (9) are straightforward

because Φ0(X) is affine in X . The proof of (8) follows

from the concavity of Φ1(X); see [3, Lemma 1e]. The proof

of (10) follows from [3, Lemma 1c].

Lemma 2: Consider the operator

gN (X) =

2N
∑

m=1

φ(X,SN
m)P(SN

m). (11)

Then, for any N,M ∈ N and X ≥ 0,

gN+M (X) ≤ gN (gM (X)). (12)

Also, if Y ≥ X , then

gN (Y ) ≥ gN (X). (13)

Proof: From (11), we have

gN (gM (X)) =

=
2N
∑

n=1

P(SN
n )φ









2M
∑

m=1

P(SM
m )φ(X,SM

m )



 , SN
n



 . (14)

Now, φ(·, SN
n ) is the composition of a sequence of functions,

each one being either Φ0 or Φ1. Let Φi be the first term

of that sequence, i.e., φ(·, SN
n ) = ψ ◦ Φi(X). Then, using

Lemma 1-a) and interpreting P(SM
m ) as λi, (14) becomes

gN (gM (X)) ≥

2N
∑

n=1

P(SN
n )ψ





2M
∑

m=1

P(SM
m )Φi ◦ φ(X,S

M
m )



 .

Repeating the same operation for each element in the re-

maining sequence ψ, we obtain

gN (gM (X)) ≥

≥
2N
∑

n=1

P(SN
n )

2M
∑

m=1

P(SM
m )φ

(

φ(X,SM
m ), SN

n

)

= gN+M (X).
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To show (13), notice that gN(X) is a weighted sum of

terms, each of which is a composition sequence of Φ0 and

Φ1. Then, te result follows from Lemma 1-b).

We now define

P̂N := sol
X

{X = gN (X)} (15)

i.e., P̂N = gN (P̂N ). In particular, for N = 1, we have

P̂1 = AP̂1A
′ +Q− λAP̂1C

′(CP̂1C
′ +R)−1CP̂1A

′ (16)

which is the upper bound for the EEC stated in [3]. It is clear

from (5), (6) and (11) that P̂N → P̄ as N → ∞. The next

theorem formally states this fact, as well as the existence of

sub-sequences of P̂N whose convergence to P̄ is monotonic.

Theorem 1: If λ1 < λ ≤ 1 (where λ1 is the critical prob-

ability mentioned earlier), and the condition of Theorem 2

in the next section holds, then

lim
N→∞

P̂N = P̄ , (17)

and, for any c,N ∈ N

P̄ ≤ P̂cN ≤ P̂N ≤ P̂1. (18)

Proof: From Lemma 2, we have that

gcN(X) ≤ gN ◦ g(c−1)N(X) ≤ ... gcN(X) (19)

where the superscript c denotes the composition operation c
times. Now, from (13) and (19), it can be verified that

gkcN(X) ≤ gckN (X). (20)

Using Theorem 2 in the next section, limk→∞ gkcN(X) and

limk→∞ gkN (X) converge for any X > 0. Using this, (20)

and (15), we have

P̂cN = lim
k→∞

gkcN (X) ≤ lim
k→∞

gckN (X) = P̂N . (21)

While Theorem 1 states that the convergence of the

sequence P̂N to P̄ is only monotonic on sub-sequences,

numerical experiments suggest that the whole sequence P̂N

converges monotonically to P̄ . Hence, we conjecture that

this holds in general. However, we were not able to prove

this property yet.

IV. COMPUTING THE EEC BOUNDS

In this section we study the numerical computation of the

EEC bounds (15). For a given N , P̂N can be recursively

computed as follows:

P̂
(k+1)
N =

2N
∑

m=1

φ(P̂
(k)
N , SN

m)P(SN
m). (22)

It is clear that, when the recursions (22) converge to an

equilibrium point, this must be a solution (15), i.e., P̂N =

limk→∞ P
(k)
N . Theorem 2 below states the condition under

which the recursions (22) are guaranteed to converge to P̂N ,

for any initial condition P̂
(1)
N . Also, it follows from (13) that

this convergence is monotonic.

Theorem 2: For any matrix M and X ≥ 0, let

Φ̃0,M (X) = Φ0(X)

Φ̃1,M (X) = (A+MC)X(A+MC)′ +Q+MRM ′

Also, for a sequence m = M1, · · · ,MN of matrices, and

a sequence of binary coefficients SN = γ1, · · · , γN , we

define φ̃(X,SN ,m) = Φ̃γN ,MN
◦ · · ·◦ Φ̃γ1,M1(X), and for a

collection M = {mm : m = 1, ..., 2N} of matrix sequences,

we define

g̃N(X,M) =
2N
∑

m=1

φ̃(X,SN
m ,mm)P(SN

m). (23)

Then, if there exists X ≥ 0 and a collection of matrix

sequences M such that X ≤ g̃N (X,M), then the recur-

sions (22) are guaranteed to converge to P̂N , for any initial

condition P̂
(1)
N

Proof: [Sketch version] The result was shown for the

case N = 1 in [3, Theorem 1]. The proof for the general

case follows the same argument. Due to space limitations,

we only provide here a sketch of it.

Let V (k+1) = gN (V (k)), with V (1) = 0. From (13), it

follows that the sequence 0 = V (1) ≤ V (2) ≤ V (3) · · · is

increasing. Also, following the argument of Lemma 4 in [3],

it can be shown that this sequence is bounded, so it must

converge to a limit value P ⋆, i.e.,

lim
k→∞

V (k) = P ⋆.

Now, it is straightforward to verify that, Φ̃1,MX
(X) =

Φ1(X), where MX = −AXC′(CXC′ + R)−1. Using this,

it follows that g̃N(X,MX) = gN (X), if MX denotes the

“right” collection of matrix sequences. Also, from Lemma 1-

b) in [3], Φ̃1,MX
(X) ≤ Φ̃1,M (X) for a general M , and

therefore, it can be verified that, for a general collection of

matrix sequences M,

g̃N (X,MX) ≤ g̃N (X,M). (24)

For a given M , Φ̃1,M (X) is an affine function of X , hence

so is g̃N (X,M) for a given M. Let

g̃N(X,M) = l̃N (X,M) + c̃N (M),

where l̃N (X,M) is linear in X and c̃N (M) is a constant

term depending on M. Also, let W (k+1) = gN(W k), with

W (1) ≥ P ⋆. From (24), we have that

W (k+1) − P ⋆ = gN (W (k))− gN (P ⋆)

= g̃N (W (k),MW (k))− g̃N(P ⋆,MP⋆)

≤ g̃N (W (k),MP⋆)− g̃N (P ⋆,MP⋆)

= l̃N (W (k) − P ⋆,MP⋆). (25)

Since gN(P ⋆) = P ⋆, it follows from (13) that

W (k) ≥ P ⋆, for allk. (26)

Also, using the argument of Lemma 3 in [3], it can be shown

that limk→∞ l̃kN(Y,MP⋆) = 0, whenever Y > 0. Hence,

from (26) and (25), we have that

lim
k→∞

W (k) = P ⋆.
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Now, for any P (1) ≥ 0, put W (1) = P (1) + P ⋆.

From (13), it follows that V (k) ≤ P (k) ≤ W (k), for all

k. We have that limk→∞ V (k) = P ⋆, and since W (1) ≥ P ⋆,

limk→∞W (k) = P ⋆. Hence, limk→∞ P (k) = P ⋆ = P̂N .

V. REQUIREMENTS ON THE MEASUREMENT ARRIVAL

PROBABILITY

In this section we study the requirements on the mea-

surement arrival probability λ, so that the limit probability

distribution of the error covariance matrix PN has finite mean

and finite variance. In the case of finite mean, a lower bound

on the required value of λ was derived in [3]. We propose an

alternative proof of this result, which is significantly more

compact, and its argument can be easily modified to derive

a similar bound for the value of λ required to have a finite

variance.

A. For the error covariance matrix to have finite mean

It was shown in [3] that a necessary condition for the EEC

P̄N in (5) to have a finite limit value, is that the measurement

arrival probability λ is smaller than a given constant λ1. In

this section we provide an alternative proof of that result. For

simplicity, we assume that the matrix A is diagonalizable and

unstable.

Theorem 3: If A is diagonalizable and unstable and λ <
λ1, then limN→∞ P̄N = ∞, where

λ1 = 1−
1

max |eig(A)|2
(27)

and max(|eig(A)|) denotes the absolute value of the largest

eigenvalue of A.

Proof: In order for the summation in (5) to be finite,

each term must be finite. The term corresponding to all

measurements being lost, is given by

φ(P0, S
N
1 )P(SN

1 ) = (1−λ)N



ANP0A
′N +

N−1
∑

j=0

AjQA′j



 .

Let σ0 > 0 denote the smallest eigenvalue of P0. Since

P0 > 0 and Q ≥ 0, it follows that

φ(P0, S
N
1 )P(SN

1 ) ≥ σ0(1− λ)N
(

ANA′N
)

. (28)

Now, since A is diagonalizable, we can write A =MDM−1,

with D being a diagonal matrix containing the eigenvalues

of A, and M being an invertible matrix containing the

corresponding eigenvectors as columns. Then, we have that

ANA′N = MDNM−1M ′−1DNM ′

≥ min |eig(M−1M ′−1)|MD2NM ′

=
1

max |eig(M ′M)|
MD2NM ′

=
1

‖M‖
2MD2NM ′, (29)

with ‖M‖ being defined as the largest singular value of M .

From (28) and (29), it follows that the largest eigenvalue

σmax of φ(P0, S
N
1 )P(SN

1 ) satisfies

σmax ≥
σ0(1− λ)N

‖M‖2
max |eig(MD2NM ′)|

=
σ0(1− λ)N

‖M‖
2

∥

∥MDN
∥

∥

2

≥
σ0(1− λ)N

‖M‖
2
‖M−1‖

2

∥

∥DN
∥

∥

2

=
σ0(1− λ)N

‖M‖2 ‖M−1‖2
max |eig(A)|2N .

Now, as N → ∞, we have that

(1 − λ)max |eig(A)|2 < 1 (30)

is a condition which is necessary for M
(2)
N to be finite, and

the result follows.

B. For the error covariance matrix to have finite variance

Our study so far concerned the expected value of the error

covariance matrix. The importance of this expected value

is relative to its associated variance, as a big variance will

render the knowledge of the expected value meaningless.

Motivated by this, we parallel Section V-A to state a neces-

sary condition on λ so that the sum of the variances of all the

entries of the error covariance matrix has finite asymptotic

value. Notice that this condition turns out to be stronger than

the one stated in Theorem 3.

Let M
(2)
N denote the sum of the second moments of all

the entries of the error covariance, i.e.,

M
(2)
N , E{trace(PNP

′

N )}. (31)

The next theorem states a condition on λ which is necessary

for M
(2)
N to have a finite limit value.

Theorem 4: If A is diagonalizable and unstable and λ <

λ2, then limN→∞M
(2)
N = ∞, where

λ2 = 1−
1

max |eig(A)|4
. (32)

Proof: The proof is similar to the one in Theorem 3,

and uses the same notation. From (31), we have that

M
(2)
N =

2N
∑

m=1

P(SN
m)trace

(

φ(P0, S
N
m)φ′(P0, S

N
m)
)

≥ (1− λ)N trace
(

φ(P0, S
N
1 )φ′(P0, S

N
1 )
)

≥ σ0(1 − λ)N trace
(

ANA′NANA′N
)

≥ σ0(1 − λ)N max |eig(ANA′NANA′N )|

= σ0(1 − λ)N max |eig(ANA′N )|2

≥
σ0(1− λ)N

‖M‖
4
‖M−1‖

4 max |eig(A)|4N ,

where the last step follows from the argument in the proof

of Theorem 3. Taking the limit when N → ∞, we have that

(1 − λ)max |eig(A)|4 < 1 (33)
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Fig. 1. Convergence of trace(P̂N ) to trace(P̄ ) in the system (35).

is a condition which is necessary for M
(2)
N to be finite, and

the result follows.

It is easy to see that λ2 ≥ λ1.

Now, let σ2
N denote the sum of the variances of all the

entries of the error covariance matrix, i.e.,

σ2
N , E

{

trace
(

(PN − P̄N )(PN − P̄N )′
)}

. (34)

It is straightforward to verify that

σ2
N =M

(2)
N − trace(P̄N P̄

′

N ).

Therefore, if λ < λ2, then either the mean P̄N of the EC,

or its variance σ2
N or both will be infinite. In any of these

cases, the knowledge of the EEC P̄N will be meaningless.

VI. NUMERICAL EXPERIMENTS

In this section we present some numerical experiments

illustrating the results on the paper. To this end, we use the

same system models used in [3].

A. Convergence of the sequence P̂N towards P̄

In the first experiment we study how the elements of the

sequence of EEC bounds P̂N , approach the limit EEC value

P̄ . We compute each element of the sequence using (22).

To compute the limit EEC value, we average the correlation

martices of 100 × 103 systems, after reaching their steady

state. We also compare the upper bounds P̂N , with the first

element P̂1, which is the bound considered in [3].

In Figure 1 we show the trace of the EEC bounds, as a

function of N , for the system given by

A = −1.25 C = 1 R = 2.5 Q = 1. (35)

A particular property of this system is that C is invertible.

Its critical arrival probability is λ1 = 0.36, so we choose

λ = 0.4 to guarantee a finite EEC on the limit. We see that

the convergence of trace(P̂N ) to trace(P̄ ) is monotonic, and

that the improvement of P̂20 over P̂1 is 12%.

Figure 2 shows the same experiment for the following

system, which has a single unstable eigenvalue

A =





1.25 1 0
0 0.9 7
0 0 0.6



 C′ =
[

1 0 2
]

R = 2.5 Q = 20I.

(36)

5 10 15 20
0.5

1

1.5

2
x 10

6

N

 

 

trace(P̂N)
trace(P̄ )

Fig. 2. Convergence of trace(P̂N ) to trace(P̄ ) in the system (36).
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trace(P̂N)
trace(P̄ )

Fig. 3. Convergence of trace(P̂N ) to trace(P̄ ) in the system (37).

The critical arrival probability for this system is also λ1 =
0.36, and again we choose λ = 0.4. In this example, the

improvement of P̂20 over P̂1 is 73%.

In the last example, we study the system

A =

[

1.25 0
1 1.1

]

C′ =
[

1 1
]

R = 2.5 Q = 20I
(37)

which has two unstable eigenvalues. In this case, the value of

λ1 is not known, and we only know its inferior λ1 = 0.36
and superior λ1 = 0.48 bounds, and to guarantee a finite

EEC on the limit we choose λ = 0.5. The convergence of

trace(P̂N ) is shown in Figure 3, showing an improvement

of 68%, from P̂20 to P̂1. In this example we also observe

that trace(P̂20) is a good approximation of trace(P̄ ).
We now study how the measurement arrival probability

λ affects the convergence rate of the sequence trace(P̂N ).
We consider the system described by (36). Figure 4 shows

the evolution of trace(P̂N )/trace(P̂1) for different values

of λ. We normalized the results (by dividing by trace(P̂1))
in order to facilitate the comparisons. Also, for each value

of λ, we show in the legend of this figure the value a =
(1 − λ)max(|eig(A)|)2, since a < 1 is a necessary criteria

for the EEC to have a finite limit value (see (30)). We see

that the convergence rate of trace(P̂N ) increases with an

increase of λ.
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B. Convergence of trace(P̂
(k)
N ) towards trace(P̂N )

In Section IV we stated an iterative formula which pro-

duces a sequence of matrices P̂
(k)
N which converges to P̂N as

k → ∞, and we showed that this convergence is monotonic.

We illustrate this property in Figure 5, where we consider

the system described by (36), and we compute P̂12 using

different initial values P̂
(1)
12 .

C. Limit value of second order statistics

We now illustrate the result presented in Theorem 4.

Using (32), we find that if the meassure arrival probability λ
is smaller that λ2 = 0.59, then either σ2

N , as defined by (34),

or the EEC P̄N , or both have infinite limit values. We use the

system described by (36), for which λ1 = 0.36. In Figure 6

we show the evolution of σ2
N , for different values of λ. Using

λ = 0.4, which is enough to make the EEC finite, we see

that σ2
N divergence very quickly. For λ = 0.58, i.e., slightly

below λ2, the variance also diverges, but at a slower rate.

Finally, for λ = 0.6, i.e., slightly above λ2, σ2
N converges

to a finite value, indicating that in this example the value

λ > λ2 is not only a necessary condition, but also an accurate

sufficient condition for σ2
N to have a finite value in the limit.

VII. CONCLUSION

In this paper we have studied some statistical properties

of the error covariance matrix of the state estimator of a
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Fig. 6. Limit value of σ2
N

for different measurement arrival probabilities.

dynamic system whose measurements are subject to random

losses. We have proposed a sequence of upper bounds for

the EEC which converges to the true EEC asymptotically.

While we were not able to show the monotonic convergence

of this sequence, we have provided sub-sequences for which

this property holds. We have given a recursive algorithm

to compute each term of this sequence, which converges

monotonically to the solution. Experimental results show that

the proposed upper bounds are significantly tighter than those

reported in previous works.

Additionally, we have derived conditions on the measure-

ment arrival probability which are necessary for the error

covariance matrix to have finite mean and variance asymptot-

ically. In the case of the mean, our derivation is an alternative

proof of a similar condition which was reported previously.

However, the argument of this proof is considerably more

compact, and the same argument permits studying a similar

necessary condition for the convergence of the variance.
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