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Abstract— Economic dispatch problem (EDP) is an important
optimization problem in power systems, aiming at minimizing
the aggregate cost of a group of power generators, which
cooperatively generate a given amount of power within their
individual capacity constraints. In this paper, we present an
average consensus based bisection approach for the EDP with
quadratic cost functions, which is fully distributed and espe-
cially desirable in a smart grid scenario. Under the connected
topology condition, we show that the proposed iterative solution
converges to the globally optimal solution of EDP, without the
need for a central decision maker or a leader node. Finally,
numerical simulation based on the IEEE 14-bus system is given
to show the performance of the approach.

I. INTRODUCTION

Economic dispatch problem (EDP) has attracted broad
attention in the electric power industry for optimal oper-
ation and planning of energy resources, which is usually
formulated as an optimization problem [1]. The classic EDP
mainly concerns the economic dispatch of fossil-fired power
generation systems to achieve a minimum operational cost
within their capacity limits. Many centralized solutions have
been proposed, e.g., the conventional Lagrangian Relaxation
approach and the first order gradient method [1], direct
search method [2], parallel micro genetic algorithm (PMGA)
for ramp-rate constrained EDP [3].

Distributed algorithms for control, estimation and opti-
mization have been intensively investigated for large-scale
systems [4]. A smart grid with distributed renewable power
generation is a typical such large-scale system [5]. Inspired
by some natural phenomena, such as bird flocking and fish
schooling, multi-agent systems (MAS) problems, including
average consensus [6], finite-time consensus [7], biological
cell coupling [8], leader-following and formation [9], have
been heavily investigated [10], where the agents (or nodes)
can collectively achieve a common global goal without
global information and a central controller. Compared with
centralized algorithms, distributed algorithms have many ad-
vantages, including enhanced robustness, reduction in com-
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munication between agents, and uniform power consumption
for each agent.

A lot of distributed algorithms for solving EDP in a smart
grid scenario have been proposed so far. In [11] and [12], the
authors propose a consensus based decentralized algorithm,
where a master node aware of the total power demand
is required. In [13], the authors present a ratio consensus
based decentralized algorithm to find the optimal incremental
cost, under the assumption that each node (i.e., generator)
knows the parameters of all the nodes. In [14], an algorithm
based on a consensus + innovation framework is proposed
to find the optimal incremental cost. In [15], the authors
propose a consensus based approach, which can be treated
as a distributed implementation of standard Lambda-Iteration
method, without requiring other nodes’ parameters.

In this paper a distributed bisection algorithm based on
average consensus is proposed. Compared with the existing
work, our algorithm has the following features. Firstly, the
algorithm proposed in our paper requires no prior knowledge
of the systems, while in [15], several global parameters need
to be known in order to design an appropriate learning gain
for the convergence purpose. And in [13], each node needs to
know every other nodes parameters, which implies that the
computation and communication package size will explode
as the network size grows. Secondly, in this paper, we assume
that a bus in the power grid with pure load, pure generation,
or both only knows its local demand, which is often the
case with some equipped devices on the bus. However, in
[15], every bus with a generator is required to be aware of
the total demand that may not be known by the equipped
measurement devices. In particular, since the power demand
is spatially distributed over the entire system, i.e., most loads
are located at the buses not having generators, it is unrealistic
for a generation bus to access the power demand of other
buses, in a distributed fashion. Thirdly, no master or leader
node aware of the total power demand is needed in our
algorithm, whereas such a node is required in [11], [12]
and [13]. Furthermore, in our algorithm, none of the nodes
knows the total demand, yet the demand and supply balance
is achieved by the algorithm.

The rest of the paper is organized as follows. In Section
II, preliminaries on graph theory and average consensus are
introduced, and the problem formulation and a centralized
solution are given. In Section III, we present our distributed
algorithms for the EDP and give the stopping criteria for
practical use. Illustrative numerical simulation based on the
IEEE 14-bus system is given in Section IV. We conclude our
paper in Section V.
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II. PRELIMINARIES AND PROBLEM FORMULATION

In this section, we first present some basic concepts and
results in graph theory and average consensus. Then we
formulate the EDP as a quadratic optimization problem with
both equality and inequality constraints, and introduce a
centralized solution.

A. Graph Theory

An undirected graph G = (V,E) consists of a non-empty
finite set of nodes V = {1, 2, . . . , n} and a finite set of
unordered paths E ⊆ V × V . For node i ∈ V , its neighbor
set is denoted by Ni = {j ∈ V − {i} : (j, i) ∈ E} , i.e.,
node i can bidirectionally communicate with its neighbors.
The degree of node i is the cardinality of Ni, denoted by di =
|Ni|. For all i ∈ V and j ∈ Ni, (i, j) ∈ E implies (j, i) ∈ E.
An undirected graph is connected if there is a path from any
node to any other node. It’s reasonable to assume that each
node can communicate with itself, i.e., ∀i ∈ V, (i, i) ∈ E.
The diameter of a connected undirected graph G is defined as
the length of the longest among the shortest paths connecting
any two nodes in G. We also say that a non-negative matrix
Q ∈ Rn×n is associated with graph G, where [Q]ij > 0 if
and only if (j, i) ∈ E.

B. Average Consensus

We consider a MAS consisting of n autonomous agents
(nodes), labeled 1 through n. Each agent has the ability of
computation and local communication, where the communi-
cation network can be represented by an undirected graph
G = (V,E), as described in section II-A. The state of agent
i is denoted by πi ∈ R, and the aggregate state is denoted
by π = [π1, π2, ..., πn]

T ∈ Rn.
Let us consider the following linear iteration, with the

iteration index denoted by t = 0, 1, 2, ... and initial value
π(0):

π(t+ 1) = Qπ(t), (1)

where matrix Q ∈ Rn×n is non-negative and associated with
graph G. Iteration (1) can be implemented in a distributed
form, i.e.,

πi(t+ 1) = qiiπi(t) +
∑
j∈Ni

qijπj(t), ∀i = 1, . . . , n, (2)

where qij is the entry in the ith row and the jth column of Q.
The iterative algorithm (1) is said to solve the consensus

problem asymptotically if for any initial state π(0), there
exists π∗ ∈ R, such that limt→∞ πi(t) = π∗, ∀i =

1, 2, ..., n. Moreover, if π∗ =
(∑n

j=1 πj(0)
)
/n, the iter-

ative algorithm (1) is said to solve the average consensus
problem asymptotically. We now give a well-known theorem
on average consensus with regard to connected graphs,
and give a local determination of Q.

Theorem 1: [16] Given a connected graph G with self-
loops and a associated non-negative matrix Q, if Q is (row)
stochastic (i.e., qij > 0,

∑n
j=1 qij = 1, ∀i), then Q solves

consensus problem, and

lim
t→∞

Qt = 1ηT ,

where 1 = [1, 1, . . . , 1]T , and η = [η1, η2, . . . , ηn]
T is the

left eigenvector for the eigenvalue 1 of Q, with the properties
ηi > 0 for all i and 1T η = 1. In addition, if Q is doubly
stochastic (i.e., both Q and QT are stochastic), then the
iterative algorithm (1) solves the average consensus problem,
i.e., η = 1/n.

On an undirected graph G, to solve the average consensus
problem, a doubly stochastic matrix Q associated with graph
G can be determined locally by:

qij =



1

max (di, dj) + 1
if j ∈ Ni,

1−
∑
j∈Ni

qij if i = j,

0 otherwise.

(3)

C. Problem Formulation

Now we formulate the EDP into a quadratic optimization
problem. We only consider active power in this paper and
ignore power transmission loss and transmission capacity
constraints, which is valid for many power networks. Each
generator is associated with a local variable xi > 0, i.e., the
(active) power generated by generator i, and a quadratic cost
function Ci(xi) given by:

Ci(xi) = aix
2
i + bixi + ci, (4)

where ai > 0, bi > 0 and ci > 0 are cost parameters. For
simplicity of expression in the following sections, we use an
equivalent function by changing a constant term:

Ci(xi) =
(xi − αi)

2

2βi
+ γi (5)

with constants βi > 0, αi 6 0, and any γi.
Denote by m the total number of buses in the grid and the

number of buses with power generators by n. In general, each
bus can be associated with a generator only, loads only, or
both. Since not all the buses are attached to power generators,
we have m > n. Denoting by Pj the power demand (load)
of bus j, the aggregate power demand P ? is given by

P ? =

m∑
j=1

Pj ,

where Pj = 0 if bus j is a pure generation bus.
Denoting by xi and x̄i the lower and upper bounds of xi,

we have
0 6 xi 6 xi 6 x̄i.

It is obvious that the EDP is feasible (i.e., the optimal
solution above holds) if and only if

n∑
i=1

xi 6 P ? 6
n∑

i=1

x̄i. (6)

In the framework assumed above, the EDP can be formu-
lated as follows :

min
n∑

i=1

Ci(xi), (7)
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s.t. xi 6 xi 6 x̄i, ∀i = 1, 2, . . . , n, (8)
n∑

i=1

xi = P ?. (9)

Throughout the paper, we assume that communication
networks are imposed on the power grid so that each bus
corresponds to a node in the communication network. Here
we set up two communication networks, denoted by Gm =
(Vm, Em) and Gn = (Vn, En), respectively. The node set
Vm consists of all the m buses in the grid, while Vn consists
of all the n generation buses, i.e., Vm = {1, 2, ..., n, n +
1, ...,m} and Vn = {1, 2, ..., n}. The edge sets of Gm and
Gn are denoted by Em and En, respectively. To make our
distributed algorithm meaningful, we also assume that Gm

and Gn are sparse graphs in the sense that

max
16i6m

dm,i � m, max
16i6n

dn,i � n.

D. Centralized Solution to EDP

Since the EDP has been formulated as a quadratic op-
timization problem, its centralized solution can be easily
achieved by the Lagrange dual method [17].

Denote the incremental cost of generator i by

fi(xi) =
dCi(xi)

dxi
=

xi − αi

βi
, ∀i ∈ Vn,

which is strictly increasing with respect to xi since βi > 0.
The Lagrange dual problem is given by

max

n∑
i=1

C?
i (λ) + λP ?, (10)

where

C?
i (λ) =


Ci(xi)− λxi, λ < fi(xi),

− λ(αi +
λβi

2
), fi(xi) 6 λ < fi(x̄i),

Ci(x̄i)− λx̄i, fi(x̄i) 6 λ,

(11)

and λ ∈ R is the Lagrange multiplier.
From the above, we have

gi(λ) =
dC?

i (λ)

dλ
=


− xi, λ < fi(xi),

− αi − λβi, fi(xi) 6 λ < fi(x̄i),

− x̄i, fi(x̄i) 6 λ.
(12)

If the primal solution is feasible, the Lagrange dual problem
(10) has a unique optimal solution λ∗, satisfying

P ? +

n∑
i=1

gi(λ
∗) = 0.

Accordingly, the primal EDP has a unique optimal solution
given by x∗

i = −gi(λ
∗), i = 1, 2, . . . , n, i,e.,

x∗
i =


xi, λ∗ < fi(xi),

αi + λ∗βi, fi(xi) 6 λ∗ < fi(x̄i),

x̄i, fi(x̄i) 6 λ∗.

(13)

In the special case where the inequality constraints (8)
are void, i.e., if we consider the following unconstrained
problem:

min

n∑
i=1

Ci(xi),

s.t.
n∑

i=1

xi = P ?.

(14)

That is, we take xi = 0 and x̄i = ∞ in the above.
Defining

hi(λ) = −αi − λβi, ∀i ∈ Vn, (15)

it is easily verified that the optimal Lagrange multiplier λ∗

reduces to

λ∗ =
P ? −

∑n
i=1 αi∑n

i=1 βi
, (16)

and the optimal solution x∗ of problem (14) is given by

x∗
i = −hi(λ

∗) = αi + λ∗βi, ∀i ∈ Vn. (17)

III. MAIN RESULTS

In this section, we present a distributed bisection method
to obtain the optimal Lagrange multiplier λ∗ for the problem
(7)-(9). This is done based on the average consensus algo-
rithm (1) or (2), with no need for a central decision maker
or a leader node. We first propose a distributed algorithm
for gathering the aggregate power demand. We then give a
distributed solution to the EDP. Finally, we give analysis on
convergence and stopping criteria for practical use.

A. Distributed Algorithm for Aggregate Demand

The first step of solving the EDP is to collect the aggregate
power demand P ? =

∑m
j=1 Pj . However, it is a difficult

task to compute P ? directly in a fully distributed fashion
(relatively negative results is given in [18]). Instead, our
algorithm is to make every node i (generation bus) in Vn

share a common value y∗ = P ?/n. As we will show in the
next subsection, it turns out that such common value y∗ will
be sufficient to solve the EDP.

In graph Gm = (Vm, Em), using (3), an associated doubly
stochastic matrix Q ∈ Rm×m is given by:

[Q]ij = qij =



1

max (dm,i, dm,j) + 1
, if j ∈ Nm,i,

1−
∑

j∈Nm,i

qij , if i = j,

0, otherwise,
(18)

where the subscript m indicates that the parameters are
defined with regard to graph Gm.

For every node i ∈ Vm, we establish two variables pi(t)
and si(t), respectively initialized by pi(0) = Pi, and

si(0) =

{
1, i = 1, 2, ..., n,

0, i = n+ 1, n+ 2, ...m.
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We then run the following average consensus algorithms
simultaneously until convergence:

pi(t+ 1) = qiipi(t) +
∑

j∈Nm,i

qijpj(t), (19)

si(t+ 1) = qiisi(t) +
∑

j∈Nm,i

qijsj(t). (20)

Defining p∗ = limt→∞ pi(t) and s∗ = limt→∞ si(t), we
have:

p∗ = P ?/m, s∗ = n/m.

For every node i ∈ Vn, we have:

y∗ =
p∗

s∗
= P ?/n. (21)

B. Distributed Bisection Algorithm for EDP

We now propose a distributed bisection algorithm for the
EDP, which involves graph Gn only. From (19)-(21), we
assume that each node i ∈ Vn gets y? = P ?/n.

Let k > 0 denote the bisection step index for the bisection
method. We let each node establish two variables λ−(k)
and λ+(k), representing the lower and upper bounds of the
Lagrange multiplier. Their initial values are given such that
λ−(0) is sufficiently small and λ+(0) is sufficiently large,
or alternatively by

λ−(0) = min
i∈Vn

fi(xi),

λ+(0) = max
i∈Vn

fi(x̄i),

which can be achieved by the minimum/maximum consensus
algorithms, which are fully distributed for connected network
[6].

Define a variable λ(k), which acts as the approximation
of the Lagrange multiplier, as

λ(k) = (λ+(k) + λ−(k))/2. (22)

Each node i ∈ Vn then takes

xi(k) = −gi(λ(k)). (23)

In graph Gn = (Vn, En), an associated doubly stochastic
matrix R ∈ Rn×n is given by:

[R]ij = rij =



1

max (dn,i, dn,j) + 1
if j ∈ Nn,i,

1−
∑

j∈Nn,i

rij if i = j,

0 otherwise,

(24)

where the subscript n indicates that the parameters are
defined with regard to graph Gn.

Each node establishes a local variable zi(t) initialized by
zi(0) = xi(k), and runs the following average consensus
algorithm until convergence:

zi(t+ 1) = riizi(t) +
∑

j∈Nn,i

rijzj(t). (25)

Defining z∗ = limt→∞ zi(t), we have

z∗ =

(
n∑

i=1

xi(k)

)
/n. (26)

Every node updates λ+(k+1) and λ−(k+1) by comparing
y∗ and z∗ as follows:{

λ+(k + 1) = λ(k), λ−(k + 1) = λ−(k) for z∗ > y∗,

λ+(k + 1) = λ+(k), λ−(k + 1) = λ(k) for z∗ 6 y∗.
(27)

It is clear from (22) and (27) that λ? = limk→∞ λ(k)
exists and that each node obtains its local optimal solution
from (23), i.e.,

x∗
i = −gi(λ

∗), ∀i ∈ Vn.

For clarity, we summarize the distributed bisection method
in Algorithm 1. The convergence property of Algorithm 1 is

Algorithm 1 Distributed Bisection Method for EDP
Input: Pi: local power demand, ∀i ∈ Vm;
Output: x∗

i : power assignment, ∀i ∈ Vn;
1: Each node gets y∗ from (19)-(21);
2: Initialization λ−(0) and λ+(0);
3: for k = 0, 1, 2, . . . do
4: Each node computes λ(k) = 1

2 (λ
−(k) + λ+(k));

5: Each node computes xi(k) = −gi(λ(k));
6: Each node runs (25) to get z∗;
7: Each node computes λ+(k + 1) and λ−(k + 1)

according to (27);
8: end for

formally stated below.
Theorem 2: Under the assumption that the EDP problem

(7)-(9) is feasible, Algorithm 1 converges to the unique
optimal solution as k → ∞.
Proof: For all i ∈ Vn, the function gi(λ) is monotonically
decreasing with respect to λ. Therefore −gi(λ) is mono-
tonically increasing. Especially, −gi(λ) is strictly increasing
with respect to λ for

fi(xi) 6 λ 6 fi(x̄i).

Define
λ̄ = max

i∈Vn

fi(x̄i), λ = min
i∈Vn

fi(xi).

Since the problem is feasible, the optimal Lagrange multi-
plier must satisfy

λ 6 λ 6 λ̄.

Therefore, −
∑n

i=1 gi(λ) is strictly increasing with respect
to λ ∈ [λ, λ̄]. Thus, for every node i,

(∑n
j=1 xj(k)

)
/n is

strictly increasing with respect to λ(k) ∈ [λ, λ̄]. Therefore,
Algorithm 1 converges. Moreover, since the optimal solution
is unique, Algorithm 1 converges to the unique one. �

Remark 1: The bisection algorithm above does not need
a central information collector to compute P ?, i.e., the
total power demand P ? is not needed explicitly for solving
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the EDP. The equality constraint (9) is gradually satisfied
through the bisection iterations.

Remark 2: The algorithm above is fully distributed due
to the following properties. Information exchange between
nodes occurs only when running average consensus. All
the computations are performed locally. Also, each node
only requires the knowledge of local parameters αi and βi,
without the need to know other nodes’ parameters.

Remark 3: Besides getting around the difficulty of di-
rectly obtaining P ? in a fully distributed fashion, another
benefit of procedures (19)-(21) is that it spares the nodes
representing buses with pure loads the burden of commu-
nication and computation after y∗ is computed using (19)-
(21) because the rest part of Algorithm 1 only involves the
generation buses, i.e., the bisection steps are performed in
Gn only.

C. Convergence and Stopping Criteria

Now we give analysis on convergence and stopping criteria
for practical use. Two stopping criteria are needed, one for
the average consensus iterations at each bisection step, and
the other for the bisection iterations.

As shown in Algorithm 1, the average consensus iterations
(25) are performed in each bisection step. Iteration (1) solves
the average consensus asymptotically, but it is impossible to
run it for infinite time. In most scenarios, when implementing
the average consensus protocol (1), a stopping criterion may
be setting a fixed number of iterations t∗ such that

||π(t)− π∗1||2
||π(0)− π∗1||2

< ε, ∀t > t∗, (28)

i.e., for a specific threshold ε > 0, which is small enough.
Accordingly there exists t∗ such that when t = t∗, consensus
is reached approximately in a practical sense. However, such
stopping criterion is not suitable for consensus iteration (25)
in Algorithm 1. In fact, at each bisection step, we only need
to run iteration (25) till every node reaches agreement on
the direction in which they shall bisect their incremental cost
intervals.

Now we initialize zi(0) = xi(k) − y∗, and then run
iteration (25). One can easily verify that (27) is equivalent
to{

λ+(k + 1) = λ(k), λ−(k + 1) = λ−(k) for z∗ > 0,

λ+(k + 1) = λ+(k), λ−(k + 1) = λ(k) for z∗ 6 0.
(29)

Defining ρi(t) = sgn(zi(t)), we say that iteration (25)
reaches sign consensus, if ρi(t) = ρj(t), ∀i, j. It’s easily
verified that for iteration (25), sign consensus can always be
reached in finite time, i.e., there exists t† > 0, such that for
all t > t†, ρi(t) = ρj(t), ∀i, j, unless z∗ = 0.

Remark 4: The reason why the commonly used stopping
criterion for average consensus, i,e., setting some fixed
number of iteration steps, is unsuitable for our bisection
algorithm is that when average consensus is assumed to be
reached for t > t∗, it does not imply that sign consensus is
reached. This could happen when z∗ ≈ 0 and the iteration

stops at t∗ with some zi(t
∗) < 0 and some zi(t

∗) > 0.
Consequently, different decisions on bisection are made.

Now we give a distributed method to judge whether
sign consensus is reached or not, which is based on maxi-
mum/minimum consensus. We assume each node knows the
diameter of Gn, denoted by Dn. At bisection step k + 1,
each node i establishes three variables, ρ

i
, ρ̄i, and ρ†i , where

ρ†i (t) =

{
1 zi(t) > 0,

0 zi(t) 6 0.
(30)

At t = 1, we set ρ
i
(1) = ρ†i (1), ρ̄i(1) = ρ†i (1). Then for

t > 1, at step t+ 1, we update ρ
i
(t+ 1) and ρ̄i(t+ 1) by:

ρ
i
(t+ 1) =

 min
j∈{Ni,i}

ρ
i
(t), if ρ†i (t+ 1) = ρ†i (t),

ρ†i (t+ 1), otherwise,
(31)

ρ̄i(t+ 1) =

 max
j∈{Ni,i}

ρ̄i(t), if ρ†i (t+ 1) = ρ†i (t),

ρ†i (t+ 1), otherwise.
(32)

The stopping criterion for iteration (25) is that for any
node i, if there is some t† > 1 such that

ρ
i
(t) = ρ̄i(t), t = t†, t† + 1, ..., t† +Dn, ∀i,

then sign consensus is reached. Besides, ρ
i
(t) = ρ̄i(t) = 1

implies that λ+(k+1) = λ(k) and λ−(k+1) = λ−(k), while
ρ
i
(t) = ρ̄i(t) = 0 implies λ+(k + 1) = λ+(k) and λ−(k +

1) = λ(k).
Remark 5: A special situation is that sign consensus is

already reached without any step of iteration (25), e.g., for all
i, zi(0) > 0. Since there are no central decision makers, we
still need Dn steps of iteration. However, it is often the case
that Dn � t∗, thus another benefit of using sign consensus
is the reduction of iteration steps.

As for bisection, a stopping criterion can be established
by either setting a fixed number of bisections K or using

|λ(k)− λ∗| 6 ε/2, (33)

for some sufficiently small ε > 0. Since λ∗ is not available
when solving EDP, an alternative can be

|λ+(k)− λ−(k)| 6 ε, (34)

which can be easily achieved in a distributed fashion, pro-
vided sign consensus is always reached in each bisection
step.

IV. SIMULATION

In this section, we show the performance of the distributed
bisection algorithm using numerical experiment based on
the IEEE 14-bus system [19]. The generator parameters are
adopted from [14], as shown in Table I. We set xi = 10MW
for all i. We take ε = 0.005 for the stopping criterion.

In our simulation, generators buses are {1, 2, 3, 6, 8}, and
load buses are {2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14}. Note that
the power transmission grid is not necessarily the same
with the information communication network, so we do not
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TABLE I
GENERATOR PARAMETERS (MU = MONEY UNIT)

Generator Bus αi (MU/MW 2) βi (MU/MW ) x̄i(MW )

1 1 -25 12.5 80
2 2 -50 16.67 90
3 3 -57.14 14.29 70
4 6 -66.67 16.67 70
5 8 -31.25 12.5 80
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Fig. 1. Results of EDP by distributed bisection algorithm.

assign a node to bus 7. Define two corresponding node sets
Vm = {1, 2, ..., 6, 8, 9, ..., 14}, Vn = {1, 2, 3, 6, 8}. For Gm

and Gn, the edge sets Em and En are properly chosen to
set up two connected undirected graphs with self-loops.

The local power demands are: P1 = 0MW , P2 = 9MW ,
P3 = 56MW , P4 = 55MW , P5 = 27MW , P6 = 46MW ,
P8 = 0MW , P9 = 8MW , P10 = 24MW , P11 = 53MW ,
P12 = 46MW , P13 = 16MW and P14 = 40MW . The total
demand P ? =

∑
i∈Vm

Pi = 380MW , which is not known
to the individual nodes.

We set λ+(0) = 20MU/MW and λ−(0) = 0MU/MW .
The result is shown in Fig. 1. The upper subplot of Fig. 1
shows the evolution of λ(k), the middle subplot shows the
evolution of each xi(k), and the lower subplot shows the
evolution of

∑
i∈Vn

xi. We artificially set the bisection step
to be 20, while the stopping criterion is already satisfied at
k = 13. Taking the results at k = 13 to be the optimal
solution, we have x∗

1 = 80.00MW , x∗
2 = 90.00MW ,

x∗
3 = 64.48MW , x∗

6 = 70.00MW , x∗
8 = 75.35MW ,

and
∑

i∈Vn
x∗
i = 380.03MW . The optimal incremental cost

λ∗ = 8.5278MU/MW , and the optimal solution x∗ stays
within the capacity constraints, where x∗

i of generator 1,
2 and 4 take their upper bounds of capacity constraints,
respectively.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a distributed bisection
method based on average consensus to solve the EDP with
quadratic cost functions. The algorithm is fully distributed,
with no need for a master node or leader. Also, each
node only requires its local parameters, without any global
information. Convergence of our algorithm is proved, and
by simulations we show the performance of the algorithm.
Future work includes the extension of our approach to the
EDP with general cost functions (i.e., non-quadratic).
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