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Lyapunov Functions for Uncertain Systems with Applications to the 
Stability of Time Varying Systems 

Ganapnthy Chockalingam’ Soura Dasguptat Brian D. 0. Anderson* Minyue Fus 

Abstract with 

This paper has three contributions. The first 
involves polytopes of matrices whose characteristic 
polynomials also lie in a polytopic set (e.g. compan- 
ion matrices). We show that this set is Hurwitz or 
Schur invariant iff there exist multiaffinely parameter- 
ized positive definite, Lyapunov matrices which solve 
an augmented Lyapunov equation. The second result 
concerns uncertain transfer functions with denomina- 
tor and numerator belonging to a polytopic set. We 
show all members of this set are Strictly Positive Real 
iff the Lyapunov matrices solving the equations fea- 
turing the Kalman-Yakubovic-Popov Lemma are mul- 
tiaffinely parameterized. Moreover, under an alterna- 
tive characterization of the underlying polytopic sets, 
the Lyapunov matrices for both of these results admit 
affine parameterizations. Finally, we apply the Lya- 
punov equation results to derive stability conditions 

- 

K = {k = [ k l ,  *..,k,]‘ : k7 5 k i  5 k f } .  (1.2) 

and h(k)  affine in the elements of k. An example of 
such a set of matrices is a set of affinely parameterized 
companion matrices in the controllable form [5]. 

We call an n x n matrix A, a-Hurwitz if all its 
eigenvalues lie in the open half plane Re[s] < -a, for 
some a > 0. Similarly, A is said to be pSchur, for 
some 0 < p < 1, if all its eigenvalues lie in the open 
disc 1.1 < p. 

It is shown here that R is a-IIurwitz (respectively 
pSchur) invariant iff there exists a a-Hurwitz (respec- 
tively pSchur) matrix A, compatibly dimensioned 
vector w and a Lyapunov pair P ( k ) ,  Q ( k )  depend- 
ing muiliafinely on the elements of k, which satisfies 
the Lyapunov equation [l] (1.3) (respectively (1.4)) 
for all k E K. 

n’(k)P(k.) + P(k)JI(A) < -2aP(k)  - Q ( k )  (1.3) 
for a class of Linear Time Varying Systems. 

1 Introduction 

This paper considers the existence of parameter- 
ized Lyapunov functions for the stability and passivitsy 
analysis of linear time invariant (LTI) uncertain s y s  
tems and demonstrates their application to the stabil- 
ity analysis of a class of Linear Time Varying (LTV) 
systems. 

The first problem considered here involves the h m -  
ily of matrices described below where g and h ( k )  are 
n-vectors, F is an t i  x t i  matrix: 

R = { A ( k )  = F + g h ’ ( k )  E Snxn : k E IC} (1.1) 
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rI ’ (k)P(k)I l (k)  - P ( k )  < - ( I  - p 2 ) P ( k )  - Q ( k )  
(1.4) 

where 

The P and Q appearing above will be respectively re- 
ferred to as a continuous and discrete time Lyapunov 
pair associated with A,  while the matrix P itself will 
be called a Lyapunov matrix associated with A. 

Here a multiaffine function is one which is affine 
in each individual argument. We note that the fact 
that the parametric Lyapunov pair thus constructed 
displays a multiaffine dependence on k has certain ap- 
pealing characteristics to be highlighted in the sequel. 

Polytopic sets such as (1.1-1.2) can equivalently be 
described by the convex combination of their corners, 
i.e. for some M and suitable h l ,  ..., h M ,  one has 

M M 
R = {A(A) = F + g ( C A i h i )  : C A i  = 1, A i  > 0). 

i= l  i= l  

(1.6) 
We will show that Lyapunov pairs under this 

slightly different parameterization are in fact afine 
rather than multiaffine in the A i .  



The second question involves the Kalman- 
Yakubovic-Popov (KYP) lemma [2], for transfer fiinc- 
tions whose numerator and denominator belong to  
two independent polytopes with defining parameter 
vectors k = [kl, ..., k,] and I = [II, ..., Ir] respectively. 
We show that under a suitable choice of state vari- 
able representation, the Lyapunov pairs one obtains 
depend multiaffinely on the elements of k and 1 .  As 
with the Lyapiinov equation problem, a convex com- 
bination based representation is also considered. 

We demonstrate the significance of the Lyapiinov 
function results by extending certain Linear Time 
Varying (LTV) system stability results reported in [3]. 

The KYP results are used to  derive the Lyapunov 
results that we present here. Further, they can be 
used to determine robustness measures for adaptive 
output error identification algorithms. 

Past results incltide those of [9], where the Her- 
mite matrix was shown to be a Lyapunov matrix for 
a companion matrix A,  albeit with a rank-1 Q. The 
Hermite matrix is bilinear in the elements of its asso- 
ciat,ed companion matrix. This bilinear dependence is 
destroyed when one allows, as is the case in this paper, 
dependent variations. Thatachar and Srinath [6] in- 
correctly prove that the single parameter  family, R(A), 
is Iliirwitz invariant iff it has an affinely parametrized 
Lyapunov matrix P ( k ) .  The quadratic stability liter- 
ature (see [7]) considers the existence of a single Lya- 
punov matrix P. Barring [8] these results are confined 
to norm bounded, as opposed to polytopic, uncertaini- 
ties. The subject of [8] is the quadratic stability of the 
single parameter set {A + Abc' : A E [O,co)}. 

Section 2 gives preliminary results; Section 3 the 
KYP results; Section 4 the Lyapunov results; Section 
5 LTV stability results; Section 6 the conclusion. 

2 Preliminaries 

This section provides certain preliminary results 

The KYP results of this paper will be derived for 
and assumptions. 

sets of transfer fiinct,ions 

(2.1) 
with I< as in (1.2), 

and the b i ( k )  and a i ( / )  affine in their respective ar- 
guments. Then for suitably chosen F c ?JPxn, g E 
W", I i l ( l )  E 3" and h 2 ( k )  E %", with [ F , g ]  a com- 
pletely reachable pair and I t , ( . )  affine in their respec- 
tive arguments, T can equivalently be described by 

T = { 1 + ( h 1 ( I )  - h2(k) ) ' ( s l  - F - g h { ( l ) ) - ' g  } 
(2 3) 

where k E I<, 1 E L. Since hl(I)  and h z ( k )  lie in 
independent polytopes, it follows that T can also be 
expressed as 

T = { 1 + ( h , ( p )  - kz(A)) ' (sI  - F - g A { ( p ) ) - ' g }  

(2.4) 
where 

N N 

i = l  i=1 

Observe that { 1 + ( k l i  - h,j)'(SI - F - g h ; i ) - ' g }  
represents the corners of the set T. In the sequel 
we will denote p = bi1, ..., p ~ ] '  and A = [AI, ..., AM]' 
(note N = 2, and M = 2r). 

To conclude this section on preliminaries, we im- 
pose certain restrictions on various matrices of inter- 
est. 
Assumpt ion  2.1: The pair [F, g] is completely reach- 
able. Further, for (2.3) [ F , h l ( l )  - h z ( k ) ]  is com- 
pletely observable almost everywhere in K x L in- 
cluding, a t  every corner of L and I<. Similarly, for 
(2.4) [F, h1(p) - h2(A)] is completely observable al- 
most everywhere, including a t  all corners (i.e. at all 
i t l ( p )  = j i l t  and all &,(A) = hzj). Likewise, for R, 
[F, h(k) ]  is completely observable almost everywhere 
in It' including, a t  every corner of K .  

We note that the corner observability conditions 
can be assumed without loss of generality, possibly 
through an infinitesimal expansion of L and/or It'. 

Recall, that R will be examined for a-Hurwitz (or 
pSchur) invariance. Thus, to avoid trivialities we will 
assume that a t  least one member of R is a-Hurwitz 
(or pSchur). Then, through a simple affine transfor- 
mation in the parameter vector k if need be, one can 
make the following assumption without loss of gener- 
ality: 
Assumpt ion  2.2: IJnder continuous (respectively 
discrete) time settings, F is a-Hurwitz (respectively 
pSchur). 

3 On the KYP Lemma 

A continuous time system having transfer function 
T ( S )  = I -  SI -  AI-'^, is strictly passive iff for 
some U > 0, it is continuous time strictly positive real 
with margin a (a-CSPR): i.e T(s  - a) is minimum 
phase, stable and obeys for all real w 

Re[T(jw - 41 > 0. (3.1) 
Similarly in discrete time, strict passivity is equiv- 

alent to the existence of 0 < p < 1 for which T(ps) is 
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minimum phase, stable and obeys for all w E [ -T,  T )  

~ e [ ~ ( p e i ~ ) ]  > 0. (3.2) 
Such a T(s)  will henceforth be referred to as being p 
DSPR. In this section we will address the issue of pa- 
rameterized Lyapunov pairs for a - C S P R  and pDSPR 
parameterized transfer functions as defined in (2.3) 
and (2.4). The first set of results concerns the param- 
eterization in (2.4)-(2.6). 
Theorem 3.1 All members of the set  (2.4)-(2.6) are 
U-CSPR i f  there ezist  symmetr ic  P ( p ,  A )  and & ( / I ,  A) 
which obey the following: 

( i )  Vpi, A i  obeying the constmints in (2.4 - 2.6), 
dropping all arguments due Lo lack of column space, 
fhe following matriz i s  positive definiie 

(3.3) 

(3.4) 0 ( p )  = F + ghi(p) 
(ii) For ji ted p (wspertively A), both P ( p ,  A)  and 

Q(p,  A) are nBne in  the elements of A (respectively 

(iii) P(p ,  A) > 0 and Q(pl A) > 0 Vp ,  A obeying the 
constrainis in (2 .5)  and (2.6). 

In the above P,Q are called the Lyapunov pairs 
satisfying the KYP lemma and P by itself is called 
the Lyapunov Matrix. Several remarks are in order. 
Remark 3.1: To construct \lie Lyapunov pairs one 
must f i d  construct [pijl Qij] (using possibly the spec- 
tral factorization method outlined in [la]) which work 
with the corner represented by = h2i and 1i2 = hlj .  
The Lyapunov pairs [P(p ,  A), Q ( p ,  A)] are constructed 
using (3.5) given below. 

1 -0'P - P9 - Q - 2aP, Pg + hz - hi 

2 (Pg + A 2  - Al)l [ 
where 

PJ 

M N  M N  
P ( P , A )  = XX~j~ifij  ~ ( 1 4 , ~ )  = C x ~ j l ~ ~ i j  

(3.5) 
j = 1  i= l  j = 1  i= l  

Remark 3.2: The special cases of (2.1) and (2.2) 
corresponding to the situations where the numerator 
is fixed and the denominator is uncertain, and where 
the converse holds, are of particular interest in adap- 
tive systems and the development to be outliaed in 
section 4. In the case where the numerator is fixed, 
one can assume that 

hZ(k) = h Vk. (3.6) 

Likewise the converse case of denominator fixed allows 
one to assume without loss of generality, that  

h@) = 0 vt. (3 .7 )  

In either case, P ( p ,  A) and Q(pl A) are affine in  the 
underlying parameters. We next present the discrete 
time counterpart of Theorem 3.1. 

Theorem 3.2 All members o f the  s e f  (2.4-2.6) are p- 
DSPR i f  lhere ecisf symmetr ic  P ( p ,  A )  and Q(p,  A )  
which obey (i i)  and (i i i)  of Theorem 3.1 and in addi- 
t ion (again dropping all argumenfs),  the following is 
positive definite: 

Remarks 3.1 and 3.2 apply to this situation as well. 
Having dispensed with the parameterization con- 
tained in (2.4), we now turn our attention to its coun- 
terpart in (2.3). 

Theorem 3.3 All members of (2.3) are a - C S P R  iff 
lhere ecisf symmetr ic  P ( k ,  I )  and Q ( k ,  I ) ,  multiafine 
in [k',l')' such that ( dropping all arguments ), the 
following is positive definite: 

(3.9) 1 - 0 ' P  - P 8 -  Q -  UP, P g +  h2 - hl 

2 (P9 + h2 - hl)' 

with 
0(1) = F + gh'(1). (3.10) 

We next present the discrete time counterpart of The- 
orem 3.3. 

Theorelxi 3.4 All members of (2.3) are p - S P R  iff 
there etisl synrmelric P ( k ,  1 )  and Q(k ,  I ) ,  mul t iaf ine  
in [k',l']' such that ( dropping all arguments ), the 
following i s  positive definite: 

Remark 3.3: A self evident modification of Remark 
3.2 applies here as well. 

' Remark. 3.4: Here also the proof is constructive. 
As in Remark 3.1 we must now construct the Lya- 
punov pairs [P i j ,Q i j ]  (see Remark 3.1 on the ron- 
struction of these pairs) that work with the transfer 
function that represents the combination of the i-th 
and j-th corners of Ii' and L respectively. Then the re- 
quired [ P ( k ,  t), Q ( k ,  t ) ]  is the unique multi?ffine func- 
tion that amimes the value [Pi,  , Qj] at the apropriate 
corner conhination. 
Remark 3.6: Observe, that Theorems 3.1 and 3.2 
deal with parametrizations that are equivalent to 
those used in their respective counterparts Theorems 
3.3 and 3.4. However, while for fixed A (respectively 
11)  the Lyapunov pairs of Theorems 3.1 and 3.2 are 
collectively affine in the p (respectively A) parame- 
ters, even for a fixed k (respectively t ) the Lyapunov 
pairs of Theorems 3.3 and 3.4 are miiltiaffine in the 1 
(respectively k) parameters. This apparent paradox 
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can be understood in terms of the following example. 
Consider the multiafine function 

P(kl,k*) = l+kl+kZ+klkZ, 0 5 k1 5 1, 0 5 c z  5 1. 
(3.12) 

Clearly in the given range of [kl, kz], p(k1, k ~ )  cannot 
be expressed as an affine function of two variables. Yet 
each member of this set, can be expressed as a convex 
combination of the four corners p ( 0 ,  0), p ( 0 ,  l ) ,  p(  1 , l )  
and p(  1,O).  This lat,ter representation though, will 
be nonuniqne. Indeed similar considerations apply to 
the results of section 1 also. 

4 Solutions to the Lyapunov Equation 

In this section, we restrict our attention to the set 
52 as represented in both (1.1) and (1.6) and consider 
suitable Lyapunov pairs for this set. The main results 
of this section are first formally stated. 

A few comments about this result are called for. 
Since in the continuous and discrete time settings of 
our problem F is respectively a-Hurwitz and pSchur 
with 

for sufficiently small E, U- llurwitz or pSchur invari- 
ance of R is equivalent to the existence of monic c(s) 
and d ( s )  as above, such that the transfer function be- 
low is a-CSPR and p D S P R  for all k E K. 

f(s) = det(sZ - F )  (4.2) 

(4.3) 
det(sZ - ( F  + gh'(k))  f(s + E ) C ( S )  

f ( 5 )  4 s )  
Further, as there are only a finite number of corners of 
R, Assumption 2.1 assures that d e t ( s Z - ( F + g h ' ( k ) ) )  
and f ( s )  are coprime for all corners of I<. Also 
through an arbitarily small perturbation in c(s) and 
d(s ) ,  if need be, one can ensure that the transfer func- 
tion in (4.3) is free from any pole-zero cancellations 
at  the corners of ZI'. In the sequel we will assume 

6(f(s)d(s)) = N .  (4.4) Theorem 4.1 Consider  R as in ( l . l ) ,  with assump- 
tions 2.1 and 2.2 in force. Then,  all rnernbers of 52 
are a- Hurwitt (respectively p-Schur) i f f  there exist u- 
Hunuitz (respectiaely p-.Schur) A, a vector w and pos- 
ititre definite symmetr ic  P ( k )  and Q ( k ) ,  mull inf ine in 
k, such fhal f o r  all k in K , (1.3) (respectively (1.4))  
holds with n ( k )  as in (1.5) 

It is clear that the choice of c(s) and d ( s )  ensures that 
f(s + E ) c ( s ) / d ( s )  is biproper. Suppose its minimal 
state variable realization (SVR) is {D, w ,  v ,  1). Then 
it is easy to show that {a, r, O ( k ) ,  1) is a SVR of 
(4.3) where a, r and O ( k )  are given by: r = [w', g']', 

= [v',  -/1']' and 

Theorein 4.2 W i t h  S2 as in (1.6), the statement 
of Theorem 4 .1  slands with P ( k ) , Q ( k ) ,  n ( k )  re- 
placed by P(A),  Q(A),  n(A), TI(A)  obviously defiiied 
and P(A)!Q(A) af ine  in A. 

The proofs of t,hcse theorems are constructive, and 
the constriiction of t,he Lyapunov pairs can be acc.oin- 
plished by only considering the corners of 52. The key 
results used in the proof of these theorems fall into 
two categories. The first is the main result of section 
3. The second result we use is a minor variation of a 
construction result given in [4]. This result in  [4] con- 
siders polytopes of polynomials and gives necessary 
and sufficient conditions under which there exists a 
single stable LTI operator whose product with all the 
members of this polytope is a-CSPR (respectively p 
DSPR). The variation in question is summarized in 
Theorem 4.3 below. 

Theorem 4.3 Consider  the set R as in (1.1) .  This  
set is a- l lunui t t  (respectively p-Schur) invariant i f l  
there ex id  monic polynomials c(s) an.d d(s ) ,  with d ( s )  
u-llunuilr(respective1y p-Schur) such that the traiisfer 
function 

(4.1) 
det(sZ - ( F  + gh'(k) ) )c (s )  

d ( s )  

is  biproper and u-C.I;PR (respectively p - D S P R )  f o r  all 
k E IC. 

(4.5) 

Since this represents a a-CSPR or a p D S P R  transfer 
function, the results of Section 3, provide appropri- 
ately parameterized Lyapiinov pairs for this transfer 
function. Then one can show that with A = D - wv', 
these Lyapunov pairs are precisely the ones we seek. 

5 Stability of Linear Time varying 
Systems 

Definition 5.1: The LTV system 

k ( t )  = A ( t ) t ( t )  (5.1) 

is exponentially asymptotically stable (EAS) with de- 
gree of stability y > 0 if 3c,a > 0 such that for all 
z ( t o )  and t >_ t o ,  

If y = 0, we simply say that (5.1) is EAS. 
Reference [3] contains results that through a sim- 

ple application of results in [11,12], yield conditions 
for the EAS of a class of LTV systems with time vari- 
ations confined to a scalar parameter E .  In particular, 
suppose that, 

A(k) = F + kgh' (5.3) 

1528 



with g ,  h vectors is cr-Hurwitz, for all scalar fixed k 
lying in a given interval. Then the conditions in ques- 
tion, involve certain precise logarithmic bounds on the 
time variations in the parameter k, such that the EAS 
of 

is retained. Specifically one obtains the Theorem bt?- 
low. 

Theorem 5.1 : Suppose A(k)  as in (5.3) is a- 
Hurwitz f o r  all k E [k-,k+]. Then (5.4) is  EAS. if 
for some c ~ , c ~ , T  > 0 ,  6 E (0,a) and all t 2 0 

i ( t )  = A ( k ( l ) ) c ( t )  (5.4) 

(a) k ( t )  E [k- + (1, k+ - €21 (5.5) 

and 
(b) e i fher  

where 
a;  a 1 0  

[.I+ = { 0; n < O  
o r  

(5.6) 

(5.7) 

(5.8) 
t 

Several comments are in order. First in essence 
each condition in Theorem 5.1 offers a trade-off be- 
tween the degree of stability of the "frozen" LTI iys- 
tems and the average time variation that could be 
withstood without losing stability. Further as one can 
imagine, by choosing a larger 6, i.e. with a smaller 
bound on the average derivative of the logarithlriic 
value of the time varying parameter, one can quan- 
tify the degree of EAS that the resulting time varying 
system is endowed with. Such a result is in [9]. 

Second, the results of [3,9] apply only to the 
continuous t i m e  case involving the situation where 
time variation is confined to a single parameter. No 
comparable result for multiparameter time varying 
systems is to our knowledge available; nor are we 
aware of similar stability results that apply to discrete 
time system. 

Third, even for the single parameter case, the re- 
sults of [3,9] are proved using a somewhat iiivolved 
multiplier theory, which to our knowledge does not 
readily extend to multiparameter time varying sys- 
tem. 

The principal contribution of tliis section is to 
demonstrate how the results of section 4 can be used 
to readily prove a milch more general set of results 
that: (a) involve LTV systems with multiple time 
varying parameters; (b) incorporate the degree of sta- 
bility considerations featuring in [9]; and (c) specialize 

. ., 

to Theorem 5.1 in the single parameter case. We also 
give the corresponding discrete time result. Specifi- 
cally, we prove the following. 

Theorem 5.2 With R, A ( k ) ,  k = [kl,. , k,,,]', K as 
in ( l . lO) ,  (1.2), and h ( k )  agine in the elemenis of 6, 
suppose every  member of R is  a-Hurwilx. Then the 
LTV sys tem 

i ( t )  = A(k( t ) )z ( t )  (5.9) 
is  EAS with degree of stability 7 ,  0 < y < a, if there 
e t i s t s  6 E (0, a - y) ,T > 0 and E I ~ , C Z ~  > 0 ,  V i  = 
{ 1, ..., m} such lhal f o r  all t > 0 

(a) h ( t )  E [ kc  +f~i, k t - f ~ i ] ,  V i  E { 1 ,  ..., m} (5.10) 

and (b) either 

or 

< 2(a - 6 - 7). 
(5.11) 

< 4(" - 6 - 7). 

The respective association between (5.1 1,s. 12) and 
(5.6, 5.8) is clear. 

The following lemma shows that (5.12) is in fact a 
stronger condition than (5.1 1). 

Lemma 5.1 With (5.10) in force, (5.12) implies 
(5.11).  

* .'=p... 
U" 

1( Thus we need only show that (5.10,5.11) suffice for 
the EAS of (5.9) with degree of stability y. 

Now Theorem 4.1 and the fact that 52 is a-Hurwitz 
invariant together imply the existence of a a-IIurwitz 
A and multiaffine symmetric positive definite ma- 
trix functions P ( k ) ,  Q ( k )  sucli that with n ( k )  as in 
(1.5),(1.3) holds for all k E Zi'. In the sequel, it will 
become evident that it is more convenient to work 
with the LTV system 

i ( t )  = IT(k( t ) ) z ( t )  - (5.13) 

rather than with (5.9). Evidently, the block upper 
triangular structure of f l ( k ( t ) )  and the position occu- 
pied by A(k( t ) )  in f l ( k ( t ) )  readily yield the following. 

Leiiima 5.2 Wzlh U ( k )  as in (1.5),  if the LTV sys- 
t e m  (5.13) is  EAS with degwe of sfabili ty y, then so 
is (5.9). 

Thus, we need only show that under (5.10) and 
(5.11), (5.13) is EAS with degree of stability y. Then 
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the result we seek follows from the following Proposi- 
tion and the results of the previous Section. 
Proposition 5.1: Suppose, (1.3) holds m’th P ( k )  
multiafine in  the elements of k. Suppose also thai 
ihere en’st 7, 0 < y < U ,  6 E (0,a - r), T > 0 and 
c l i , c z i  > 0,  Vi  = (1, ...,m) such thai for  all t > 0, 
(5.10, 5.11) hold. Then (5.13) is  EAS with degwe of 
stability 7. 

We next extend Theorem 5.2 to  the discrete time 
case. We note that similar results have been hitherto 
unknown even for the single parameter case. We begin 
with the analogy of Definition 5.1. 
Definition 5.2: The discrete time LTV system 

z(t + 1) = A ( t ) z ( t )  (5.14) 

is EAS with degree of stability (1 - p),  (i.e. it is p 
EAS) , 0 < p < 1, if 3 c  > 0, 0 < 6 < 1 such that Vto 
and t 2 t o ,  t and to integers, 

(5.15) 

The required result is as follows. 

Theorem 5.3 Suppose A(L) as in Theorem 5.2 is 
such that V t  E K ,  A ( t )  is p- Schur. Then 

z(t + 1) = A(t ( t ) )z ( t )  (5.16) 

is r-EAS,  0 < p < y < 1, if there etist integer T > 0,  
a 6 obeying 0 < p < 6 < 1 and c l i  and ~ 2 i  as in 
Theorem 5.2, such that for all integer t > 0, (5.10) 
holds together with eiiher (5.17) or (5.18) below: 

(5.17) 

where, 

ti(f) - k,: 
Ai(t) = tr - k i ( t )  

(5.19) 
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