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Abstract— In this paper, we consider infinite-horizon linear
quadratic Gaussian (LQG) control systems with the constraint
that the measurement signal is quantized by a fixed-rate
quantizer before going into the controller. It has been shown
recently that only weak separation principle holds for the LQG
control system with communication channels. It has also been
shown that the separation principle holds approximately for
quantized LQG control in the finite-horizon setting under the
assumption of high-resolution quantization. We propose an
adaptive fixed-rate quantizer for feedback control design to
achieve the mean-square stability and good LQG performance,
where the long-term average cost is divided into two parts: the
first part depends on the classical LQG cost, and the second
part depends on the distortion of the quantizer.

I. INTRODUCTION

There has been extensive research on quantized feedback
control systems; see, e.g., [1], [2], [3] and a survey paper
[4]. Most pertinent research to this paper is the problem of
linear quadratic Gaussian control (LQG) with quantization
data, the so-called quantized LQG (QLQG) problem [2],
[5], [6], [7], [8]. The core question to ask is whether the
classical separation principle for LQG still holds with the
quantization constraint. It turns out that a weak separation
principle holds which states that the QLQG problem can
be separated into a full-state control design problem and
the so-called quantized state estimation problem [6], but
further separation between quantization and state estimation
is in general not possible. However, for the finite-horizon
QLQG problem, an linear predictive coding (LPC) scheme
has been proposed for quantization in [6] to show that
full separation of control, estimation and quantization can
indeed be achieved approximately under a high resolution
quantization assumption and a mild rank condition.

One of the core issues on QLQG design is how to
quantize temporally correlated signals. There is abundant
literature about quantization for autoregressive sources [9],
[10], [11], [12]. In [13], Hui and Neuhoff analyze the
asymptotic property of optimal fixed-rate uniform scalar
quantization for a class of memoryless distributions. Explicit
asymptotic formulas are presented for the distortion and
optimal quantizer length approximation when the source is
Gamma distribution. However the results can not be used
directly to QLQG control since they are based on a key
assumption that the system is stable and there is no feedback.
In control problems, we also want to consider unstable
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systems and quantized feedback. A special difficulty with
quantized feedback is that the signal to be quantized will
become nonlinear due to quantization and feedback of past
samples.

The method in [6] can not be directly extended to the
infinite horizon case. The key difficulty is that a memoryless
fixed-rate quantizer can not guarantee closed-loop stability,
let alone the performance. This is caused by the saturation
effect of the finite-support of the quantizer, as shown in [3].
To get around this difficulty, a simple LPC scheme with
adaptive fixed-rate quantizer has been proposed for infinite-
horizon quantized LQG control of scalar systems [20].

In this paper, we study the infinite-horizon QLQG problem
for single-input, single-output systems with a higher order.
For the high order case, the key difficulty is that the weight-
ing matrix in the LPC-based quantizer is not full rank and
the quantized state may be large although the distortion of
the quantized output is small. We propose a new LPC-based
quantizer modified from [20]. We show that the mean-square
stability of the quantized feedback system is achieved, and
the average distortion is in the order of N−2 log2N , where
N = 2R, and R is the quantization bit rate (per sample).

The rest of the paper is organized as follows: Section II
formally formulates the quantized LQG problem; Section III
introduces a weak separation principle and studies the re-
lationship between QLQG and quantized state estimation;
Section IV is devoted to the quantized LQG problem for
SISO systems; and Section V concludes the paper.

II. PROBLEM STATEMENT

Consider a discrete-time system described as follows:

xt+1 = Axt +But + wt

yt = Cxt + vt (1)

where xt ∈ Rn is the state, ut ∈ Rm is the control input,
yt ∈ Rp is the measured output, wt ∈ Rn and vt ∈ Rp are
independent Gaussian random distributions with zero mean
and covariances Wt > 0 and Vt > 0, respectively, and
the initial state x0 is also assumed to be an independent
zero-mean Gaussian distribution with covariance Σ0. In the
sequel, we denote zt = {z0, z1, . . . , zt}.

The cost function is defined as

J = lim
T→∞

sup
1

T
E
T−1∑
t=0

(x′tQxt + 2u′tHxt + u′tSut) (2)

where E is the expectation operator, S > 0, Q ≥ 0 and
Q−HS−1H ′ ≥ 0.

The problem is to design an observer based controller, and
an R-bit uniform quantizer to minimize the cost J.

51st IEEE Conference on Decision and Control
December 10-13, 2012. Maui, Hawaii, USA

978-1-4673-2064-1/12/$31.00 ©2012 IEEE 3311978-1-4673-2066-5/12/$31.00 ©2012 IEEE



It is well known that the optimal state feedback gain is
given by

K = −(S +B
′
PB)−1(B

′
PA+H), (3)

where P is the solution of the Ricatti equation

P = Q+A
′
PA−(B

′
PA+H)′(S+B

′
PB)−1(B

′
PA+H).

(4)
Let the optimal observer based controller is given by ut =
Kx̂qt , where K is the feedback gain matrix, and x̂qt is the
quantized value of the estimated state from the following
Kalman filter

x̂t = x̂t|t−1 + Γ(yt − Cx̂t|t−1)

x̂t+1|t = Ax̂t +But. (5)

where Γ = EC ′(CEC ′+V )−1 and E is the solution of the
following Ricatti equation

E = AEA′ −AEC ′(CECT + V )−1CEAT +W. (6)

III. WEAK SEPARATION PRINCIPLE AND QUANTIZED
STATE ESTIMATION

The first and most pertinent result is the so-called weak
separation principle. This result was known by Fischer
(1982) [8], although his interpretation that this result leads
to separation of estimation and quantization is incorrect (see
[6] for detailed comments). The weak separation principle
(stated below) suggests that optimal quantized LQG control
can be achieved by first constructing the optimal estimate x̂t,
which is independent of the cost function, then quantizing it
and the optimal control is given by Kx̂qt .

Lemma 1: Consider the system (1), the cost function (2),
the quantized feedback controller Kx̂qt , with K given by (3)
and x̂t given by (5), and the R-bit fixed-rate quantization.
Then, the quantized LQG controller is optimal if x̂qt is
obtained by quantizer that minimizes the following distortion
function

D = lim
T→∞

1

T

T∑
t=0

E [(x̂t − x̂qt )
′
Ω(x̂t − x̂qt )] (7)

where Ω = K
′
(S + B

′
PB)K. The corresponding cost

function is given by

J = JLQG + minD = tr(PW ) + tr(ΩE) + minD.

The implication of the weak separation principle is that
the QLQG problem essentially becomes a quantized state
estimation problem, as stated below [6]. This problem is
depicted in Figure 1. The system we consider is given by

xt+1 = Axt + wt

yt = Cxt + vt (8)

with x0, {wt}, {vt} being independent Gaussian random
variables as before. Let x̂t be the optimal (Kalman) estimate
of xt and consider zt = Ktx̂t for some given Kt. The
task of quantized state estimation is to encode {yt} (or {zt}

indirectly) with fixed bit rate R to minimize the following
distortion function

D =

T−1∑
t=0

E [(zt − zqt )′Ωt(zt − zqt )] (9)

for some given Ωt, where zqt is the quantized zt.
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Fig. 1. Quantized State Estimation

The quantized state estimation problem above is similar
to the traditional vector quantization problem in the sense
that both problems consider quantizing a sequence of input
signal {zt} to minimize some distortion function. However,
in our problem the quantizer has the additional constraint of
causality. That is, the encoding-decoding pair at time t is not
allowed to “see” the “future” values of zτ and aτ , τ > t.

The quantized state estimation problem can be viewed as a
generalized vector quantization problem. Recall the standard
fixed-rate vector quantization problem as follows: Given a
vector of random variables z ∈ Rm, m ≥ 1, with probability
density function f , a distortion measure d(·, ·), the standard
vector quantization problem is to design an N -level quantizer
to minimize E [d(z, ζ)], where ζ is the quantized z. Quadratic
distortion measures are most commonly used [14]. The
quantizer has two parts: encoder and decoder. The encoder
decomposes Rm, the support of z, into N disjoint sets I(k),
0 ≤ k < N and maps z to k if z ∈ I(k). The decoder maps
each encoded value k to a quantized value ζ(k).

An optimal vector quantizer satisfies the well-known
Llyod’s conditions [16], [14] which state that
• For a given encoding partition {I(k)} of Rm, the

optimal choice for decoding is given by

ζ(k) = E [z|z ∈ I(k)] (10)

• For a given set of decoded values {ζ(k)}, the optimal
encoding partitions are such that z ∈ Ik if and only if
k = arg mini d(z, ζ(i)).

In many cases, the optimal quantizer can be obtained by
iterating the two steps above [14], [17], [18], [19].

Returning to the quantized state estimation problem, we
first note that the partition {It(k)} of Rm at time t is
conditioned on previous partitions. At t = 0, there are
L = 2R partitions of Rm. For each of these partitions,
there will be L partitions of Rm at t = 1 and so on.
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To make the dependencies of the partitions explicit, we
denote the partitions It(k) and the decoded values ζt(k) by
It(k0, k1, · · · , kt) and ζt(k0, k1, · · · , kt), respectively, where
ki is the corresponding partition index at time i. In general,
there are Lt+1 partitions at any t. All together, there will
be Ltotal =

∑T
t=1 L

t partitions to optimize. A generalized
version of Llyod’s conditions still holds:

• Given a sequence of encoding partitions
{It(k0, k1, . . . , kt)}, 0 ≤ ki < L, 0 ≤ i ≤ t, 0 ≤ t < T ,
the optimal choice for decoding is given by

ζt(k0, k1, · · · , kt) = E [zt|zt ∈ It(k0, k1, . . . , kt)]

• Given a sequence of decoded values
{ζt(k0, k1, · · · , kt)}, 0 ≤ ki < L, 0 ≤ i ≤ t, 0 ≤
t < T , the optimal encoding partitions are such that
zt ∈ It(k0, k1, . . . , kt) if and only if

kt = arg min
i
d(zt, ζt(k0, k1, · · · , kt−1, i)).

Like the standard vector quantization case, the generalized
Llyod’s conditions can be used to iteratively optimize the
quantizer. However, this is manageable only for very small
R and T , but certainly not practical otherwise.

To get around the computational complexity as mentioned
above, an LPC-based quantization scheme is proposed in [6]:

x̂qt = (A+BK)x̂qt−1 + εqt

εt = Γ(yt − cx̂t|t−1) +A(x̂t−1 − x̂qt−1)

εqt = Q(εt) (11)

with x̂q−1 = 0, where Q(·) is a memoryless quantizer. Under
high-resolution quantization and a mild rank condition, it
is shown that the complete separation principle holds for
finite-horizon LQG control system, which means εqt can
be quantized by a memoryless quantizer, and the controller
and estimator are the same as in Lemma 1. However, the
quantization scheme (11) with memoryless quantizer can
not guarantee stability if A is unstable, let alone the LQG
performance. Hence we have to choose another type of
quantizer, such that the quantized feedback system is stable
and maintains a good LQG performance.

IV. QUANTIZED LQG CONTROL FOR SISO SYSTEMS

We now consider the aforementioned LPC based approach
to QLQG for SISO systems (1) with an infinite horizon.
That is, the control input ut and the output yt are all scalar
signals. Our focus is on both stability and performance of
the closed-loop system. More specifically, it was shown in
[6] that for a finite horizon, the quantization distortion D
decreases as the bit rate R increases in the way that D is in
the order of R2−2R. But this is for a fixed horizon T . For
an infinite horizon (T →∞), we need to find a quantization
scheme such that the quantization distortion remains bounded
as T → ∞. It is shown in [3] that memoryless fixed-
rate quantizers cannot guarantee stability. To achieve our
objective, an adaptive quantizer is needed.

A. Fixed-rate uniform scalar quantization

Let us consider a fixed-rate uniform scalar quantizer,
which is the simplest and most common form of quantizer,
and of which the asymptotic behavior has been understood
recently for a class of source densities with infinite support,
including Gaussian distributions[13]. In [13], explicit asymp-
totic formulas are presented for the distortion and optimal
quantizer length approximation for Gamma distributions.

Next we introduce some basic concepts on uniform quanti-
zation. Consider an N = 2R level symmetric uniform scalar
quantizer with step size ∆. Let (−L,L] be the support of
this quantizer, where L = N∆/2 is called the quantization
length. Define yi = −N∆/2 + (i − 1/2)∆ and Si =
(yi − ∆/2, yi + ∆/2] for i = 1, . . . , N. The quantizer is
defined as

Q∆(x) =

 y0, if x ≤ −L,
yi, if x ∈ Si, i = 1, 2, . . . , N,

yN + ∆, if x > L.

Then the MSE granular and overload distortions are defined
as follows:

Dgran =

N∑
i=1

∫
Si

(x− yi)2p(x)dx

Dover = 2

∫ ∞
L

(x− yN )2p(x)dx,

where p(x) is the source density function, and the total
quantisation distortion is given by

Dtotal = E [(x−Q∆(x))2] = Dgran +Dover

The following three results that are established in [13] will
be used in this paper. In the rest of the paper, X ≈ Y means
that X/Y → 1 as N (or R) →∞.

Lemma 2: For a Gaussian distribution with zero mean and
variance σ, the optimal quantization length for the uniform
fixed-rate quantizer is given by L ≈ 2σ

√
lnN. Moreover,

the distortions satisfy

lim
N→∞

Dover

Dgran
= 0 (12)

Dtotal ≈ Dgran ≈ ∆2
N

12
=

L2

3N2
. (13)

Lemma 3: For any distribution whatsoever, we have

lim
N→∞

Dgran

∆2
N/12

= 1.

Lemma 4: For a Gaussian random variable x ∼ N (0, σ2),
define Wσ2(y) as

Wσ2(y) =
1√
2πσ

∫ ∞
y

(x− y)2e−
x2

2σ2 dx.

Then

Wσ2(y) =
2σ5

√
2π
y−3e−

y2

2σ2 (1 + o(y)), (14)

lim
N→∞

Dover
L

2Wσ2(L)
= 1, (15)

where o(y)→ 0 as y →∞.
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B. LPC-based approach to QLQG

Define ηt = Axt − Ax̂t. Combining the system (1), the
controller ut = Kx̂qt , the state estimator (5) and the quantizer
(11) together, we obtain the following equations

ηt+1 = (A−AΓC)ηt + ΓCwt + Γvt+1 + wt (16)
x̂t+1 = (A+BK)x̂t −BK(εt − εqt )

+ΓCηt + ΓCwt + Γvt+1 (17)
εt+1 = ΓCηt + ΓCwt + Γvt+1 +A(εt − εqt ). (18)

It follows from (16) that ηt is Gaussian for any t if the
initial state x0, wt and vt are all Gaussian. Note that A −
AΓC is stable. Then Σηt = E(ηtη

′

t) is well defined for all
t ≥ 0 and we have

Ση = (A−AΓC)Ση(A−AΓC)
′

+(ΓC + I)W (C
′
Γ′ + I) + ΓV Γ

′
,

where Ση = limt→∞Σηt . Denote zt+1 = Cηt+Cwt+vt+1,
then zt+1 is Gaussian with zero mean and variance σ2

t+1,
where

σ2
t+1 = C(Σηt +W )C ′ + V. (19)

Denote σ2
z as

σ2
z := lim

t→∞
σ2
t = C(Ση +W )C ′ + V. (20)

From now on, we consider the following system

εt+1 = Γzt+1 +A(εt − εqt ) (21)

ξt+1 =
√
S +B′PBKεt+1. (22)

The quantized LQG control problem becomes to design a
quantizer for εt given by (21)-(22) such that the distortion

D = lim
T→∞

1

T

T∑
t=0

E [(εt − εqt )
′
Ω(εt − εqt )] (23)

is minimized, where Ω = K ′(S + B′PB)K. This is
equivalent to designing a quantizer for ξt+1 such that the
distortion

D = lim
T→∞

1

T

T∑
t=0

E [(ξt − ξqt )′(ξt − ξqt )] (24)

is minimized.
When A is stable, a memoryless quantizer can be designed

to achieve the optimal distortion.
Theorem 1: Assume that A is stable in the system (21)-

(22). Denote

θ = (KΓ)2(S +B
′
PB). (25)

Let the step size ∆t of the R-bit uniform fixed-rate quantizer
ξqt be given by ∆t = 2Lt/N, where N = 2R and Lt =
2σt
√
θ lnN. Take

εqt = θ−
1
2 Γξqt . (26)

The, for sufficiently large R, the above quantisation scheme
achieves optimal performance given by

J = JLQG +D?, (27)

with D? ≈ 4θσ2
z lnN

3N2 , where σ2
z is defined by (20).

Because A is stable, Theorem 1 can be proved by in-
duction following a similar idea in [6]. (Details are omitted
here.)

The quantization scheme (11) with a memoryless quantizer
can not guarantee stability of the whole feedback system
when A is unstable [3]. For scalar systems where A is
a scalar, an adaptive quantization scheme is proposed to
guarantee mean square stability and maintain the same LQG
performance (27) [20]. However there are typos in the
main result of [20]. We provide the correct version in the
following.

Theorem 2: For the scalar system (21) with |A| > 1, let
the step size ∆t+1 of the R-bit uniform fixed-rate quantizer
εqt be given by ∆t+1 = 2Lt+1/N, where Lt+1 is chosen as
follows

Lt+1 =


Lt+1,1 = (4θσ2

t+1 lnN +A2L2
t )

1
2

if |ξt − ξqt | > ∆t

2

Lt+1,2 = (4θσ2
t+1 lnN +N−2L2

t )
1
2

if |ξt − ξqt | ≤ ∆t

2

(28)

with L0 = 2σ0

√
θ lnN. Assume N � |A|. Then the

distortion satisfies

Dt+1 ≈
4θσ2

t+1 lnN

3N2
+
A2

N2
Dt. (29)

As t→∞, we have

Dt →
1

1−A2/N2

4θσ2
z lnN

3N2

and the performance J is given by (27) with

D? ≈ 4θσ2
z lnN

3N2
.

Theorem 3: Consider the scalar system (1), the cost func-
tion (2), the quantized feedback controller Kx̂qt with K
given by (3). Let x̂t and εqt be given by (5) and (11)
respectively, where the quantizer εqt is defined by (28). When
N = 2R � |A|, the whole cost function J is given by (27).

Remark 1: Detail proof of Theorem 2 and 3 can be found
in [20]. The basic idea is that one can enlarge the step size
of the quantizer once saturation happens. Although this may
increase the distortion, the whole distortion is not changed
in the sense that the probability of enlarging the step size is
very small.

Remark 2: For a scalar system, K, Γ and A are all scalars.
There is no difference between the quantization of εt and
quantization of ξt. For a high-order system when A is a
matrix, the quantization of εt and quantization of ξt are
different because Ω is not full rank (it is actually rank 1 for
SISO systems). A small distortion E [(εt − εqt )′Ω(εt − εqt )]
can not keep each element of εt − εqt small. Hence we have
to deal with the null-space of Kεt.

For the system (21)-(22), assume that A ∈ Rn×n is
unstable and KΓ 6= 0. Let a = λ̄(A′A) be the largest
singular value and θ be given by (25). Let L0 = 2σ0

√
θ lnN.
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For t ≥ 0, define Lt+1 as follows: If there exists j with
t− n ≤ j ≤ t such that

∣∣ξj − ξqj ∣∣ > ∆j

2 , then

Lt+1 := Lt+1,1 = (4θσ2
t+1 lnN + anL2

t )
1
2 ; (30)

else,

Lt+1 := Lt+1,2 = (4θσ2
t+1 lnN +N−2L2

t )
1
2 . (31)

With the above definition, we have the following result.
Theorem 4: For the system (21)-(22), assume that A is

unstable and KΓ 6= 0. Let the quantizer be designed as
in (30)-(31). When N � an/2, the saturation probability
satisfies

Pr(|ξt − ξqt | >
∆t

2
) ≤ N−2 (32)

for any t ≥ 0.
Remark 3: For high order systems, recall that a small

distortion

E [(ξt − ξqt )′(ξt − ξqt )] = E [(εt − εqt )′Ω(εt − εqt )]

can not keep each element of εt−εqt small. But the quantizer
designed in Theorem 4 makes sure that the distortion is
bounded by βan lnN

N2 , where β is a constant not depending
on a, n and N. The remaining proof is similar to [20].

Theorem 5: For the system (21)-(22), assume that A is
unstable and KΓ 6= 0. Let the quantizer be designed as
(30)-(31). When N � an/2, we have

Dgran
t+1 ≈

4θσ2
t+1 lnN

3N2
+
an

N2
Dgran
t , ∀t ≥ 0. (33)

and
lim
N→∞

Dover
t+1

Dgran
t+1

= 0, ∀t ≥ 0 (34)

Proof: Assume that Pr(Lt+1 = Lt+1,1) = α. It follows
from Lemma 2 that the granular distortion at time t+ 1 is

Dgran
t+1 ≈ E(

L2
t+1

3N2
) = Pr(Lt+1 = Lt+1,1)

L2
t+1,1

3N2

+ Pr(Lt+1 = Lt+1,2)
L2
t+1,2

3N2

= αE(
4σ2

t+1 lnN + anL2
t

3N2
)

+(1− α)E(
4σ2

t+1 lnN +N−2L2
t

3N2
)

=
4 lnN

3N2
σ2
t+1 + (

1

N2
+ α

N2an − 1

N2
)E(

L2
t

3N2
)

Using Theorem 4, we know that

α = Pr(
∣∣ξt+1 − ξqt+1

∣∣ > ∆t+1,1

2
) ≤ N−2.

Therefore,

Dgran
t+1 ≤ 4 lnN

3N2
σ2
t+1 + (

1

N2
+

1

N2

N2aN − 1

N2
)E(

L2
t

3N2
)

=
4 lnN

3N2
σ2
t+1 +

(an + 1)

N2
(1 + o(N))Dgran

t

≈ 4 lnN

3N2
σ2
t+1 +

(an + 1)

N2
Dgran
t .

Under the high rate assumption, we have (an+1)
N2 � 1, hence

Dgran
t is finite for all t, and

lim
t→∞

Dgran
t+1 =

4 lnN

3N2
lim
t→∞

σ2
t+1 =

4 lnN

3N2
σ2
z .

This completes the proof of (33).
Using Lemma 4, the overload distortion can be computed

as

Dover
t+1 = Pr(Lt+1 = Lt+1,1)

·
∫ ∞
Lt+1,1

(x− Lt+1,1 +
∆t+1,1

2
)2ht+1(x)dx

+ Pr(Lt+1 = Lt+1,2)

·
∫ ∞
Lt+1,2

(x− Lt+1,2 +
∆t+1,1

2
)2ht+1(x)dx

≤ N−2N−2(σ2
t+1 + anσ2

ξt)

+(1−N−2)N−2(σ2
t+1 +N−2σ2

ξt)

= N−2σ2
t+1 + (an + 1)N−4σ2

ξt(1 + o(N))

≈ N−2σ2
t+1 + (an + 1)N−4(Dgran

t +Dover
t ).

Therefore, we have

Dover
t+1

Dgran
t+1

≈
σ2
t+1 + (an + 1)N−2(Dgran

t +Dover
t )

4σ2
t+1 lnN + (an + 1)Dgran

t

. (35)

It follows from Lemma 3 that limN→∞
Dover0

Dgran0
= 0. By

induction of (35), we have

lim
N→∞

Dover
t+1

Dgran
t+1

= 0

for any t. This completes the proof.
Theorem 6: For the system (21-22), assume that A is

unstable and KΓ 6= 0. Let the quantizer be designed as
(30)-(31). When N � an/2, the distortion satisfies

Dt+1 ≈
4θσ2

t+1 lnN

3N2
+
an

N2
Dt. (36)

The proof is obvious by using Theorem 5 and the fact that
Dt+1 = Dover

t+1 +Dgran
t+1 .

Theorem 7: Consider the system (1), the cost function (2),
the quantized feedback controller Kx̂qt with K given by (3).
Let x̂t and x̂qt be given by (5) and (11) respectively, where
the quantizer εqt is defined by (26), and ξqt is defined in
Theorems 4-6. When N = 2R � an/2, the whole cost
function J is given by (27).

Proof: When N = 2R � an/2, it follows from (36)
that

lim
t→∞

Dt ≈
4θσ2

t+1 lnN

3N2
.

Therefore the quantization distortion is given by

Do = lim
T→∞

1

T

T∑
t=0

Dt ≈
4θσ2

t+1 lnN

3N2
.

Using Lemma 1, we know that the cost function J is given
by (27).
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V. CONCLUSION

This paper has introduced the quadratic LQG control
problem. Through a weak separation principle, this problem
can be converted to a quantized state estimation problem. We
have drawn the connection of the latter problem to vector
quantization, as well as their differences. The bottom line
is that the optimal solution to the quantized state estimation
problem can not be easily separated into state estimation
and quantization problems, thus there is Kalman filter-like
recursive solution to the quantized LQG problem. We have
studied the infinite-horizon quantized LQG control problem
for a high-order single-input-single-output system by using
a LPC-based approach to quantized state estimation. Under
high resolution quantization assumption, an adaptive fixed-
rate quantization scheme can indeed achieve stability for
the closed-loop system, and its quadratic cost is simply
characterized. We have shown that the average quantization
distortion has the order of R2−2R under high resolution
quantization, which is the same with that of LPC scheme
with memoryless quantizer. We comment that although our
result assumes high resolution quantization, in practice it is
sufficient to have a very modest bit rate; see an example in
[20].
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