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Abstract— This paper studies the problem of localizable con-
ditions for sensor nodes in a two-dimensional sensor network. A
new group of conditions are proposed which judge each node’s
localizability through analyzing its connections with not only
a set of already localized nodes but also its other neighbors.
Our new conditions allow up to four nodes to be localized
at a time. This algorithm offers a substantial improvement
in localizability over the well-known trilateration method and
convex hull method. We show that a newly developed WHEEL

extension condition is a special case of our conditions. We also
demonstrate that our result can be used as a guideline to modify
topology of a network for better localizability.

I. INTRODUCTION

Sensor node localization is a fundamental problem for

applications of sensor networks, including wildlife tracking,

ocean monitoring, intelligent manufacturing, information en-

cryption and carbon pollution reduction.

There are two common approaches to localization. The

first one is based on distance (or range) information, i.e., rel-

ative distance measurements between sensor nodes, whereas

the second one employs other information including angular

measurements, hop-count and other positioning measure-

ments. In this paper, we only consider distance-based two-

dimensional (2D) localization problems.

Known localization schemes can only compute the loca-

tions of nodes that are “easily localizable”. There are two

representative schemes. First is the well-known trilateration

scheme which requires each “new” node to have distance

measurements with at least three anchor nodes [3]. This

approach localizes nodes fitting this condition one by one.

The other scheme is called the convex hull method (also

known as the DILOC algorithm) which requires each node

to lie inside a convex hull by at least three anchor nodes

[1]. The location of each node can be computed iteratively

by these three anchors. This approach can localize all nodes

concurrently, whereas the trialteration approach is sequential.

But the main drawback of the DILOC algorithm is that nodes

outside the convex hull of the anchor nodes are unable to be

localized.

The 3-connected condition is used for localization in

the trilaiteration method. This condition is limited because

typically only a small part of the nodes in a network satisfies
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the 3-connected condition. Often the time, several “new”

nodes may be jointly localized by anchor nodes. Therefore,

we want to relax the 3-connected condition and develop a

way to localize multiple nodes at a time.

Besides the 3-connected condition, many existing works

on localization focus on localizing a whole network (see, e.g.,

[4]). The drawback of the localization conditions for a whole

network is that, once the network is not fully localizable,

they cannot be used to find localizable nodes in the network.

Practically, a randomly deployed sensor network is hardly

fully localizable [5], and the task of localization is to find

the set of localizable nodes.

In this paper, we will seek for ways to relax the localizable

condition to allow several nodes to be jointly localized at a

time. Localizable conditions will be provided by analyzing

the rigidity properties of the combined set of nodes.

II. PROBLEM STATEMENT AND RELATED WORK

The localization problem is often characterized through

rigidity conditions of the sensor network graph. A sensor

network graph is formed by the set of sensor nodes V and

the available distance measurements between nodes (i.e., the

edges E), and the graph is denoted by G(V,E). We assume

that G(V,E) is a connected graph. A graph is rigid if it cannot

be continuously deformed without changing the distances.

A graph is called redundantly rigid if it is still rigid after

removing any one edge. A graph is called 3-connected if it

is still connected after removal of any two nodes. A graph is

called globally rigid if there is a single realization with the

given distance constraints. A globally rigid graph is called

minimally globally rigid if it is no longer globally rigid after

removing any edge. It is well known that a graph is globally

rigid if and only if it is 3-connected and redundantly rigid

[6]. Throughout the paper, we consider the so-called generic

properties of graphs [2], which mean none of any three nodes

in the graph is co-linear. This graph is generically globally

rigid because the co-linear event is a zero-measure event. For

notational simplicity, we will not mention the term “generic”

explicitly.

It is obvious that a 2D graph is localizable if and only

if the graph is globally rigid and there are at least three

anchor nodes. Given this, the sequential localization problem

we study in this paper is the following: Given an anchor

graph G1 = (V1,E1) (with known locations for all nodes in

it) and a connected graph G2 =(V2,E2), we want to know the

conditions on the connections (i.e. the set of connecting edges

E3) between the two graphs such that the concatenated graph

G= (V1∪V2,E1∪E2∪E3) is globally rigid. In particular, we
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want to know how many connecting edges are needed and

how they are connected.

It is clear that not all localizable nodes can be detected

by using the above sequential method. The main advantage

of the above method is that the computational load is

relatively low. In practice, if a sensor network cannot be

made localizable using the above method, it can be done so

by adding a number of distance measurements (edges), and

this number is typically small, we will show this fact via an

example later.

Obviously, our sequential algorithm differs from the

known trilateration method in the sense that several nodes are

jointly localized each time. To demonstrate the need for this,

we can have a look at the graph in Fig. 1(b) where nodes in

G1 are anchors and nodes in G2 need to be localized. Nodes

in G2 have an internal edge and they also have 4 connections

with the anchor nodes. It is clear the new nodes are not 3-

connected to nodes in G1 but they are still localizable jointly

(see Theorem 1 later).

Our work can also be viewed as checking the localizability

of two merging graphs. In [8], Yu et al. studied how to

construct connecting edges between two set of nodes in

order to get a globally rigid graph after merging, which is

important for formation control in multi-agent systems. But

they require both sets to be globally rigid. In this paper, we

consider one graph of anchor nodes and one arbitrary graph

to be merged, with no guarantee on global rigidity or even

rigidity. Also, no anchor node appears in the graph to be

merged.

III. LOCALIZABILITY CONDITIONS

This section provides the localizability conditions for a

2D concatenated graph formed by an anchor graph G1 and a

merging graph G2. Since all the nodes in G1 are anchored,

we can assume that G1 is globally rigid. The merging

graph G2 is assumed to be a connected graph. We want

to determine the number of necessary connecting edges and

the connection patterns such that the concatenated graph G

is also an anchored graph.

Since localization is closely related to global rigidity, we

first give a necessary condition on the number of edges for

a 2D graph to be globally rigid.

Lemma 1: For a graph G with n nodes to be globally

rigid, it is necessary that G has at least 2n− 2 edges.

Proof: This follows directly from the definition of

a global rigidity. Since removing any edge, the remaining

graph G− is still rigid, it implies that G− has at least 2n−3

edges due to the facts that each node has two degrees of

freedom, that a rigid graph is still free to do rotation as

well as vertical and horizontal translations which account

for three degrees of freedom, and that each edge constraints

one degree of freedom. That is, G− has at least 2n−3 edges.

Hence, G has at least 2n− 2 edges.

This leads to the next result which states a necessary con-

dition on the number of connecting edges for a concatenated

graph to be globally rigid.

Corollary 1: Given two graphs G1, containing m nodes

and p edges inside, and G2, containing n nodes and q edges,

if their concatenated graph G is globally rigid, then there

must be at least 2(m+n)− (p+q)−2 edges connecting G1

and G2.

The following result characterizes the localizability con-

ditions for cases of |V2| ≤ 4 (where for any finite set X , |X |
denotes its cardinal number).

Theorem 1: Given an anchor graph G1 = (V1,E1) with

|V1| ≥ 3 and a connected merging graph G2 = (V2,E2) for

|V2| ≤ 4, G2 is localized via a set of connecting edges E3

with G1 with a minimum |E3| if and only if E3 is such

that the concatenated graph G = (V1 ∪V2,E1 ∪ E2 ∪ E3) is

3-connected and the following condition is satisfied:

1) If |V2|= 1, then min |E3|= 3;

2) If |V2|= 2 and |E2|= 1, then min |E3|= 4;

3) If |V2|= 3 and |E2|= 2, then min |E3|= 5;

4) If |V2|= 3 and |E2|= 3, then min |E3|= 4;

5) If |V2|= 4 and |E2|= 3, then min |E3|= 6;

6) If |V2|= 4 and |E2|= 4, then min |E3|= 5;

7) If |V2|= 4 and |E2|= 5 or 6, then min |E3|= 4.

The connection patterns satisfying the above conditions are

all listed in Fig. 1.

Proof: Since G1 is an anchor graph, G2 is localized

via E3 if and only if G is globally rigid. Hence, it is

necessary for G to be 3-connected. It remains to show that

the additional condition on |E3| as itemized above is the

minimum for guaranteeing that G is redundantly rigid, and

that the connection patterns in Fig. 1 are all the patterns

satisfying these conditions.

(Necessity) Above conditions on |E3| is easily to be

checked as the minimum number to guarantee the redun-

dantly rigidity of G and thus omitted here. To see the detail

of proof, please check a full version of this work [11].

(Sufficiency) For each case of |V2|, |E2| and |E3| as

itemized in the theorem, we need to show that there exists

at least one connection pattern satisfying the 3-connected

condition and redundant rigidity condition, and then list all

such patterns.

When |V2| = 1 and |E3 = 3|, the connection pattern in

Fig. 1(a) is obvious.

When |V2|= 2, |E2|= 1 and |E3|= 4, each node must have

two connecting edges. The connection pattern is in Fig. 1(b)

with either 3 or 4 connecting nodes in G1. To show the 3-

connectedness for G, we note that if both nodes in G2 are

removed, the remaining graph, which is G1, is connected;

and if one node in G2 and one node in G1 are removed,

the remaining node in G2 is still connected to G1. To see

redundant rigidity, if one connecting edge is removed, the

node in G2 not connected to this edge is rigid (because of

two connections to G1), and once this node is rigid, the other

node is also rigid because of its connection to the first node

and to G1.

When |V2| = 3, |E2| = 2 and |E3| = 5, G2 is a chain, so

each of the end nodes must have 2 connecting edges and the

middle node must have one connecting edge. The connection

pattern is in Fig. 1(c) with 3, 4 or 5 connecting nodes in G1.
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Fig. 1. Feasible Connection Patterns for Localization

The 3-connectedness and redundant rigidity of G are similar

as above case and thus omitted here.

When |V2|= 3, |E2|= 3 and |E3|= 4, G2 forms a triangle.

It is thus necessary that each node in G2 has a connecting

edge and one node has an extra connecting edge. There

are either 3 or 4 connecting nodes in G1. To ensure 3-

connectedness, it is necessary to avoid the situation that one

node (say nodea) in G2 is connected to two nodes in G1

and the other two nodes in G2 is connected to a single node

(say nodeb) in G1 because, in this case, by removing nodea

and nodeb would disconnect G. This leaves the only possible

connection pattern shown in Fig. 1(d). For this pattern, the

3-connectedness condition can be visually inspected.

When |V2|= 4, |E2|= 3 and |E3|= 6, G2 is either a chain

Fig. 1. Feasible Connection Patterns for Localization (con’t)

or a tree, as shown in Fig. 1(e)-(f). For the chain, each of the

end nodes must have 2 connecting edges each and the middle

nodes each one connecting edge each. For the tree, each

of the end nodes must have 2 connecting edges each. The

possible connection patterns are shown in Fig. 1(e)-(f), with

the requirement that there are at least 3 connecting nodes in

G1. The 3-connectedness and redundant rigidity conditions

are easily checked as before and thus omitted.

When |V2| = 4, |E2| = 4 and |E3| = 5, G2 is either a

loop (Case A) or a triangle connected to an end node (Case

B). For case A as shown in Fig. 1(g), each node in G2

must have a connecting edge, and the fifth connecting edge

is connected to any node, e.g., the top node in Fig. 1(g).

To guarantee the 3-connectedness condition, we must have

|v1,v3,v4,v5| ≥ 3. For Case B as shown in Fig. 1(h)-(i),

the end node need 2 connecting edges and two nodes with

only two edges need one connecting edge each, and the

remaining connecting edge needs to be connected to any

node in the triangle, as the connecting edge with v3. To

guarantee the 3-connectedness condition in Fig. 1(h), we

must have |v1,v2,v3,v4,v5| ≥ 3, v1 6= v2 and v4 6= v5. To

guarantee the 3-connectedness condition in Fig. 1(i), we

must have |v1,v2,v3,v4,v5| ≥ 3, v1 6= v2 and v3 6= v4. In both

cases, at least 3 connecting edges in G1 are necessary. The

redundant rigidity condition is easily checked as before and

thus omitted.

When |V2| = 4, |E2| = 5 and |E3| = 4, G2 is formed by

joining two triangles, as shown in Fig. 1(j) (without the

dash line). It is clear that the two nodes with two edges

each (the top and bottom nodes in Fig. 1(j)) need at least

one connecting edge each. To ensure 3-connectedness, the

remaining two connecting edges in E3 cannot be allocated

to the top and bottom nodes only (Otherwise, removing

these two nodes would disconnect G). The only possible
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Fig. 2. (I) is a normal WHEEL structure. (II)-(VI) correspond to different
anchor nodes deployment.

connection patterns are shown in Fig. 1(j)-(l), where the top

node, bottom node and a third node (which is either of the

remaining nodes) each has an edge connected to a different

node in G1, plus another edge connecting any node in G1 to

any node in G2. The 3-connectedness and redundant rigidity

conditions are easily checked as before and thus omitted.

When |V2| = 4, |E2| = 6 and |E3| = 4, G2 is shown as

Fig. 1(j) (with the dash line). The feasible connection patterns

are shown in Fig. 1(j)-(l) (with the dash line) and are identical

to those for the |E2 = 5| because the extra internal edge does

not affect the argument we had earlier for the allocation of

the connecting edges.

IV. BEYOND TRILATERATION AND WHEEL

EXTENSION

It is clear that the results above include the trilatertion

condition as a special case. In this section, we compare our

results with a method known as WHEEL extension [7].

In the work of [7], the authors explore the localizable

nodes through detecting a WHEEL structure in the network.

A node is claimed to be localizable if it is included in a

WHEEL graph containing at least three anchor nodes. A

common WHEEL graph is as shown in Fig. 2(I). Since there

are six nodes in a WHEEL graph, one can detect at most

three nodes jointly localizable according to this condition.

In this way, the trilateration condition can be treated as a

special case of WHEEL graph. In fact, according to different

positions of anchor nodes, there are at most five possible

WHEEL structures as shown in Fig. 2(II)-(VI). In a WHEEL

graph, each rectangle indicates one anchor node and the

solid circle indicates a node to be localized. It turns out

that each graph in Fig. 2(II)-(VI) is a special case in our

conditions shown in Fig. 1. The detailed relationship is

shown in Table. I. We can see that the WHEEL extension

is included in our conditions with no more than three nodes

in G2. Since we also consider the case of four nodes in G2,

our conditions can detect more localizable nodes compared

with WHEEL extension.

V. SIMULATION

A. Comparison With Convex Hull Situation

To demonstrate the effectiveness of our proposed method,

we first run a simulation to compare the number of local-

izable nodes detected by using the concept of convex hull

in [1], trilateration and our given conditions. Given a 80-

node network G, when using trilateration and our localizable

conditions, all nodes are randomly deployed in a 100× 100

units area. Each anchor node is identical with other normal

nodes except they know their positions of themselves. Every

node has direct connections with their neighbors who living

inside a communication radius, say 20 units in this simula-

tion. But when using the convex hull method, the anchors are

set manually and assumed to have a communication radius

that guarantee all nodes lying inside the convex hull can be

directly connected with the three anchors. Here, we use the

maximum value of the distance measurements between three

anchor nodes as the communication radius.

As shown in Fig. 3, each sensor node is indicated by a

circle and has an edge connected with their neighbors. Three

anchors are connected by thick solid line and the localizable

nodes are marked by angles. Note that, besides all nodes

lying inside the convex hull, some nodes lying outside the

convex hull are also localizable. This is caused by the fact

that these nodes are also covered inside the communication

area of three anchors, i.e., they might have direct connections

with three anchors. The topology here may different from

that simulated in the DILOC method algorithm in [1]. In

[1], they need to guarantee each node will be lying inside

a triangle by its three neighbors. So, each node should have

to find at least three neighbors to contain it inside. Since

we only concern the number of localizable nodes here, we

simplify the topology and only connect the anchor nodes with

nodes that have less than three neighbors within radius of 20

unit. This will not affect the number of detected localizable

nodes.

The localizable effect of our given condition is shown in

Fig. 4. Different from the convex hull method, the anchors

here are randomly chosen and assumed to have identical

communication radius with other nodes. We notice that, after

using our given conditions, a lot more localizable nodes than

convex hull method can be detected for the same network.

Actually, the group of nodes deployed on top-right, which

cannot be detected as localizable by our conditions, can be

easily checked to be definitely un-localizable since they are

even not rigid.

TABLE I

CORRESPONDING RELATIONSHIP

WHEEL Graph in Fig. 2 Graph Described in Fig. 1

Fig. 2 (II) Fig. 1(d)
Fig. 2 (III) Fig. 1(c)
Fig. 2 (IV) Fig. 1(c)
Fig. 2 (V) Fig. 1(a)+(b)
Fig. 2 (VI) Fig. 1(c)
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Fig. 3. Compare With DILOC

B. Comparison With Trilateration and WHEEL Extension

The network shown in Fig. 4 is one realization of a 80-

node network G. Each node is also randomly deployed. The

top figure in Fig. 4 shows the localizability results using

WHEEL extension, whereas the bottom figure shows the

results using our proposed conditions. In this simulation,

our conditions show obvious improvement on localizable

effectiveness.

We also run a 100-round Monte-Carlo simulation to show

the effectiveness of our proposed conditions compared with

both trilateration method and WHEEL extension in more

general cases. In each round, a 80-node network G is

randomly deployed in a 100× 100 unit area. The anchor

nodes are randomly selected. All nodes have the same

communication radius. In each round, we compare four

cases: (1) Fig. 1(a) only; (2) Fig. 1(a) and (b); (3) Fig. 1(a)-

(d); (4) Fig. 1(a)-(l). As we mentioned in above section,

the trilateration and WHEEL extension have a corresponding

relationship with cases (1) and (3), respectively.

The result is shown in Fig. 5. Four groups of columns

respect to the four cases we considered earlier. We also show

in Fig. 5 the effect of communication radius on localizability.

In each group, columns from left to right indicate three

situations with communication radius 17, 20 and 25, re-
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Fig. 4. Compare With WHEEL Extension

spectively. The first group corresponds to localizable ratio of

Fig. 1(a), i.e., the trilateration case. It is clear from Fig. 5 that

improvement of our method is significant in comparison with

the trilateration method, when the communication radius is

not too large, especially when the average degree is close

to the common suggestion of 6 or 8 in practical network

deployment [9][10]. Note that the trilateration scheme in

each round will not stop until no more localizable nodes can

be found. So, the result shown in the first group of columns of

Fig. 5 is indeed the localizable ratio detected by a sequential

scheme of trilateration. It finds out all nodes satisfying

the trilateration condition. Our condition also shows better

localizable effectiveness than the WHEEL extension method.

C. Modification of Network Topology

The proposed localization conditions can also be used to

eliminate the redundant connections in a given network and

to improve localizability of the network through adding a

small number of extra connections on specific nodes.

To eliminate the redundant connections, we can simply

remove edges that are not necessary for each localizable

pattern according to our conditions. Through this way, the

average degree gets reduced and the communication and

computational loads are reduced at the same time. Adding

extra connections for un-localizable nodes need extra work
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on finding proper un-localizable nodes and modifying com-

munication radius. But this is easily to be done when the

isolated nodes are not too many. Our localization conditions

can be as a guideline to decide where to add connections.
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Fig. 6. A Modified Network Topology of Bottom Figure in Fig. 3

We show an example of such modification in Fig. 6 , which

is modified from Fig. 3. The nodes inside the thick circles

are those not localizable previously, and the required extra

connections to make them localizable are marked by arrowed

lines. We can see that the total number of connections

is significantly reduced and only two new connections are

added to make the whole network localizable.

To demonstrate the reduction effect according to our

conditions in more general cases, we run a 100-round Monte

Carlo simulation to compute the reduction ratio of the

connecting edges. The results are shown in Table II, where

Edges#1 and Degree#1 denote the number of connecting

edges and average degree before the modification, respec-

tively, whereas Edges#2 and Degree#2 denote those after

the modification. We see that the reduction of the connecting

edges is significant.

TABLE II

REDUCTION OF CONNECTING EDGES VS. RADIUS

Radius Nodes Edges#1 Edges#2 Degree#1 Degree#2

17 26.63 249.28 61.05 18.72 4.58
20 59 336.30 142.93 11.40 4.85
25 77.46 503.55 195.87 13.00 5.06

VI. CONCLUSION

In this paper, we have provided a group of localizable

conditions for sensor networks. Our conditions can detect

one to four localizable nodes in each step. In comparison

with methods available in the literature, we have signifi-

cantly generalized the well-known trilateration method and

the convex hull method. The so-called WHEEL extension

condition can also be treated as a subset of our localiz-

able patterns. Simulation results show that our method is

effective for detecting localizable nodes and offers significant

improvements over known methods. We have also offered a

simple modification to trim redundant connecting edges and

at the same time to improve the localizability of the whole

network.
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