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Abstract— Belief propagation (BP) is a well-celebrated itera-
tive optimization algorithm in statistical learning over network
graphs with vast applications in many scientific and engineering
fields. This paper studies a fundamental property of this
algorithm, namely, its convergence behaviour. Our study is
conducted through the problem of distributed state estimation
for a networked linear system with additive Gaussian noises,
using the weighted least-squares criterion. The corresponding
BP algorithm is known as Gaussian BP. Our main contribution
is to show that Gaussian BP is guaranteed to converge, under
a mild regularity condition. Our result significantly generalizes
previous known results on BP’s convergence properties, as our
study allows general network graphs with cycles and network
nodes with random vectors. This result is expected to inspire
further investigation of BP and wider applications of BP in
distributed estimation and control.

I. INTRODUCTION

Pearl’s Belief Propagation, or Belief Propagation (BP) for
short, is a well-celebrated algorithm in the area of statistical
learning. Originally proposed by Pearl [1] in 1982, this
algorithm (also known as sum-product message passing),
is a message passing algorithm for computing marginal
distributions on Bayesian networks (directed and acyclic
graphs) and Markov random fields (undirected and cyclic
graphs). Since its introduction, BP has been widely accepted
as a powerful distributed algorithm in many scientific and
engineering fields, including artificial intelligence, infor-
mation theory, applied mathematics, signal processing and
control systems [2]. Renowned applications of BP include
low-density parity-check codes and turbo codes for digital
communications [3]–[5], free energy approximation for sta-
tistical learning [2], satisfiability for mathematical logic [2],
combinatorial optimization [6] and computer vision [7], [8].
BP also finds important applications in the area of state
estimation. It is interesting to note that the famous Kalman
filtering algorithm for state estimation of dynamic systems is
known to be an example of BP [9]. BP has also been applied
to devise distributed least-squares estimation algorithms [10],
[11].

In a nutshell, BP can be roughly described as solv-
ing the following problem: Given a joint density func-
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tion P (x1, x2, . . . , xn) for a set of discrete random vari-
ables x1, x2, . . . , xn, compute the following marginals (or
marginal probability density functions)

Pi(xi) =
∑

x1...xi−1xi+1...xn

P (x1, x2, . . . , xn), i = 1, 2, . . . , n.

It is clear that brute force computation of the marginals
will create combinatorics explosion because, if each xi takes
M possible values, it would require O(Mn) calculations.
BP circumvents this problem by exploring the structure of
the function P (·), i.e., by analysing the network graph that
interconnects the variables xi. It is a distributed iterative
algorithm. At each iteration, each variable node i (for xi)
uses all the information (messages) collected from its neigh-
bours, updates the conditional probability density function
for xj (called message or belief), for every neighbouring
node j, and transmits the resulting message to node j (called
passing or propagation). Although the above description is
for discrete random variables, BP also applies to continuous
random variables. The so-called Gaussian BP algorithm
refers to the case with Gaussian density functions [12].

For acyclic graphs (i.e., graphs without loops), it is known
that the iterative process will converge in a finite number of
steps, and the correct marginals will be produced [11], [13],
[14]. For cyclic graphs (i.e., graphs with loops), BP is not
guaranteed to converge in general, and even if it does, it
does not calculate the correct marginals. Nevertheless, the
wonderful and mysterious feature of BP is that for most
applications, BP delivers amazingly good approximations for
the marginals, despite the existence of loops [12], [15], [16].
Turbo decoding is perhaps the most successful example of
such a BP application, as it delivers near-Shannon-capacity
performances, despite the fact that the underlying graph is
very loopy. This success has been claimed as “the most
exciting and potentially important development in coding
theory in many years” [17].

BP’s excellent performances have inspired many re-
searchers over the last 20 years or so to study its theoretical
properties. The fundamental questions are: 1) For a cyclic
network graph, under what conditions will BP iterations
converge? 2) Upon convergence, how accurate are the ap-
proximate marginals? For a general cyclic graph, [18]–[22]
studied the convergence condition for BP and [19], [22], [23]
worked on the accuracy analysis. These references, however,
only give partial answers. Moreover, the conditions offered
in these references are mainly applicable to discrete random
variables only. This inspires the study of Gaussian BP, as
described below.
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For the special case of Gaussian BP where the graph in-
volves only one loop (i.e., a circle graph), satisfactory results
on the two problems described above are available [24]. So
far, several conditions ensuring the convergence of Gaussian
BP have been proposed [14], [24]–[27]. However, there are
two major drawbacks of these works:
• The condition for convergence is too difficult to check.

For example, [26], [27] require solving a semi-definite
program (SDP) and evaluating the spectral radius of an
infinite dimensional matrix.

• They only work for nodes with scalar variables xi.
Our study is conducted through the problem of distributed
state estimation for a networked linear system with additive
Gaussian noises, using the weighted least-squares criterion.
The corresponding BP algorithm is known as Gaussian BP.
The network has I nodes and each node i has a state vector
xi. Two types of measurements are available at each node i,
the so-called self measurement which provides some linear
measurement on xi and the so-called neighbour measure-
ment which provides some linear joint measurement between
xi and xj with a neighbouring node j. The measurements
are corrupted by additive Gaussian noises. Communications
between neighbouring nodes are allowed. The goal of dis-
tributed weighted least-squares estimation is to devise a dis-
tributed iterative algorithm so that each node i will compute a
good estimate of its own state xi using its own measurements
and information exchange with its neighbours. In [10], we
introduced a BP-like iterative algorithm for distributed WLS
estimation and showed that, for an acyclic communication
graph, this algorithm converges, in a finite number of steps,
to the global optimal solution (a solution obtained when the
measurements for all the nodes are available). This algorithm
is applied to distributed estimation of quasi-state for power
systems in [11].

The purpose of this paper is to study the behaviour of
Gaussian BP for cyclic graphs. The significance of this
problem is of twofold. Firstly, WLS is a fundamental estima-
tion technique with vast applications, and distributed WLS
estimation is naturally needed for large-scaled networked
systems when centralized solutions are not possible due to
high computational loads and heavy communication burdens
within the network. Secondly, solutions to this problem will
be a crucial step for studying the behaviour of BP under
more general settings, or for many other BP applications. Our
main contribution is to show that Gaussian BP is guaranteed
to converge, under a mild regularity condition. Our result
significantly generalizes previous known results on BP’s
convergence properties, as our study allows general network
graphs with cycles and network nodes with random vectors.
Due to the space limit, we only provide the main findings
and leave out most of the technical derivations.

II. PROBLEM FORMULATION

Suppose that there is a network graph consisting of I
nodes. For each i = 1, . . . , I , let Ni denote the set of
neighbors of node i. We assume that j ∈ Ni whenever
i ∈ Nj . We also assume that node i can transmit its data

to every node j with j ∈ Ni. This communication induces
a graph G, such that the (i, j)-th entry Gi,j of its adjacency
matrix G is given by

Gi,j =

{
1, if j ∈ Ni,
0, else.

We assume that node i concern about its individual state
xi ∈ Rni , and has a vector hi ∈ Rmi of self measurements
and a vector hi,j ∈ Rmi,j of neighbor measurements, for all
j ∈ Ni. These measurements are given by

hi = Hixi + ωi, (1)
hi,j = Hi,jxi +Hjixj + ωi,j , (2)

where ωi and ωi,j are zero mean Gaussian vectors with
covariances E[ωiω

T
i ] = Wi > 0 and E[ωi,jω

T
i,j ] = Wi,j > 0,

respectively, and all these vectors are uncorrelated. Also, the
measurement hi,j is shared by nodes i and j, i.e., ωi,j = ωj,i
so that hi,j = hj,i. We assume the following regularity
condition:

1: For any i = 1, 2, . . . , I , HT
i W

−1
i Hi > 0.

The goal of node i is to obtain an estimate of xi using only
its available measurements hi and hi,j , j ∈ Ni, as well as
communication with its neighbors in Ni. A popular approach
to do so is to use Gaussian BP. In this algorithm, there are
two kind of nodes, namely, variable and factor nodes. To
solve the above estimation problem, a variable node i is
associated to each equation (1), and a factor node (i, j) to
each (2). The message passed between these nodes are [27]

mi,j→j (xj) =

ˆ
p (hi,j |xi, xj)mi→i,j (xi) dxi, (3)

mi→i,j (xi) = p (hi|xi)
∏

k∈Ni\j

mi,k→i (xi) . (4)

When applied to the linear, Gaussian estimation problem de-
fined by (1)-(2), the iterations (3)-(4) result in the procedure
summarized in Algorithm 1.

Remark 1: Algorithm 1 is written in terms of the BP
framework. A version of this algorithm written in terms more
suitable for its implementation is given in [11].

The goal of this paper is to study the convergence property
of Gaussian BP.

III. NETWORK GRAPH CONVERSION

In order to study the convergence of Gaussian BP, it
is instrumental to convert the given network graph into a
different one with a more convenient topology. In Section III-
A we explain how a cyclic graph can be converted into an
acyclic one, having an infinite number of nodes. Then, in
Section III-B, we explain how to further convert the latter
into a graph with a line topology.

A. Conversion of a cyclic graph into an acyclic one

We illustrate the procedure in Fig. 1, where the cyclic
graph on the left is converted into the acyclic one on the
right, by considering node 1 as the root node.

Let A denote the infinite-sized acyclic graph resulting
from the above conversion. For each node i in A, let p(i)
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Algorithm 1 Belief propagation algorithm for state estima-
tion in system (1)-(2)

1) Initialization: At time k = 0 and variable node i, do
the following two steps:
1.1) Compute

αi(0) = HT
i W

−1
i yi,

Qi(0) = HT
i W

−1
i Hi.

1.2) Transmit the following information to each factor
node i, j, with j ∈ Ni

αi→i,j(0) = αi(0),

Qi→i,j(0) = Qi(0),

2) Main loop: At time N = 1, 2, · · · and node i, do:
2.1) Factor node i, j sends to each node j ∈ {i, j}

αi,j→j(N) = HT
i,jW

−1
i,j→j(N)yi,j→j(N),

Qi,j→j(N) = HT
i,jW

−1
i,j→j(N)Hi,j .

where

yi,j→j(N) = yi,j −Hi,jQ
−1
i→i,j(N)αi→i,j(N),

Wi,j→j(N) = Wi,j +Hi,jQ
−1
i→i,j(N)HT

i,j ,

2.2) Variable node i computes

αi(N) = αi(0) +
∑
j∈Ni

αi,j→j(N),

Qi(N) = Qi(0) +
∑
j∈Ni

Qi,j→j(N),

and

x̂i(N) = Q−1
i (N)αi(N), (5)

Σi(N) = Q−1
i (N).

2.2) Variable node i sends to each factor node i, j, with
j ∈ Ni

αi→i,j(N) = αi(0) +
∑

k∈Ni\j

αi,j→j(N),

Qi→i,j(N) = Qi(0) +
∑

k∈Ni\j

Qi,j→j(N),

denote the parent of node i (i.e., the next node found when
moving towards the root) and Si denote the set of sons of
the same node (i.e., all Nodes j, with i = p(j)). Also, for
each N ∈ N, let AN ⊂ A be the sub-graph formed by nodes
in A which are within N hops away from the root node. The
measurement equations associated to these nodes are

zi = Cix̄i + vi, (6)
zi,j = Ci,j x̄i + Cj,ix̄j + vi,j (7)

for all i ∈ AN and j ∈ Si, with vi ∼ N (0, Ri) and
vi,j ∼ N (0, Ri,j). The values of the quantities in (6)-(7)
are given by cyclically repeating those from (1)-(2). To see
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Fig. 1. Example of Conversion of a Cyclic Graph to an Acyclic One

this correspondence, we list in Table. I how the values of
zi, Ci and Ri are related to those of hi, Hi and Wi. The
correspondence of the values of zi,j , Ci,j and Ri,.j with hi,j ,
Hi,j and Wi,j follows accordingly.

TABLE I
THE RELATIONSHIP BETWEEN (1)-(2) AND (6)-(7), IN THE EXAMPLE OF

FIG. 1

State Measurement Measure Matrix Noise Covariance
x̄1 ∈ Rn1 z1 = y1 C1 = H1 R1 = W1

x̄2 ∈ Rn2 z2 = y2 C2 = H2 R2 = W2

x̄3 ∈ Rn3 z3 = y3 C3 = H3 R3 = W3

x̄4 ∈ Rn3 z4 = y3 C4 = H3 R4 = W3

x̄5 ∈ Rn2 z5 = y2 C5 = H2 R5 = W2

x̄6 ∈ Rn1 z6 = y1 C6 = H1 R6 = W1

x̄7 ∈ Rn1 z7 = y1 C7 = H1 R7 = W1

x̄8 ∈ Rn2 z8 = y2 C8 = H2 R8 = W2

x̄9 ∈ Rn3 z9 = y3 C9 = H3 R9 = W3

Without loss of generality, let node 1 be the root of the
graph A. It follows from [11] and [22] that, at time step N ,
the BP algorithm gives, at node 1, the WLS estimate of x̄1

that would be obtained if AN was the whole graph. Then,
the problem of studying the convergence of BP is turned into
the problems of studying the convergence of the information
matrix Q1(N) and the information vector α1(N) of node 1,
in the graph AN , as N →∞.

B. Conversion of an acyclic graph into a line

As before, let AN denote an acyclic graph having node 1
as its root and N layers. In this case, we convert AN into
a line LN by collecting, for all n = 1, . . . , N , all the nodes
in the n-th layer (Tn) into a a single node (node ĩn).

Let S(t) denote the t-th element in the set S, and |S|
denote the number of elements in S . The measurement
equations associated to LN are:

z̃n = C̃nx̃n + ṽn, (8)
z̃n,n+1 = C̃n,n+1x̃n + C̃n+1,nx̃n+1 + ṽn,n+1, (9)
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for each n = 1, · · · , N , where

C̃n = diag{CTn(1), CTn(2), . . . , CTn(|Tn|)},

F1,i =
[
CTi,Si(1) CTi,Si(2) . . . CTi,Si(|Si|)

]T
,

F2,i = diag{CSi(1),i, CSi(2),i, . . . , CSi(|Si|),i}

and

C̃n,n+1 = diag{F1,Tn(1), F1,Tn(2), . . . , F1,Tn(|Tn|)},
C̃n+1,n = diag{F2,Tn(1), F2,Tn(2), . . . , F2,Tn(|Tn|)}.

Also, ṽn ∼ N
(

0, R̃n

)
and ṽn,n+1 ∼ N

(
0, R̃n,n+1

)
, with

R̃n = diag{RTn(1), RTn(2), . . . , RTn(|Tn|)},
F3,i = diag{Ri,Si(1), Ri,Si(2), . . . , Ri,Si(|Si|)}

and

R̃n,n+1 = diag{F3,Tn(1), F3,Tn(2), . . . , F3,Tn(|Tn|)}.

Also

x̃n = col{x̄Tn(1), x̄Tn(2), . . . , x̄Tn(|Tn|)}.

Finally

z̃n = col{zTn(1), zTn(2), . . . , zTn(|Tn|)},

F4,i =
[
zTi,Si(1) zTi,Si(2) . . . zTi,Si(|Si|)

]T
and

z̃n,n+1 =
[
FT4,Tn(1) FT4,Tn(2) . . . FT4,Tn(|Tn|)

]T
.

Notice that the change of topology from AN into LN
does not change the measurement equations. Hence, the WLS
estimate of node 1 in LN is equivalent to that in AN .

IV. CONVERGENCE CONDITION FOR BP

From (5), the BP algorithm computes the estimate x̂i(k)
by multiplying the inverse of the information matrix Qi(k)
with the information vector αi(k). Hence, we need to study
the convergence of two quantities. In Section IV-A we study
the convergence of the information matrix Qi(k), and we
do the same for the state estimate x̂i(k) in Section IV-B.
Without loss of generality, we focus our analysis on the
convergence at node 1.

Notation 1: For any graph C (either cyclic or acyclic)
we use x̂i(C), Qi(C) and αi(C) to denote the estimate,
information vector and information matrix resulting from
running the WLS algorithm on the whole graph C.

Definition 1: For P,Q > 0, we define the Riemannian
Distance between P and Q by

δ (P,Q) =

√∑
i

log2 eigi (PQ−1).

Our convergence results depend on the system’s parame-
ters in (1)-(2) in a rather complicated manner. Nevertheless,
they are fully determined by the knowledge of the following
set of constants.

Notation 2: For a matrix A, we use σmax (A), σmin (A)
to denote its maximum and minimum singular value, respec-
tively. We also define

n̄ = max
i

dimxi, m̄ = max
i,j
{dimhi,dimhi,j},

r̄ = max
i,j
{‖Wi‖ , ‖Wi,j‖} ,

r = min
i,j
{σmin(Wi), σmin(Wi,j)} ,

h̄ = max
i,j
{‖Hi‖ , ‖Hi,j‖} ,

h = min
i,j
{σmin(Hi), σmin(Hi,j)} ,

z̄ = max
i,j
{‖hi‖∞, ‖hi,j‖∞} ,

ū = max
i
|Ni| − 1, ξ̄ = max

i
log σmax[I +Mi],

Mi =

∑
j∈Ni

HT
i,jW

−1
i,j Hi,j

 (HT
i W

−1
i Hi)

−1.

A. Convergence Condition for information matrix

We give an intuitive explanation of our approach. In view
of the graph conversion described in Section III-A, studying
the limit value of Q1(N) is equivalent to study the limit
of Q1(AN ), as N tends to infinity. Also, in view of the
conversion in Section III-B, we in turn have that Q1(AN ) =
Q1(LN ). Then, as the first step towards our main result, we
have the following lemma, which applies to a graph LN with
line topology.

Lemma 1: For each N and t∥∥Q−1
1 (LN+1)−Q−1

1 (LN )
∥∥ ≤ (eρN−1δN − 1

)
β−1

1 ,

where,

δN = δ
(
C̃TN R̃

−1
N C̃N ,

C̃TN R̃
−1
N C̃N + C̃TN,N+1R̃

−1
N,N+1C̃N,N+1

)
,

ρ =
α1

α1 + β1

α2

α2 + β2
,

with

α1 =
(ū+ 1)h̄2

r
, β1 =

h2

r̄
, α2 =

h̄2

β1
, β2 = r.

Lemma 1 states that the contribution to the information
matrix at node 1, from nodes which are far away, decays
exponentially with the number of hops. The constants ρ and
β1 are independent of N and the root node (i.e., whose
information matrix we are studying). On the other hand, δN
depends on the definition of LN , which in turn depends on
the root node. Out main result, stated below, deals with this
situation.

Theorem 1: For every N ∈ N,∥∥Q−1
1 (N − 1)−Q−1

1 (N)
∥∥ ≤ β−1

1

(
eρ̄

N−1δ̄ − 1
)
,

where ρ̄ = ρ
√
ū and δ̄ =

√
n̄(ū+ 1)ξ̄. Moreover, if ρ̄ < 1

and N > 1 + dlogρ̄
1
δ̄
e, then∥∥Q−1

1 (N − 1)−Q−1
1 (N)

∥∥ ≤ 2δ̄

β1
ρ̄N−1.
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Theorem 1 states that the increments of Q−1
1 (N) vanish

exponentially. Then, the desired convergence condition fol-
lows as a corollary of the this result.

Corollary 1: If ρ̄ < 1, there exists Q̄1 > 0 such that

lim
N→∞

Q1(N) = Q̄1

and the convergence is exponential.

B. Convergence Condition for the estimate

In this section we study the convergence of x̂1(k). To
this end, we separate our study in two parts. In Section IV-
B.1, we study the convergence in a graph with line topology,
and in Section IV-B.2 we extend this result to a graph with
arbitrary topology.

1) Convergence for a graph with line topology: Consider
a graph LN with line topology, whose measurement equa-
tions are given by (8)-(9). Let yTi =

[
z̃Ti , z̃

T
i,i+1

]
, wTi =[

ṽTi , ṽ
T
i,i+1

]
and

Aii =

[
C̃i

C̃i,i+1

]
, Ai,i+1 =

[
0

C̃i+1,i

]
, (10)

Si =

[
R̃i 0

0 R̃i,i+1

]
. (11)

Then, (8)-(9) becomes

yi = Aiix̃i +Ai,i+1x̃j + wi,

with wi ∼ N (0, Si). Let also xTN =
[
x̃T1 , · · · , x̃TN

]
, yTN =[

yT1 , · · · , yTN
]
, wT

N =
[
wT1 , · · · , wTN

]
and

AN =



A11 A12 0 · · · 0

0 A22 A23
. . .

...
...

. . . . . . . . . 0
...

. . . . . . AN−1,N−1 AN−1,N

0 · · · · · · 0 AN,N


.

We then have
yN = ANxN + wN ,

with wN ∼ N (0,SN ) and SN = diag {S1, · · · , SN}.
The WLS estimator x̂N of xN is given by

x̂N = Q−1
N qN ,

where qTN = AT
NS−1

N yN = [q1, · · · , qN ] with

qi =

{
ATiiS

−1
i yi, i = 1,

ATiiS
−1
i yi +ATi−1,iS

−1
i−1yi−1, i > 1,

(12)

and the (i, j)-th entry Qi,j of QN = AT
NS−1

N AN given by

Qi,i =

{
ATiiS

−1
i Aii, i = 1,

ATiiS
−1
i Aii +ATi−1,iS

−1
i−1Ai−1,i, i > 1,

Qi,i+1 = ATiiS
−1
i Aii+1,

Qi,j = 0, |i− j| ≥ 2.

Let
ΣN = Q−1

N .

Denote the i− j block of ΣN by [ΣN ]i,j . From the inverse
formula for band matrices [28], it follows that the first row
of ΣN is given by

[ΣN ]1,j =

(
j−1∏
k=1

∆−1
k Qk,k+1

)
Φ−1
j (N),

Φj(N) = Γj(N)−Qj−1,j∆
−1
j−1Qj,j−1, (13)

with

∆k =

{
Qkk, k = 1,

Qkk −Qk,k−1∆−1
k−1Qk−1,k, k > 1,

(14)

Γk(N) =

{
Qkk, k = N,

Qkk −Qk,k+1Γ−1
k+1(N)Qk+1,k, k < N,

(15)

for any j = 1, 2, . . . , N . Then, the first entry [x̂N ]1 of x̂N
is given by

[x̂N ]1 =

N∑
j=1

[ΣN ]1,j qj . (16)

By running the BP algorithm on the graph LN , it will
produce, at node 1 and step N , the WLS estimate [11], i.e.,

ˆ̃x1(N) = [x̂N ]1 .

It then follows from (16) that∥∥∥ˆ̃x1(N)− ˆ̃x1(N − 1)
∥∥∥

≤
N−1∑
j=1

∥∥∥[ΣN ]1,j − [ΣN−1]1,j

∥∥∥ ‖qj‖+
∥∥∥[ΣN ]1,N

∥∥∥ ‖qN‖ .
(17)

The main result of this section is given in Lemma 2. It
states the upper bound of the difference in (17), as N tends
to infinity.

Lemma 2: For any N > 2d1− logλ1
δNe,

‖x̂1(N)− x̂1(N − 1)‖ ≤ ηN
(
c1,Nλ

N/2
1 + c2λ

N/α
2

)
,

where

λ1 =
π̄1π̄2

(π̄1 + π1) (π̄2 + π2)
, λ2 =

√
q −√q
√
q +
√
q
,

c1,N =
2dδN

λ1q(d− 1)
, c2 =

q − q
qqλ2(1− λ2)

,

ηN = max
n≤N

‖qn‖, α = max

{
−1

2
logd λ1, 2

}
.

and

d =
q

qλ1
, q = (2ū+ 3) h̄2r−1, q = h2r−1,

π̄1 = r−1(ū+ 1)h̄2, π̄2 =
h̄2r̄

h2 , π1 = r̄−1h2, π2 = r,
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2) Convergence for a graph with arbitrary topology: We
give an overview of our approach. For each N , the value
of x̂1(N) obtained by running BP algorithm on the original
cyclic graph G, equals the estimate ˆ̄x1(N) that would be
obtained if the BP algorithm is applied to the acyclic graph
AN , i.e., x̂1(N) = ˆ̄x1(N). This in turn equals the estimate
ˆ̃x1(N) that would be obtained in the graph LN , if the latter is
built as explained in Section III-B. Hence, x̂1(N) = ˆ̃x1(N).

Since LN has a line topology, we can apply Lemma 2 here.
This requires finding uniform bounds (in the sense of being
independent of N ) for the two quantities in the statement
of that lemma, which depend on N , namely, c1,N and ηN .
These bounds are obtained as follows

c1,N ≤ ψ̄ūN/2, ηN ≤ η̄ūN/2,

with

ψ̄ =
2d

λ1q(d− 1)
ξ̄
√
n̄(ū+ 1),

η̄ =
εz̄
√

8m̄(ū+ 1)

r
.

Our main result follows then straightforwardly from Lem-
ma 2 and the above bounds.

Theorem 2: If ūλ1 < 1, then, for any N >

2
⌈
logūλ1

(λ1/ξ̄
√
n̄(ū+ 1))

⌉
, we have

‖x̂1(N)− x̂1(N − 1)‖ ≤ χ̄κN ,

with χ̄ = η̄
(
ψ̄ + c2

)
and κ = max

{
ū
√
λ1,
√
ūλ

1/α
2

}
.

Based on the exponential decay stated in Theorem 2, we
can derive the desired convergence condition.

Corollary 2: If κ < 1, then there exists x̂1,∞ such that

lim
N→∞

x̂1(N) = x̂1,∞,

and the convergence is exponential.
Remark 2: The condition ūλ1 < 1 in Theorem 2 is always

satisfied if κ < 1. Thus, it does not affect the decay condition
in Corollary 2.

V. CONCLUSION

We have reported in this paper the convergence property
of the well-known Gaussian BP algorithm. This is carried out
via the problem of distributed sate estimation for a networked
linear system. This is an important step in the complete
understanding of the behaviour of Gaussian BP. We hope
that our result will generate more interest in this powerful
statistical learning tool and will encourage more application
of the algorithm in distributed estimation and control.
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