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Abstract— In this work we consider systems where the mea-
surements and control signals are transmitted over networks
that are affected by independent and identically distributed
(i.i.d.) packet losses. In this setting, we study two separate
problems. The first one is the design of an offline state estimator.
The second one is the design of a linear quadratic regulator
(LQR). Both designs take the statistics of the network and the
system into account, and are optimal in the sense of minimizing
given cost functions. It turns out that these two designs, of which
each has an associated Riccati equation, are dual. We show that
the convergence of the Riccati equation associated to this dual
system formulation is a necessary and sufficient condition for
stability of the estimator and controller. Finally, we compare
the performance of the proposed offline estimator with those
of other estimators available from the literature.

I. INTRODUCTION

In this work we study the design of a controller and a
state estimator when the network that connects the controller
with the plant, or the sensor with the estimator, is affected by
random packet dropouts. We also establish a form of duality
that exists between these two designs. Although previous
works have used the duality that exists between the Riccati
equations that are used for the estimator and controller de-
signs to establish stability when packet dropouts are involved,
we will approach the problem slightly differently in this
paper. As we explain later in more detail, the advantage of
our approach is that our designs require solving a single
Riccati equation, rather than a set of coupled ones.

We consider two separate problems. In the first one, we
consider a system whose measurements arrive to the observer
via a wireless network, as depicted in Fig. 1. In the second
problem, we consider a system whose input is connected
to the controller through a wireless network, as depicted in
Fig. 2. Both networks are affected by random binary packet
dropouts, which are independent and identically distributed
(i.i.d.). We will look into the design of an optimal offline
minimum mean square error (MMSE) state estimator, and an
optimal linear quadratic regulator (LQR).

Most of the estimator designs for systems with intermit-
tent communications, available in the literature today are
based on two approaches: The first one is the time varying
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Kalman filter [1]–[3], which provides the optimal estimate,
but requires heavy online computations. The second one is
a pseudo-offline design method based on the jump linear
system (JLS) framework [4]–[6]. In the JLS approach, the
estimator is designed to take a finite number of recent packet
transmission outcomes into account [6]. This is done by
modeling the distribution of the packet arrivals as Markovian.
Here a set of estimator gains are found by solving a set
of coupled Riccati equations. These gains are then applied
depending on the number of recent packet transmission
outcomes. In [7], these estimators are called pseudo-steady-
state estimators, since, instead of converging to a steady state
error covariance, they converge to a set of error covariances,
of which each one is paired with a pattern of transmission
outcomes.

In the case of a controller design, there exists no online
design that is dual to the online Kalman filter. The reason for
this is that the controller, which utilizes information on the
current state, will minimize a cost function that penalizes
future states. However, since the system is causal, we do
not know the future communication outcomes; and therefore,
do not know which packets will be received. In fact, when
computing the control input at time k, the controller does
not even know the transmission outcome for the packet that
it is going to transmit. It is in this case common to use the
statistics of the network in the controller design [8]–[12] or to
use a scenario based approach [13]. The JLS framework [5]
can in this case be used to incorporate the probabilities for
packet dropouts when computing an optimal control input.
As for the estimator case, a set of optimal control gains is
found by solving a set of coupled Riccati equations which
are dual to the set of estimator Riccati equations. When
using this framework, one assumes that the current network
state is known at the controller when computing the control
input. However, the controller can not know the current
network state while computing the control input, since the
current network state will first be known after transmitting
the control input to the system. Therefore the JLS framework
is not directly applicable for the system that we consider in
the current work.

What we propose in this paper is to establish the duality
between true offline controller and true offline estimator
designs. This means that the design of the estimator and
controller will be solely based on the statistics of the system
and the network. The advantages of doing so is that we
obtain a time-invariant solution to the estimator and the
controller, which is easy to implement. Also, we only obtain
a single Riccati equation instead of a set of coupled ones. In
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Fig. 1 – The system that is considered for the estimator design.

the estimator case, this is done at the expense of certain
performance detriment in comparison with a finite loss
history or an online Kalman filter. In fact, by using i.i.d.
packet dropouts in the JLS framework, one can obtain similar
control and estimator laws, since in this case all the solutions
to the coupled Riccati equations will be identical. However,
in our current work, we present a simpler approach to the
design of the offline estimator and controller, while we also,
unlike the JLS framework, have duality in the closed loop
response seen at the plant and estimator, respectively.

The rest of the paper is organized as follows: In Section II
we introduce the estimator and controller designs. The main
result is presented in Section III, where we first will show the
stability results for the controller and then using the duality
between the controller and observer show that stability of the
controller is dual to stability of the observer. In Section IV we
will, based on existing theory, discuss the convergence of the
Riccati equation. Brief numerical examples and comparisons
to other estimators are shown in Section V.

Notation: Let R and N be the set of real and natural
numbers, respectively. For a matrix A, denote that A is
positive (semi)definite by A > 0 (A ≥ 0). For two matrices
of similar dimensions denote A ≤ B ⇔ A − B ≤ 0. The
expectation of the random variable γ is denoted by E {γ}.

II. PROBLEM DESCRIPTION

In this Section we will first introduce the optimal offline
observer and then the optimal controller. Both minimize a
given performance criterion, based on the statistics of the
system and the network. For the observer we consider a
system of the form

xk+1 = Axk + ωk,

yk = γk (Cxk + υk) ,
(1)

with x1 ∼ N (0, P ), ωk ∼ N (0,Σω), υk ∼ N (0,Συ) and
the pair (A,C) being detectable. Also, γk is a stationary
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Fig. 2 – The system that is considered for the controller
design.

binary random process. Here γk = 1 means that the mea-
surement yk is successfully received by the estimator and
P {γk = 1} = µ.

For the controller we consider another system which is of
the form

xk+1 = Axk + ρkBuk + ωk, (2)

with x1 ∼ N (0,Σx1), ωk ∼ N (0,Σω) and the pair
(A,B) being stabilizable. Also ρk is a stationary binary
random process, where ρk = 1 indicates that control signal
uk is successfully received by the plant. This occurs with
probability P {ρk = 1} = λ.

The random processes γk and ρk are stationary i.i.d.
random processes, such that the probabilities for successful
transmissions do not vary over time.

In the following we will derive the optimal offline observer
followed by the optimal controller.

A. Offline observer

Let the matrix sequence KN = (K1,N , · · · ,KN,N ). De-
fine the following observer scheme

x̃k+1 = (A− γkKk,NC) x̃k + γkKk,Nyk, k = 1, · · · , N,

with x̃1 , E {x1} = 0.
We want the estimator to minimize the following cost

function

E (KN ) = E
{
‖xN − x̃N‖22

}
. (3)

Hence, the sequence of estimator gains is given by

K?N = arg min
KN

E (KN ) , (4)

with K?N =
(
K?

1,N , · · · ,K?
N,N

)
.

The solution to the above problem is given in the following
proposition.

Proposition 1. For each k ∈ {1, · · · , N}, the optimal
observer gain is given by

K?
k,N = APkC

T
(
Συ + CPkC

T
)−1

, (5)
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where

P1 = P,

Pk+1 = Σω (6)

+A

(
Pk − µPkCT

(
CPkC

T + Συ
)−1

CPk

)
AT ,

and µ = E {γk}. Also, if the limit

P̄ = lim
k→∞

Pk (7)

exists, then the asymptotic minimum cost E? ,
limN→∞E (K?N ) is given by

E? = E
(
K̄∞

)
= trace

(
P̄
)
, (8)

where the infinite sequence K̄∞ ,
(
K̄, K̄, · · ·

)
with

K̄ = lim
N→∞

K?
N,N . (9)

In view of Proposition 1, whenever the limit in (7) exists,
we define the offline estimator gain by (9). This choice then
results in the following offline observer scheme

x̂k+1 =
(
A− γkK̄C

)
x̂k + γkK̄yk (10)

where x̂1 , E {x1} = 0.

B. Linear Quadratic Regulator

Consider the system (2), which is depicted in Fig. 2. Let
the matrix sequence LN = (L1,N , · · · , LN,N ). Define the
following control law

uk = −Lk,Nxk, k = 1, · · · , N. (11)

Consider the cost function

J (LN ) =
1

N
E
{
N+1∑
k=1

‖xk‖2Q +

N∑
k=1

‖ρkuk‖2R

}
, (12)

where Q > 0 and R ≥ 0 are design parameters, ‖xk‖2Q ,
xTkQxk, and let

L?N = arg min
LN

J (x1,LN ) , (13)

where L?N =
(
L?1,N , · · · , L?N,N

)
.

The solution of the above minimization problem is given
in the following proposition.

Proposition 2. Let Q be such that the pair
(
A,Q

1
2

)
is

detectable and R ≥ 0. Then for each k ∈ {1, · · · , N}, the
optimal control gain is given by

L?k,N =
(
R+BTSN−kB

)−1
BTSN−kA, (14)

with

S0 = Q,

Sk+1 = Q+AT
(
Sk − λSkB

(
R+BTSkB

)−1
BTSk

)
A

(15)

and λ = E {ρk}. Also, if the limit

S̄ = lim
k→∞

Sk (16)

exists, then the asymptotic minimum cost J?∞ ,
limN→∞ J (L?N ) is given by

J?∞ = J
(
L̄∞
)

= trace
(
ΣωS̄

)
,

where the infinite sequence L̄∞ ,
(
L̄, L̄, · · ·

)
with

L̄ = lim
N→∞

L?1,N . (17)

In view of the above result, whenever the limit in (16)
exists, we define the offline control gain by (17). This choice
results in the following state feedback law

uk = −L̄xk. (18)

III. STABILITY RESULTS

In this Section we will show that the convergence of the
Riccati equation is a necessary and sufficient condition for
stability of the observer and the controller. We will first state
this for the controller and then show that the conditions for
the estimator are dual to the control part. Here it is again im-
portant to note that both the controller and estimator depend
on the channel statistics γ and µ, respectively. Conditions
for when the Riccati equations converge are discussed in
Section IV.

A. Controller

In this section we will present the conditions for mean
square stability of the controlled system (2) and (18).

Let Σk = E
{
xkx

T
k

}
denote the covariance of the state

when using the model predictive control (MPC) scheme.
Also, for a given matrix L̃, let

fL̃ (X) , (1− λ)ATXA+ λHT
L̃
XHL̃ +Q

+ λL̃TRL̃,
(19)

gL̃ (X) , (1− λ)AXAT + λHL̃XH
T
L̃

+ Σω. (20)

with

HL̃ = A−BL̃.
The following lemma states a relation between the control
Riccati equation and (19).

Lemma 1. For every k ∈ N,

Sk+1 =fL?
N−k,N

(Sk) ,

with L?k,N defined by (14). Also,

Σk+1 =gL̄(Σk) (21)

with L̄ defined in (17).

Proof. The proof is shown in Appendix I.

Denote, for N ∈ N,

fNL (X) = fL ◦ fN−1
L (X) ,
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and f0
L (X) = X .

For later reference, we introduce the following lemma. It
states that, for a given L, the recursions induced by the map
fL are stable if and only if those induced by gL are stable.

Lemma 2. For any X > 0 and L, the following holds true

lim
k→∞

∥∥fkL (X)
∥∥ <∞ ⇐⇒ lim

k→∞

∥∥gkL (X)
∥∥ <∞.

Proof. Using properties of the Kronecker product, we can
state

vec (fL̃ (X)) = FL × vec (X) + vec (KL) ,

vec (gL (X)) = GL × vec (X) + vec (M) ,

where KL = Q+ λLTRL, vec (.) denotes the operation of
converting a matrix into a vector by stacking its columns,
and

FL = (1− λ)
(
AT ⊗AT

)
+ λ

(
HT
L ⊗HT

L

)
GL = (1− λ) (A⊗A) + λ (HL ⊗HL) . (22)

The result then follows since

FL = GTL.

We are now ready to state the desired relation between
stability of the closed loop system and the convergence of
the Riccati equation. This result is presented in the following
theorem:

Theorem 3. The following holds true

lim
k→∞

‖Σk‖ <∞ ⇐⇒ lim
k→∞

‖Sk‖ <∞. (23)

Proof. Using the Kronecker product, we can write (21) as

vec (Σk+1) = GL × vec (Σk) + vec (Σω) ,

where GL is defined in (22).
Now limk→∞Σk <∞ holds if and only if limk→∞Gk

L̄
=

0, which happens if and only if all eigenvalues of G are
within the unit circle. This holds if and only if

√
1− λσA <

1, where σA is the spectral radius of A. As stated in
Lemma 2, limk→∞Gk

L̄
= 0 if and only if limk→∞ F k

L̄
= 0.

The result then follows from [14, Theorem 5.2], where the
authors state that the latter is true if limk→∞ Sk is bounded.

B. Observer

For the observer, we show that the convergence of (6) is
necessary and sufficient for stability of the offline estimator.

Let Υk = E
{
eke

T
k

}
denote the error covariance for the

offline estimator, where

ek , xk − x̂k.
We define the map

hK (P ) , (1− µ)APAT + µ (A−KC)P (A−KC)
T

+ Σω + µKΣυK
T . (24)

The relation to the estimation Riccati equation and the map
(24) is stated in the following lemma.

Lemma 4. The optimal error covariance for the estimator
is given by

Pk+1 = hK?
k,N

(Pk) , (25)

where K?
k,N is defined in (5). Also,

Υk+1 = hK̄ (Υk) . (26)

Proof. By substituting A = AT , C = BT , Σω = Q, Συ =
R, µ = λ, Kk,N = LTN−k,N , Pk = Sk, K̄ = L̄T in (19), the
map h turns into f (as defined in (19)) and the result then
follows from Lemma 1.

The following theorem then states the equivalence between
the convergence of the Riccati equation and that of the offline
estimator.

Theorem 5. Consider Υk and Pk as defined in (25) and
(26). We then have

lim
k→∞

‖Υk‖ <∞ ⇐⇒ lim
k→∞

‖Pk‖ <∞.

Proof. The argument is based on the fact that the Riccati
equation (6) of the estimator is dual to the controller Riccati
equation (15). Define for any finite positive definite X

Σ?k+1 = fkL̄ (X) .

By doing the substitutions as in the proof of Lemma 4, it
follows that

lim
k→∞

Pk <∞ ⇐⇒ lim
k→∞

Sk <∞ (27)

lim
k→∞

Υk <∞ ⇐⇒ lim
k→∞

Σ?k <∞, (28)

Using (27) and (28), the result follows provided that

lim
k→∞

‖Σ?k‖ <∞ ⇐⇒ lim
k→∞

‖Sk‖ <∞. (29)

From Lemma 2 it follows that

lim
k→∞

‖Σ?k‖ <∞ ⇐⇒ lim
k→∞

‖Σk‖ <∞. (30)

Combining (29) and (30) we have that the result holds if

lim
k→∞

‖Σk‖ <∞ ⇐⇒ lim
k→∞

‖Sk‖ <∞,

and the latter follows from Theorem 3.

Remark 1. As described in the proof of Lemma 4, the esti-
mator can be designed by reformulating it as a dual controller
design problem (or vice versa) using the substitutions

AT → A,CT → B,Σω → Q,Σµ → R,µ→ λ, P1 → S0,

and designing the controller using (15) and (16). The offline
estimator gain is then given by K̄ = L̄T and the error
covariance by P̄ = S̄.
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IV. CONVERGENCE OF THE RICCATI EQUATION

In this section we briefly discuss on conditions for when
solutions to the Riccati equations (6) and (15) exist. We focus
on the observer, but due to the duality that we established,
the principles can easily be applied to the controller using the
substitutions that are presented in Remark 1 of Section III-B.

It is worth noting that the form of the Riccati equations
(6) and (15) are similar to the expression that the authors of
[1] use to determine an upper bound for the performance of
their online Kalman filter. The results on these bounds can
therefore be applied directly on (6) and (15). The authors of
[1] found that if the unstable poles can be canceled such that
A− K̄C = 0, the lower bound on µ for which a solution to
(6) exists, is given by

¯
µ = 1− 1

σ2
A

. (31)

When multiple unstable poles are present and C is not
invertible, the work [1] states conditions for the lower bound
on µ, but did not state an analytical method to find

¯
µ. The

more recent work [15] stated an analytical expression to find

¯
µ, which is given by

¯
µ = max

Id

1− 1

r

√∣∣Āu∣∣2
 . (32)

Here the pair
(
Āu, C̄u

)
= (Au (Id) , Bu (Id)) is the d’th

partition of the unstable subspace of A and C and r =
rank

(
C̄u
)
. The variable Id = (i1, · · · , i`) ∈ (1, · · · , n)

selects which elements of A belong to this subsystem, while
` is the dimension of the subsystem. Also note that with only
one unstable eigenvalue in A, (31) equals (32).

V. NUMERICAL EXAMPLE

In this section we will illustrate the presented concepts in
a numerical example where we separately design a controller
and estimator. We will design the estimator by formulating
the estimation problem into a dual control problem. We will
also compare the performance of the offline estimator to the
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¯
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µ

C
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t
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B
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JLS
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Fig. 4 – The cost eTk ek in dB for the different estimators
for varying µ. The dashed horizontal line illustrates the lower
bound

¯
µ, calculated using (31).

online Kalman filter and the JLS pseudo-offline design [6].
We consider the following system

A =

1.2 1 0
0 0.9 1
0 0 0.6


with the eigenvalues given on the diagonal,

B =
[
0 0 1

]T
C =

[
1 0 1

]
.

Remark that the pairs (A,B) and
(
AT , CT

)
are both fully

controllable. Further let Σω = I3, where In is the n × n
identity matrix, and Συ = 1. Packet dropouts are acknowl-
edged, such that the estimator at time k knows both ρk and
γk.

We first design the controller. Since is there only one
unstable pole in A, we can use (31) to find

¯
λ = 0.3059. This

means that it is not possible to find a stabilizing controller if
λ < 0.3059. The performance of the controller for varying λ
is shown in Fig. 3. Note how the performance decreases as
λ approaches

¯
λ. The results are obtained by averaging over

1000 simulations each of 1000 time-steps.
An example of the controller design where the success

probability is given by λ = 0.5, and the parameters Q = I3
and R = 0.1, results in the control gain

L̄ =
[
0.3422 0.9728 1.3638

]
,

which gives closed loop eigenvalues located at 0.6677 ±
0.045j and 0.0007.

We design the observer by reformulating it as a dual con-
trol problem, as explained in Remark 1. It is straightforward
to see that in this case

¯
µ =

¯
λ = 0.3059.

The performance of the offline observer for different
values of µ is shown in Fig. 4. Here

¯
µ is marked with the

dashed line. The performance for the online Kalman filter [1]
and for JLS with a loss horizon of length 2 [6] are plotted
as well for comparison. Note that the JLS with horizon 1
would result in exactly the same performance as the offline
estimator. It is worth noting that, while for small values of
µ the Kalman filter and JLS estimator perform significantly
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better than the offline estimator, the performance difference
decreases significantly as µ increases.

An example for the estimator design where the success
probability is given by µ = 0.5, results in the estimator gain

K̄ =
[
1.3468 0.1622 0.007

]T
.

This results in the closed loop eigenvalues 0.6693±0.0959j
and 0.0075.

VI. CONCLUSIONS

We established a new link between the designs of an
offline estimator and a LQR controller for systems with i.i.d.
intermittent communications. We have designed an observer
and a controller, both being offline in the sense of minimizing
a cost function based solely on system and channel statistics,
and therefore not requiring online computations. We have
pointed out the duality of these two designs which permits
the estimator design for a given system to be performed by
formulating a dual system, and then design a controller for
the latter. We have therefore extended the classical duality
that exists between a LQR and a Kalman filter to the case
of systems that are affected by packet losses. Future work
involves investigating whether the separation principle holds
for the studied controller and estimator. This is to be done
for both cases, namely, when successful packet transmissions
are acknowledged, and when they are not.

APPENDIX I
PROOF OF LEMMA 1

Proof of Lemma 1. From (15), we have

Sk+1 = Q+ (1− λ)ATSkA+ λM, (A.1)

with

M = ATSkA−ATSkB
(
R+BTSkB

)−1
BTSkA

= ATSkA−ATSkB
(
R+BTSkB

)−1

×
(
R+BTSkB

) (
R+BTSkB

)−1
BTSkA

Using (14) in the above equation, we get

M = ATSkA− LTSk

(
R+BTSkB

)
LSk

. (A.2)

Also with HLSk
, A−BLSk

we have that

ATSkA =HT
LSk

SkHLSk
− LTSk

BTSkBLSk

+ATSkBLSk
+ LTSk

BTSkA
(A.3)

and

ATSkBLSk
= LTSk

(
R+BTSkB

)
LSk

. (A.4)

Inserting (A.3) and (A.4) into (A.2) we obtain

M = HT
LSk

SkHLSk
+ LTSk

RLSk
.

Replacing the above into (A.1), leads to

Sk+1 = (1− λ)ATSkA

+ λHT
LSk

SkHLSk
+Q+ λLTSk

RLSk

= fLSk
(Sk),

and the result follows.
The covariance when using the controller (17) is given by

Σk+1 = (1− λ)AΣkA
T + λHL̄ΣkH

T
L̄ + Σω

=gL̄ (Σk) ,

and the result follows from (20).
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[10] O. C. Imer, S. Yüksel, and T. Başar, “Optimal control of LTI systems
over unreliable communication links,” Automatica, vol. 42, no. 9, pp.
1429 – 1439, 2006.

[11] J. P. Hespanha, P. Naghshtabrizi, and Y. Xu, “A survey of recent results
in networked control systems,” Proceedings of the IEEE, vol. 95, no. 1,
p. 138, 2007.

[12] L. Zhang, H. Gao, and O. Kaynak, “Network-induced constraints in
networked control systems - a survey,” Industrial Informatics, IEEE
Transactions on, vol. 9, no. 1, pp. 403–416, Feb 2013.

[13] D. E. Quevedo, E. I. Silva, and G. C. Goodwin, “Control over unre-
liable networks affected by packet erasures and variable transmission
delays,” IEEE Journal on Selected Areas in Communications, vol. 26,
no. 4, pp. 672–685, May 2008.

[14] W. D. Koning, “Infinite horizon optimal control of linear discrete time
systems with stochastic parameters,” Automatica, vol. 18, no. 4, pp.
443 – 453, 1982.

[15] X. Shen, D. Rus, and M. H. Ang, “Bounds for Kalman filtering
with intermittent observations,” in Control Conference (ECC), 2015
European, July 2015, pp. 2842–2846.

6837


