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Abstract: Reset control aims at enhanced performance that cannot be obtained by linear controllers. The
conventional reset control is simple for implementation by resetting some of its controller states to zero when
its input meets a threshold. However, it is found that in some cases the enhanced performance of
conventional reset control is still limited such as with only partial reduction of the overshoot in a step
reference response. Thus, the stability analysis and design of the reset control system are extended, where
the reset time instances are prespecified and the controller states are reset to certain non-zero values, which
are calculated online in terms of the system states for optimal performance. Experimental results on a
piezoelectric positioning stage demonstrate that the extended reset control can further reduce the overshoot
and thus achieve shorter settling time than the conventional reset control. Moreover, robustness tests against
various step levels, disturbance and sensor noise are presented.
1 Introduction
Reset control was firstly proposed by Clegg [1] to overcome
limitations of linear control. This reset controller, termed as
Clegg integrator, consists of an integrator and a reset law
which resets the amount of integration to zero when its input
crosses zero. From the basic idea of reset control, one can see
that reset control is capable of reducing windup caused by
integration. Moreover, a Clegg integrator has a similar
magnitude–frequency response as a pure integrator, but with
51.98 less phase lag. This favourable property helps to
increase phase margin of a system. Krishman and Horowitz
[2] developed a quantitative control design procedure of
Clegg integrator. Horowitz and Rodenbaum [3] generalised
the concept of reset control to higher-order systems. Relevant
works can also be found in [4, 5].

A lot of works have shown the advantages of reset control
over linear control. For instance, an example is presented in
[6] showing that reset control can achieve some control
specifications, which cannot be achieved by any ordinary
linear control. Moreover, it is experimentally demonstrated
in [7] that reset control can achieve better sensor noises
suppression without degrading disturbance rejection or
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losing gain and phase margin. These advantages make reset
control effective for performance improvement in a wide
range of applications such as hard disc drive servos [8, 9]
and vibration suppression [10, 11].

Typically, there are two steps in reset control design [12]:
linear compensator design and reset element design. The
linear compensator is firstly designed to meet all performance
specifications except for the overshoot constraint; then the
reset element is designed to reduce the overshoot. However,
the reset controller can improve the closed-loop performance
only when the reset law interacts well with the base linear
system. In other words, if the reset controller is not
appropriately designed, it may have little contribution to the
performance improvement, or even cause system instability.

In reset control system design, there are three basic
problems: stability analysis, base linear system design and
reset law design. For stability analysis, there are lots of papers
addressing this issue such as [13–16]. Most of these existing
results require the base linear system to be stable. However,
stability of a reset control system depends on both the base
linear system and the reset actions. Either factor may destroy
the stability of the overall system. Note that reset control
IET Control Theory Appl., 2008, Vol. 2, No. 10, pp. 866–874
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systems are also known as impulsive systems. Many stability
results have been obtained in the literature (see [17] for
example).

For reset control design, more efforts are put on the design
of base linear system in the literature. The reset law adopted is
generally the conventional one, that is, resetting the controller
states to zero when the controller input crosses zero [16]. The
base linear system is then designed to interact well with the
reset law. We refer to this kind of reset control as
conventional reset control in this paper. The conventional
reset control has been demonstrated to be able to achieve
better performance than a pure linear controller. However,
we find that in some cases the performance of conventional
reset control is still limited, for example, the overshoot is
only partially reduced based on the linear control system [7,
8]. Actually, reset control can be more generalised by
designing the reset time instances and the reset values to
push the performance improvement further. In [18], we have
presented an extended reset control system, where the reset
time instances are prespecified and the controller states are
reset to certain non-zero values, which are calculated online
in terms of the system states for optimal performance.

In this paper, we will describe the development of an
extended reset controller and experimentally demonstrate its
effectiveness on a positioning system. In Section 2, we firstly
formulate the extended reset control system in a state space
form. Then, the reset control system is reformulated as a new
system, which is referred to as induced discrete system. We
show that under some mild conditions the stability of a reset
control system is equivalent to the stability of its induced
discrete system. On the basis of this, we obtain some new
results about the stability of reset control systems, which do
not rely on the stability of base linear system. Lastly, we
propose a reset law design approach, which aims at
minimising a performance index related to the tracking error.
Section 3 demonstrates the proposed reset controller on a
piezoelectric (PZT) microactuator positioning stage.
Experimental results showed its effectiveness in overshoot
removal, disturbance and sensor noise suppression.
Conclusions and future works are discussed in Section 4.

2 Extended reset control design
2.1 Formulation of reset control systems

A typical reset control system is depicted in Fig. 1, where r is
the reference input, e the feedback error, u the reset controller
output, d the output disturbance, n the sensor noise and yp, y
and ym the plant, controlled and measurement outputs,
respectively. The linear plant P is described by

SP:
_xp ¼ Apxp þ Bpu
yp ¼ Cpxp

�
(1)

where xp [ Rnp , u [ R and yp [ R. The reset controller
Control Theory Appl., 2008, Vol. 2, No. 10, pp. 866–874
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(RC) is described by impulsive differential equation

SRC:
_xr ¼ Arxr þ Bre, t = tk

xr(t
þ
k ) ¼ Ekxp þ F kxr þ Gkr, t ¼ tk

u ¼ Crxr þDre

8<
: (2)

where xr [ Rnr is the reset controller state, tþk the reset time
instance and e ¼ r � d � n� yp. Ar, Br, Ek, F k, Gk, Cr and
Dr are appropriate dimensional constant matrices. The set of
reset time instances {tk} is an unbounded time sequence
increasing monotonously with respect to k, k [ Zþ, that is,
tk , tkþ1 for any k [ Zþ and limk!1 tk ¼ þ1. In this
paper, we assume that the reset time instances are
prespecified and the reset actions are finite in any finite time
interval to ensure the existence of solutions.

Combining (1) and (2) gives the closed-loop system as
follows

_x ¼ Axþ Bw, t = tk

x(tþk ) ¼Mkxþ N kr, t ¼ tk

y ¼ Cxþ d

8<
: (3)

where x ¼ (xT
p , xT

r )T, w ¼ r � d � n and

A ¼
Ap � BpDrCp BpCr

�BrCp Ar

" #
, B ¼

BpDr

Br

� �
,

Mk ¼
I np

0

Ek F k

� �
, N k ¼

0

Gk

� �
, C ¼ [Cp 0]

where Inp
is the identity matrix of dimension np.

Remark 1: In conventional reset control, the reset element
is generally defined as

xr(t
þ
k ) ¼

I n �Q
0

0 0nQ

" #
xr, t ¼ tk

{tk} W {tkje(tk) ¼ 0, tk , tkþ1}

where nQ (with n �Q þ nQ ¼ nr) is the amount of selected reset
controller states [6]. It can bee seen that the reset actions are
triggered by the feedback error and the controller states are
selected to be always reset to zero. However, in our
proposed reset control (2), the reset values have been
generalized as a function of the system states and reference
input for improved performance.

Figure 1 Block diagram of a reset control system
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2.2 Stability analysis

In this subsection, we derive the stability condition of the reset
control system (3) under the assumption of r ; n ; d ; 0
but subject to non-zero initial condition. Hence, the reset
control system (3) can be rewritten as

_x ¼ Ax, t = tk, x(0) ¼ x0

x(tþk ) ¼Mkx, t ¼ tk

�
(4)

Suppose that the solution to (4) is continuous from the left, we
thus have x(tþk ) ¼ limt!0þ x(tk) ¼Mkx(tk) and

x(tþkþ1) ¼Mkþ1eA(tkþ1�tk)x(tþk )

Defining hk ¼ x(tþk ), Dtk ¼ tk � tk�1, Lk ¼Mke
ADtk and

t0 ¼ 0, we have

hkþ1 ¼ Lkþ1hk, k ¼ 0, 1, . . . , N (5)

The system (5) is referred as the induced discrete system of the
impulsive system (4).

Typically, the stability of system (4) is often analysed by
finding a positive Lyapunov function V (x) such that

_V (x) ¼
@V (x)

@x

� �T

Ax � 0 (6)

DV (x) ¼ V (Mkx)� V (x) � 0 (7)

This indicates that the base linear system (without reset) is
stable and the impulses always decrease the amount of the
Lyapunov function. The following result reveals that under
some mild conditions, the stability of an impulsive system
is equivalent to the stability of its induced discrete system.
Thus, the stability of the base linear system is not required
any more, and the impulses are allowed to increase the
value of Lyapunov function of the base linear system.

Proposition 1: If there exists a positive number DT . 0
such that

Dtk ¼ tk � tk�1 , DT (8)

for all k [ Zþ, then the system (4) is (asymptotically) stable if
and only if its induced discrete system (5) is (asymptotically)
stable.

Proof: The necessity is obvious. We only prove the
sufficiency. According to the fact that the solutions to the
base linear system _x ¼ Ax depend continuously upon initial
conditions, we have for any 1 . 0, there exists a positive
number d1 . 0 such that

kx0k , d1 ) ke
Asx0k , 1, s [ [0, DT ] (9)

Assume that the induced discrete system (5) is stable, then for
d1 selected above, there exists a positive number d . 0 such
8
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that

kh0k , d) khkk , d1, k [ Zþ

Note that h0 ¼ x0 and for any t [ [0, þ1), there is a non-
negative integer k such that t [ (tk, tkþ1], so

x(t) ¼ eA(t�tk)x(tþk ) ¼ eA(t�tk)hk

Since t � tk [ [0, DT ], we have

kx(t)k ¼ keA(t�tk)hkk , 1, t [ [0, þ1)

So the system (4) is stable.

If the induced discrete system is asymptotically stable, then
we have

lim
k!1

hk ¼ 0

For any 1 . 0, choose d1 such that

kx0k , d1 ) ke
Asx0k , 1, s [ [0, DT ] (10)

Thus for any h0(¼ x0), there exists a K (x0) [ Zþ for

khkk , d1, k � K (x0)

Then for any t . K (x0), there exists a k � K (x0) such that
t [ (tk, tkþ1] and

x(t) ¼ eA(t�tk)hk

so we have

kx(t)k ¼ keA(t�tk)hkk , 1

according to t � tk [ [0, DT ]. Therefore

lim
t!1

x(t) ¼ 0

which implies that the system (4) is asymptotically stable. A

Corollary 1: If both Dtk ¼ d is a constant and Mk ; M is a
constant matrix, then the reset control system (4) is
(asymptotically) stable if and only if

jl(MeAd)j � 1, ( , 1) (11)

where l(�) denotes the eigenvalues of (�).

Remark 2: Proposition 1 indicates that in order to check
the stability of an impulsive system, we only need to check
the induced discrete system. For systems of which the base
linear system is unstable and the induced system is stable, it
is impossible to find a positive Lyapunov function V (x)
such that (6) and (7) hold. Hence, Proposition 1 which
only requires the boundedness of Dtk is more general.
IET Control Theory Appl., 2008, Vol. 2, No. 10, pp. 866–874
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In practice, the base linear system is typically designed to
be stable, thus the bounded constraint on {Dtk} can be
relaxed. Thus we have the following.

Proposition 2: Assume the base linear system is stable, then
the system (4) is (asymptotically) stable if and only if its
induced discrete system (5) is (asymptotically) stable.

Proof: To complete the proof, just replace DT in the proof of
Proposition 1 by þ1 and simply follow the same lines of
arguments. A

Remark 3: Note that in Proposition 2, we only assume the
stability (not asymptotical stability) of the base linear system.
This is because the stability of the base linear system is
adequate to assure the boundedness of the transition matrix eAt .

2.3 Reset law design

Consider the reset control system (3) and assume that the
base linear system has been appropriately designed for basic
stability and performance, and the reset time instances are
predefined. Our objective here is to find a set of reset
values xr(t

þ
k ) of the controller states such that the system

tracking error is minimised. More specifically, we suppose
n ; d ; 0 and formulate our objective as solving xr(t

þ
k ) to

minimise the following quadratic performance index

Jk ¼ eT(tkþ1)P0e(tkþ1)þ _eT(tkþ1)Q0_e(tkþ1)

þ

ðtkþ1

tk

e(s)TP1e(s)ds (12)

where e ¼ r � y, and P0, P1 and Q0 are positive semi-definite
matrices. To solve the problem, we use the following
assumption.

Assumption 1: Assume that the reference r is constant, and
for any r [ R, there exists xss ¼ (xT

pss, xT
rss)

T such that

Axss þ Br ¼ 0

Cxss � r ¼ 0 (13)

Define

jp ¼ xp � xpss

jr ¼ xr � xrss

we have

_j ¼ Aj, t = tk

jr(t
þ
k ) ¼ rk(j, r), t ¼ tk (14)
Control Theory Appl., 2008, Vol. 2, No. 10, pp. 866–874
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where j ¼ (jT
p , jT

r )T. Hence we have

e ¼ �Cj

_e ¼ �CAj (15)

and the performance index Jk can thus be rewritten as

Jk ¼ jT(tkþ1) �Pj(tkþ1)þ

ðtkþ1

tk

jT(s) �Qj(s)ds (16)

where

�P ¼ CTP0C þ ATCTQ0CA (17)

�Q ¼ CTP1C (18)

If jp(tk), r and tk, tkþ1 are fixed, Jk is in fact a function of
jr(t
þ
k ). In order to choose jr(t

þ
k ) such that Jk is minimised,

we need to calculate @Jk=@jr(t
þ
k ) in the following. Note that

j(t) ¼ eAtj(tþk ), t [ (tk, tkþ1]

We then have

@Jk

@j(tþk )
¼
@j(tkþ1)

@j(tþk )

@

@j(tkþ1)
jT(tkþ1) �Pj(tkþ1)
� �

þ

ðtkþ1

tk

@j(s)

@j(tþk )

@

@j(s)
jT(s) �Qj(s)
� �

ds

¼ 2eAT
Dtk �PeADtkj(tþk )

þ 2

ðtkþ1

tk

eAT(s�tk) �QeA(s�tk)j(tþk )ds

¼ 2 eATDtk �PeADtk

�

þ

ðtkþ1

tk

eAT(s�tk) �QeA(s�tk)ds

!
j(tþk )

¼ 2 eAT
Dtk �PeADtk þ

ðDtk

0

eATs �QeAsds

� �
j(tþk )

¼ 2Gkj(tþk ) (19)

where

Gk ¼ eAT
Dtk �PeADtk þ

ðDtk

0

eATs �QeAsds (20)

Partition Gk as

Gk ¼
G11

k G12
k

G21
k G22

k

 !
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with G12
k ¼ (G21

k )T. Thus we have

@Jk

@jr(t
þ
k )
¼
@j(tþk )

@jr(t
þ
k )

@Jk

@j(tþk )

¼ 2 0 I
	 
 G11

k G12
k

G21
k G22

k

 !
j(tþk )

¼ 2(G21
k jp(tk)þ G22

k jr(t
þ
k )) (21)

If G22
k is positive definite, letting @Jk=ð@jr(t

þ
k )Þ ¼ 0 derives

jr(t
þ
k ) ¼ �(G22

k )�1G21
k jp(tk) (22)

Thus the reset law which minimises Jk is given by

xr(t
þ
k ) ¼ �(G22

k )�1G21
k (xp � xpss)þ xrss (23)

Proposition 3: Assume that Assumption 1 holds and
G22

k . 0, then the reset law which minimises Jk of (12) is
given by

xr(t
þ
k ) ¼ �(G22

k )�1G21
k (xp � xpss)þ xrss (24)

Furthermore, if we consider equidistant reset control (i.e.
Dtk ; d is a constant), then Gk ; G is a constant matrix
independent on k. According to the analysis above and by
Corollary 1, we have the following.

Proposition 4: Suppose that Dtk ¼ d is a constant and
G22

. 0, then the reset law which minimises Jk (12) is
independent on k and is given by

xr(t
þ
k ) ¼ �(G22)�1G21(xp � xpss)þ xrss (25)

In addition, the corresponding closed-loop system (4)
under this reset law with r ¼ 0 is asymptotically stable if
and only if

l
I np

0

�(G22)�1G21 0

 !
eAd

 !�����
����� , 1 (26)

2.4 Trade-off between stability
and performance

In the design of reset law, we have not taken account of
stability. If the stability condition (26) cannot be satisfied,
we have to retune the base controller or the reset law design
parameters. Generally, the base linear system is designed to
be asymptotically stable, then we can alternatively use the
following reset law

xr(t
þ
k ) ¼ �m (G22

k )�1G21
k (xp � xpss)� xrss

h i
þ (1� m)xr, m [ [0, 1] (27)
The Institution of Engineering and Technology 2008
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to compromise between the stability and the performance
characterised by Jk. It is clear that when m varies from 1 to
0, the reset control system reduces to the base linear system
without reset that is assumed to be asymptotically stable.

On the other hand, according to (21), we have

@Jk

@m
¼
@jr(t

þ
k )

@m

@Jk

@jr(t
þ
k )

¼ �2(1� m) (G22
k )�1G21

k jp(tk)þ jr(tk)
h iT

� G22
k (G22

k )�1G21
k jp(tk)þ jr(tk)

h i
� 0, jmj � 1

Denote r(j, r, m) ¼ xr(t
þ
k ), thus Jk(r(j, r, m)) is

monotonously decreasing when m varies from 0 to 1. Thus
we can always choose m [ [0, 1] such that the closed-loop
system is asymptotically stable and at the same time,

Jk(r(j, r, 1)) , Jk(r(j, r, m)) , Jk(r(j, r, 0))

The above inequality indicates that the performance index of
the resulting reset control system is always less than that of
the base linear system, though the minimal index cannot be
achieved.

By Corollary 1, for equidistant reset control where Dtk ¼ d

and Gk ¼ G are constant, the overall system under the reset
law (27) is asymptotically stable if and only if

l
I np

0

�m(G22)�1G21 (1� m)I

 !
eAd

 !�����
����� , 1 (28)

3 Experimental results
In this section, we verify the extended reset controller on a
PZT microactuator-positioning stage (P-752 PZT Flexure
Stage System, Polytec PI, Germany) as shown in Fig. 2a
and compare the experimental results with a conventional
reset controller.

3.1 Modelling of the PZT-positioning
stage

The PZT-positioning stage consists of a PZT microactuator,
a moving stage connected with the base via the flexures in
four corners, a PZT power amplifier and an integrated
capacitive position feedback sensor with 0.2 nm resolution
to measure the displacement of the moving stage. The
PZT microactuator is of high stiffness and has a maximum
travel range of +15 mm. The mechanical resonance caused
by the flexures is actively damped by the integrated control
electronics. Thus, the dynamics of the PZT-positioning
stage can be simply depicted by a mass-damper-spring
IET Control Theory Appl., 2008, Vol. 2, No. 10, pp. 866–874
doi: 10.1049/iet-cta:20070282
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system as shown in Fig. 2b, which can be then described by a
state space form as follows

SP:
_x1 ¼ x2

_x2 ¼ �a1x1 � a2x2 þ bu
y ¼ x1

8<
: (29)

where x1 and x2 are the position and velocity of the moving
stage, respectively, and u is the control input to the PZT
amplifier.

The modal parameters in (29) are identified from
experimental frequency response data. A dynamic signal
analyser (HP 35670A, Hewlett Packard Company,
Washington) is used to generate the swept-sinusoidal
excitation signals and collect the frequency response data from
the excitation signals u to the position output y. The dashed
lines in Fig. 3 show the measured frequency responses of the

Figure 3 Frequency responses of the PZT microactuator-
positioning stage

Figure 2 PZT microactuator-positioning stage
Control Theory Appl., 2008, Vol. 2, No. 10, pp. 866–874
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PZT-positioning stage. The PZT dynamics is of high
stiffness that exhibits a flat gain in the low-frequency range.
Using the least square estimation method [19], we obtain the
modal parameters as follows

a1 ¼ 106, a2 ¼ 1810, b ¼ 3� 106

The solid lines in Fig. 3 show that the identified model match
the measured model well in the frequency range of interest.

3.2 Reset control law

Our objective is to design a feedback controller for robust
tracking of a step reference input with zero steady-state
error and fast settling, for which high open-loop gains in
low-frequency range and high bandwidth with sufficient
stability margin are typically required. Thus, we employ the
classical proportional–integral (PI) control structure as the
base controller

u(s)

e(s)
¼ kp þ

ki

s
(30)

where kp ¼ 0:08 and ki ¼ 300. The resultant base linear
system has a closed-loop bandwidth 178 Hz, and gain/
phase margin 11 dB/338. Experimental result (see the
dashed lines in Fig. 4) shows that the integrator increases
the low-frequency gains and both fast rise time and zero
steady-state error are achieved. However, the overshoot
induced by the integrator is also significant (40% of the
step level), which results in tedious settling time. Therefore
it is expected that the overshoot could be reduced by
resetting the integrator state to proper values.

Figure 4 Step responses (r ¼ 1 mm) of the reset control
system

The extended reset control exhibits little overshoot and the
resultant settling time is 3 ms, which is identical to the rise
time of the base linear system (no reset)
The conventional reset control still exhibits 15% overshoot in the
first peak and causes limit cycles in steady state
871
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To design the reset values, we set the reset time interval as
a constant

Dtk ¼ 1 ms

and select the tuning parameters of Jk in (12) as

P0 ¼ 2:1, Q0 ¼ 1:0� 10�6, P1 ¼ 0 (31)

Thus, according to (13) and (20) we can easily obtain xss and
G as

xss ¼ [1 0 0:0011]T

G ¼

1:16 0:0005 65:33

0:0005 0 0:16

65:33 0:16 230042

2
64

3
75

The resulting reset controller is then described in state space
as follows

_xr ¼ e, t = tk

xr(t
þ
k ) ¼ E1x1 þ E2x2 þ Gr, t ¼ tk

u ¼ kixr þ kpe

8<
: (32)

where E1 ¼ �2:8� 10�4, E2 ¼ �6:8� 10�7, G ¼ 0:0014,
ki ¼ 300 and kp ¼ 0:08. Moreover, it is easy to verify that the
resulting reset control system satisfies the stability condition
in (26), which implies that the unforced closed-loop system
is asymptotically stable. For comparison, we also design a
conventional reset controller as follows

_xr ¼ e, e(t) = 0
xr(t
þ) ¼ 0, e(t) ¼ 0

u ¼ 300xr þ 0:08e

8<
: (33)

In fact, the conventional reset controller (33) can be seen as a
special case of the extended reset controller. Thus, the
stability of the closed-loop system under (33) can be easily
verified through (11).

3.3 Results and discussion

The reset controllers were implemented by a real-time DSP
system (dSPACE-DS1103) with the sampling time of
Ts ¼ 50 ms. The position of the moving stage x1 or
equivalently the output y can be directly obtained through
the sensor output. We estimate the velocity x2 by backward
differentiation of the position signal x1(t), that is

x̂2 ¼
z� 1

Tsz
x1

Fig. 4 shows the experimental results for 1 mm step response.
It can be seen that the extended reset control nearly removes
the overshoot and thus reduces the settling time from 15 ms
(no reset) to 3 ms. Moreover, we observe that the extended
reset control has a faster transient response compared with
2
The Institution of Engineering and Technology 2008

Authorized licensed use limited to: University of Newcastle. Downloaded on October 30, 
that under no reset because the integrator state was reset to
minimise Jk from the beginning at t ¼ 0 leading to a larger
control input at the initial stage and thus faster response.
When the position output approaches the target, the
integrator state is reset to a smaller value (see the control
input at t ¼ 1 ms in Fig. 4) to reduce the overshoot and
keep the moving stage at the desired position. In this case,
the conventional reset control works badly, which can only
partially reduces the first overshoot peak and results in limit
cycles. This is because resetting the integrator state to zero
tends to resetting the control input to zero, which will
cause the moving stage going to its initial position due to
the high stiffness of the PZT actuator. Thus, the
conventional reset control needs an intentional interplay
between the reset mechanism and an appropriately
designed base linear controller [7].

Next, we test the step responses of the extended reset
control system to various step levels. The results are shown
in Fig. 5, which indicates that the overshoots in all cases are
nearly removed and the settling time are still maintained to
be 3 ms. In this paper, we have not theoretically considered
how to select the reset time interval, which is in fact related
to the overall system performance. This is however evaluated
through experiments. To do this, we use the same design
parameters (31) but select various reset time intervals.
Following the same design procedure, we obtain a set of
reset controller for implementation. The results in terms of
net overshoot and settling time are summarised and
compared in Fig. 6. It is interesting to see that a smaller
reset time interval tends to exhibit less overshoot but results
in longer settling time (i.e. slower system dynamics). Under
the range of 0.4–2 ms, the settling time and overshoot
simultaneously reach a low level. Thus, tuning the reset time
interval as 20–60% of the rise time (3 ms in this case) by

Figure 5 Time responses of the reset control system to
various step levels (r ¼ 2, 3, 4 mm)

The overshoots in all cases are nearly removed and the settling
times are maintained to be 3 ms
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the base linear system might achieve relatively good
performance.

Finally, we test the robustness of the extended reset control
system against input disturbance and sensor noise. Figs. 7 and
8, respectively, show the time responses to a single-frequency
(100 Hz) sinusoidal input disturbance ud and sensor noise n,
which are artifically introduced to the control system. We can
see that the extended reset control simultaneously provides an
improvement of 65% in both disturbance and noise
suppression based on the base linear system (no reset). Further,
we experimentally analyse the properties of disturbance and
noise suppression in a wide frequency range according to the
describing function approach. We used a dynamic signal
analyser (DSA) to generate swept-sinusoidal excitation signals,
which are then injected to the control input or the sensor

Figure 6 Relationship between reset time interval,
overshoot and settling time of the extended reset control
system

Figure 7 Time responses of the reset control system to step
input r ¼ 1 mm and sinusoidal input disturbance
ud ¼ 0.1sin(2p100t) V
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output, respectively. The tests of disturbance and sensor noise
responses are performed individually. The DSA is also used to
collect the frequency response data from the position output to
the excitation signals. Since the reset control system is
essentially nonlinear, its frequency response may depend on
the excitation levels. We thus vary the excitation level from 0.1
to 3 evenly spaced by 0.1, and it is interesting to find that the
Bode plots of the frequency responses in all cases are very close
to that in Fig. 9. In the plot, we can see that improved
disturbance/noise suppression occurs simultaneously around
100 Hz, which matches the results in Figs. 7 and 8. However,
we also find that the extended reset control adversely increases
the low-frequency disturbance (,60 Hz) and high-frequency
noise (.200 Hz) reduction ratio. This may be because the
reset values in the steady state are calculated based on optimal

Figure 8 Time responses of the reset control system to
step input r ¼ 1 mm and sinusoidal sensor noise
n ¼ 0.1sin(2p100t) mm

Figure 9 Bode plot for describing functions of input
disturbance/sensor noise suppression; the excitation level
of ud is 0.1 V and n is 0.1 mm
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step-tracking control design instead of disturbance/noise
rejection. Since the reset control system has nonlinear features,
it cannot guarantee low-frequency disturbance rejection and
high-frequency noise suppression as linear control does. One
possible way to improve this is to include the disturbance and
noise model in the synthesis of the reset law design, which is
left in our future works.

4 Conclusions and future works
This paper has demonstrated an extended reset control system
by resetting its controller states to certain non-zero values,
which is more general than the conventional reset control
which can only reset its controller state to zero. Some new
results of stability were given, which do not rely on the
stability of the base linear system. We also provide a reset law
design method based on optimisation technique.
Experimental results on a PZT-positioning stage showed that
the extended reset control can achieve faster settling time than
the conventional reset control by nearly overshoot removal.
Moreover, it can simultaneously achieve sinusoidal disturbance
and sensor noise suppression at some frequencies, though this
is not guaranteed in other frequencies.

We still have a lot of challenges in the future work. The reset
time interval is selected via experience by far. We need a
theoretical design of the reset law and reset time interval
(constant or time-varying) to minimise some performance
index with finite or infinite horizon. In addition, we
ultimately attempt to obtain conditions under which a reset
system has disturbance and noise attenuation simultaneously
in a wide frequency range. The proposed reset control can
also be easily extended to nonlinear systems. Hence, our
future works include the experimental demonstration on a
nonlinear system platform and seeking other applications of
the proposed reset control technique.
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