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Abstract: This study presents a unified approach to track seeking and following control for a dual-stage actuator (DSA)
hard disk drive (HDD) system. Based on a doubly coprime factorisation (DCF) method, the DSA controller and the closed-
loop dynamics are expressed explicitly in terms of two design parameters. This greatly simplifies the optimisation of design
parameters in meeting desired specifications. We then address how to use the design parameters to deal with specific problems
in the DSA, that is, control allocation for disturbance rejection and trajectory planning for track seeking. Simulated results
are also presented to verify the effectiveness of the proposed DSA controller. Compared with previous works, the proposed
approach can fulfil track seeking and following tasks by a single controller without switching. Moreover, the unified controller
can achieve desirable performances for both tasks that are equivalent to that by two separate conventional controllers.

1 Introduction

Hard disk drives (HDDs) are the most popular and cost-
effective data storage devices nowadays. New technologies
are being developed to meet the ever increasing demands
for high-capacity and fast data rate HDDs [1]. From the
perspective of control engineers, these demands can be
translated into the technical specifications that the head
position should be accurately maintained along the track
centre (track-following mode) and swiftly moved from one
track to another (track-seeking mode). Traditionally, the
HDD head positioner is driven by a voice coil motor (VCM),
which however, cannot provide the stringent performance
any longer because of its mechanical resonance modes,
various disturbances and noises in HDDs. Therefore the
dual-stage actuator (DSA) HDDs are introduced to overcome
these limitations [2, 3]. In DSA servo systems, the VCM
actuator is used as the primary stage to provide long track
seeking but with poor accuracy and slow response time,
whereas the secondary stage such as a piezoelectric (PZT)
microactuator [4] is used to provide higher precision and
faster response but with a stroke limit. By combining the
DSA system with properly designed controllers, the overall
servo bandwidth of the head positioning mechanism can
be significantly increased. Thereby, the DSA HDD system
can achieve fast track seeking and allow ultra-high track
density, which are far beyond the capability of conventional
single-stage HDDs.

The control design for a DSA system is a much greater
challenging task than for a conventional single-stage servo
with VCM only. This is mainly because a DSA system
is a dual-input single-output (DISO) system, which means
that for a given desired trajectory, alternative inputs to

the two actuators are not unique. Thus, a proper control
strategy is required for control allocation in response to
external inputs. Otherwise, the two actuators may fight each
other and deteriorate the performance instead. A number
of approaches have been reported for the DSA control
problems. For example, control design for track following
and settling can be found in [5–10]. In [11], a decoupled
track-seeking controller using a three-step design approach
is developed to enable high-speed one-track seeking and
short-span track seeking for a dual-stage servo system. Short
and long-span seeking controls are incorporated in a single-
control scheme with fast settling time [12–14]. Further,
the control design for the DSA including the interaction
between both actuators is proposed in [15, 16] to attain
desired time and frequency responses by minimising a
new performance index, destructive interference, which was
inrextroduced to express the degree of cooperation between
both actuator systems with very different specifications and
characteristics.

In most of the previous works, the control designs
are focused on individual control problems for either
track following or track seeking in HDDs. Accordingly,
there needs a mode switching between the controllers for
different control tasks. For this purpose, it is typical to
employ the initial value compensation method [17] to
achieve a smooth switching. This obviously results in extra
implementation complexity. To avoid this situation, this
paper introduces a unified design method for DSA track
seeking and following control. The control design is based
on the doubly coprime factorisation (DCF) approach [18],
which provides the advantages that: (i) it parameterises
all linear internally stabilised a two-degree-of-freedom
(2-DOF) controller by two free design parameters; (ii) it
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offers a unified design method to solve the seeking and
disturbance rejection problems; (iii) the derived transfer
functions of disturbance rejection response and seeking
response are simply expressed and they are unique in terms
of the design parameters, which makes the relationship
between the design parameters and the desired specifications
explicit.

Compared with the existing DSA control methods, the
proposed 2-DOF controller explicitly addresses both track
seeking and disturbance rejection problems in a unified
design framework and it is easy to implement. In this paper,
we focus on the development of the DSA controller for
disturbance rejection and step tracking in the PZT range.
For track seeking beyond the PZT range, the PZT has little
use for reducing the seeking time because of its limited
stroke. As such, it is typical to activate the VCM servo
only to perform the long seeking task; see [13, 19] for
example.

Throughout this paper, we use the following notation: for
any signal u(t), we denote its Laplace transform by û(s) or
û for short; RH∞ denotes the set of all stable, proper and
rational transfer function matrices.

2 Plant and disturbance models

In this paper, we study the control design for a kind of DSA
HDDs with a push–pull PZT micro-actuated suspension, a
picture of which is shown in Fig. 1. It consists of a VCM
actuator as the primary stage and a PZT actuator as the
secondary stage. The PZT is located between the suspension
and the E-block, which is moved by the VCM. The two
actuators are, respectively, driven through a PZT amplifier
and a VCM driver. The controlled variable is the head
position, which is the only measurable signal for feedback
control.

The mathematical modelling of DSAs has been well
studied in [15, 20], where a simplified state-space model of
the DSA was derived, that included a dominant PZT flexible
mode dynamics and the interaction between both actuators.
Here, we adopt the DSA model given in [15] as the plant
model for the design and validation of our controller. To
begin with, we reasonably assume that the PZT stroke limit
(say, 1 μm) and inertia are very small relative to the VCM
such that the dynamic interaction from the PZT to the VCM

Fig. 1 Picture of DSA HDDs with a PZT micro-actuated
suspension

can be negligible. As such, the DSA plant model is given by[
ŷv

ŷp

]
=

[
Gv 0
Gpv Gp

] [
ûv

ûp

]
(1)

y = yv + yp (2)

where yv, yp, y, uv and up denote the VCM displacement, the
PZT displacement relative to VCM, the head displacement,
the VCM control input and the PZT control input,
respectively. Gv, Gp and Gpv represent the transfer functions
of the VCM, PZT and the dynamic interaction from the
VCM to the PZT, respectively. Furthermore, according to
[15], the interaction model equals to

Gpv = εGp = −
(

1 + lp

rp

)
KvJp

JvKp
Gp (3)

where Kv and Jv are the torque constant and inertial of
VCM; likewise, Kp and Jp are the counterpart of PZT; lp

and rp are the length of PZT and the length from the PZT
rotational point to the PZT mass centre; and ε denotes the
constant coefficient −(1 + lp/rp)(KvJp/JvKp), respectively.
Apparently, the position error contributed by the interaction
Gpv becomes negligible in the case of (KvJp/JvKp) �
up/uv [15].

To decouple the DSA model (1)–(2), define the control
input transformation [20] as follows

u1 = uv (4)

u2 = up + εuv (5)

and rewrite y1 = yv, y2 = yp, G1 = Gv and G2 = Gp. Then,
we can transform the DSA model as[

ŷ1

ŷ2

]
=

[
G1 0
0 G2

] [
û1

û2

]
(6)

y = y1 + y2 (7)

We can see that the model in (6)–(7) is decoupled
and apparently would facilitate the control design. Hence,
combining (6)–(7) can lead to the overall DSA model G
expressed by a decoupled DISO linear system

ŷ = Gû = [G1 G2]
[

û1

û2

]
(8)

The model parameters of G1 and G2 are given in the
Appendix. Further, the frequency responses of G1, G2 and
the interaction Gpv are shown in Fig. 2. From now on, we
will take the DSA system in (8) as the plant model for
control design.

The disturbance sources in HDDs that result in track-
following errors contain both repeatable runout (RRO) and
non-repeatable runout (NRRO). In this paper, we will design
the controller to reject the disturbances that are reconstructed
from a real HDD measurement. Fig. 3 shows the power
spectra of the RROs and NRROs extracted from the
disturbances. We can see that the RRO spectra include
the harmonics with a fundamental frequency of 80 Hz that
are associated with the spindle rotation frequency and the
written-in RRO while servo writing. On the other hand, the
NRROs contain narrow-band spectra around 644 Hz that are
caused by the disk flutter and external shock and vibrations.
In what follows, the controller will be designed to dedicate
to rejecting these RROs and NRROs for reducing the overall
position error signal (PES).
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Fig. 2 Frequency responses of the DSA model

a Solid lines: VCM actuator G1; dashed lines: interaction Gpv

b PZT actuator, G2
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Fig. 3 Power spectra of disturbances in a real HDD

3 Unified DSA control scheme

This section presents the fundamental design concept of a
parameterised 2-DOF controller based on the DCF method,

u
K=[K1 K2]

r

d

+

+
G

y pes
S

Fig. 4 Generic 2-DOF control system for the DSA HDD

and then the design of the controller parameters is addressed
to solve the DSA control problems of disturbance rejection
and track seeking, respectively. The ultimate design results
can straightforwardly yield a unified DSA controller for
track-seeking and following modes in HDDs.

3.1 Fundamental design concept

Fig. 4 depicts a generic 2-DOF control structure for the DSA
HDD system, where G denotes the DSA plant, K the 2-DOF
controller to be designed, and the signals r, y, pes, u and
d represent, respectively, the seeking reference, the head
position, the PES, the control inputs, and the disturbance.
In this setup, K is essentially a 2-DOF controller with K 1

the feedforward controller and K 2 the feedback controller.
By using the coprime factorisation approach [18], we can
parameterise the controller concisely. Let the right and left
coprime factorisations of G be given by

G = ND−1 = D̃−1Ñ (9)

where N , D, Ñ , D̃ ∈ RH∞ and satisfy the doubly Bezout
identify [

X̃ −Ỹ
−Ñ D̃

] [
D Y
N X

]
= I (10)

for some X , Y , X̃ , Ỹ ∈ RH∞. A simple DCF representation
of the DSA model is given in the Appendix. Hence, the
class of all linear internally stabilising 2-DOF controllers
K = [K 1 K 2] can be parameterised by

û = K 1r̂ + K 2 ˆpes (11)

K 1 = (X̃ − RÑ )−1Q (12)

K 2 = (X̃ − RÑ )−1(Ỹ − RD̃) (13)

where Q and R belonging to RH∞, are the free parameters
to be designed. By substituting the controllers K 1 and K 2

and the factorised plant model (9) into Fig. 4, we can easily
obtain the following input–output relationship in frequency
domain

ˆpes = T r̂ + Sd̂ (14)

with

T = NQ

S = (X − NR)D̃

where T denotes the DSA closed-loop transfer function from
the reference to the PES, and S the DSA sensitivity function
from the disturbance to the PES. It is advantageous that both
transfer functions are expressed by the design parameters Q
and R explicitly.
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Now, it is obvious that achieving the optimal performance
of track seeking and following is equivalent to selecting a
pair of R and Q such that S ≡ 0 and T ≡ 1, which, however,
requires the conditions that the plant must be proper, right
invertible, stable and minimum phase, and the resulting R
and Q are proper. In most practical mechanisms including
the HDDs, these strict conditions are rarely satisfied at the
same time. Consequently, the designer has to deal with one
or more of these constraints; and thereby it is more often that
only S → 0 and T → 1 is achievable in the frequency range
of interest [21]. In the following, based on the knowledge
of the HDD dynamics and the disturbance characteristics,
we shall propose a suboptimal design of R and Q that can
overcome the constraints at hand while provide desirable
fast track seeking and superior disturbance rejection in a
wide frequency range.

3.2 Design of R for disturbance rejection

The design goal of R is to make the sensitivity function
S have sufficiently low gains at the frequencies where the
dominant disturbances situate. In addition, R should be
capable of allocating the control efforts of the two actuators
in response to disturbances at a different frequency range.
Let R = [R1 R2]T and N = [N1 N2]. We then introduce
two new stable and proper transfer functions W and �, and
a scalar β, and take

R1 = X

N1
(1 − W )�β (15)

R2 = X

N2
(1 − W )�(1 − β) (16)

where W depicts desirable gain attenuation at the target
disturbance frequencies, β is a scalar for tuning the
control allocation of the two actuators in response to the
disturbances, � is a low-pass filter with unity gain within
the frequency range of interest, and its order is chosen to
make both R1 and R2 proper so that the resulting controller
is implementable. Now, with R expressed by (15)–(16), we
have

S = X D̃(1 − � + �W )

≈ X D̃W . (as � ≈ 1) (17)

Denote the term X D̃ as the nominal DSA sensitivity function

SN = X D̃ (18)

which actually results from a corresponding nominal
controller by setting R = 0. Now, from (17)–(18), we can
see that S is simply the multiplication of SN and W .
In general, SN is only capable of rejecting low-frequency
disturbances because the nominal servo bandwidth has to
be limited to provide sufficient stability margin. To further
reject the narrow-band RROs and NRROs beyond the servo
bandwidth, the design parameter W can thus be selected to
have low gains at these specified frequencies. To do this, W
can be given by

W =
n∏

i=1

s2 + 2ζ1iωis + ω2
i

s2 + 2ζ2iωis + ω2
i

, ζ1i < ζ2i (19)

where n is the number of target disturbances for rejection,
ζ1i, ζ2i ∈ (0, 1) are the damping ratios, and ωi is the centre

frequency of RROs and NRROs. Apparently, the gains of
W can be arbitrarily low at the disturbance frequencies by
selecting appropriate pair (ζ1i, ζ2i).

It is also interesting to see from (17) that S is unrelated to
β, which means that β can be chosen without affecting S.
This is because the DSA is essentially an actuator-redundant
system. However, as the VCM and PZT have quite different
dynamics, a suitable β should be carefully selected to
determine the control allocation of the two actuators in
response to the disturbances. Typically, the VCM works
mainly for the low-frequency movement, whereas the PZT
responses more for high-frequency disturbances. A useful
method to analyse the control allocation of the two actuators
is investigating the ratio of the open-loop systems of the two
actuators in frequency domain [5, 21]. Specifically, let the
controller K 2 = [K21 K22]T, Y = [Y1 Y2]T, and define the
open-loop systems of the VCM and PZT as OL1 = G1K21

and OL2 = G2K22, respectively. Then we can obtain the ratio
of OL1 and OL2 as

� = OL1

OL2
= X (1 − W )�β − Y1G1

X (1 − W )�(1 − β) − Y2G2

� X (1 − W )β − Y1G1

X (1 − W )(1 − β) − Y2G2
(20)

We can see that � is a function of β provided that W
is determined. In order to make the two actuators have
maximum cooperation, � is chosen to give a roll-off
characteristics and its phases are less than 120◦ when its
magnitudes are nearly one (0 dB). This means that when the
outputs of VCM and PZT have nearly the same magnitude,
the relative phases of VCM loop and PZT loop should be
less than 120◦ such that the total DSA output is greater than
one, and thus the two loops will not destructively interfere
[5]. From (15)–(16), it can be intuitively seen that a smaller
β indicates a larger relative contribution from the PZT than
the VCM (see Fig. 8 later for illustration), but it also tends
to saturate the PZT.

Finally, the � filter is taken with the following form [22]

� = 6τ 2s2 + 4τ s + 1

τ 4s4 + 4τ 3s3 + +6τ 2s2 + 4τ s + 1
(21)

where τ is the time constant that determines the filter
bandwidth. Here, the numerator and denominator order of
� are selected such that � has a best fit to unity in
both gain and phase characteristics within the bandwidth
and additionally R1 and R2 are made to be proper for
practical implementation. Ideally, the frequency bandwidth
of � should be extended as high as possible (by choosing
a smaller τ ) to achieve wide-band disturbance rejection.
However, in practice, this desired performance has to be
compromised with sensor noise suppression. As we can
see in Fig. 4, the measured pes generally contains sensor
noise, then the control input would be affected by the noise
amplification through the feedback controller K 2 involving a
high bandwidth � filter. In view of this trade-off, it suffices
to choose the filter bandwidth as 3–4 times of the DSA
closed-loop system bandwidth.

3.3 Design of Q for track seeking

Let Q = [Q1 Q2]T. Owing to the fact that G1 and G2

are minimum phase, we thus aim at the design of Q1 and
Q2 such that T = N1Q1 + N2Q2 → 1 has a high-frequency
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bandwidth. Furthermore, it is required that the displacement
of PZT settles down to zero at steady state. This means
that y1(∞) = r and y2(∞) = 0 should be satisfied for a step
response with amplitude r assuming the disturbance with
d(∞) = 0. Hence, we first analyse the individual position
outputs of the two actuators. Partition D as

D =
[

D1 0
0 D2

]
(22)

and suppose d = 0, it is thus easy to obtain

[
ŷ1

ŷ2

]
=

[
G1 0
0 G2

] [
û1

û2

]

=
[

N1D−1
1 0

0 N2D−1
2

]
DQr̂

=
[

N1Q1

N2Q2

]
r̂ (23)

We can see that the step responses of the two actuators are
completely decoupled in terms of Q1 and Q2. As the transfer
functions N1 and N2 are designed (by selecting proper F and
L as discussed in the Appendix) to individually reflect the
VCM and PZT closed-loop dynamics, we can then interpret
Q1 and Q2 as the trajectory planning functions for the two
actuators. We choose Q1 and Q2 as

Q1 = N1(0)−1 (24)

Q2 = γ N2(0)−1(1 − N1N1(0)−1) (25)

where γ ∈ [0 1] is a tuning scalar. It is obvious that
N1(0)Q1(0) = 1 and N2(0)Q2(0) = 0, which imply that

y(∞) = y1(∞) + y2(∞) = r + 0 = r (26)

Moreover, define the VCM and PZT closed-loop systems by

T1 = N1N1(0)−1 (27)

T2 = N2N2(0)−1 (28)

We then obtain the DSA closed-loop transfer function as

T = T1 + γ T2(1 − T1) (29)

It is clear that when γ varies from 0 to 1, the cut-off
frequency of T switches from that of T1 to that of T2

(e.g. see Fig. 9 for illustration). On the other hand, we can
see from (25) that the PZT will follow the scaled tracking
error of the VCM loop, that is, γ (1 − N1N1(0)−1)r, where γ
actually determines the contribution of the PZT to the overall
position output. Since the PZT has a faster response than the
VCM loop, it is preferable to have a maximal position output
of the PZT. Thus, we should maximise γ ∈ [0 1] subject to

‖T‖∞ ≤ 0 dB (30)

‖y2‖∞ ≤ 1.0 μm (31)

where the constraint (30) is introduced for no overshoot in
response to the track-seeking command in the PZT’s range;
and (31) is to avoid the saturation of the PZT (note that we
assume the PZT’s stroke limit is 1.0 μm).
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Fig. 5 Frequency response of DSA sensitivity function

4 Application and performance evaluation

In this section, we present a design example using the
proposed control method. The performance of the controller
is evaluated by simulations.

4.1 Design results

We use the DSA plant parameters as discussed in Section 2
and assume a track density of 25.4 kTPI (i.e. one-track pitch
is 1 μm) for the design and simulation. Then, the 2-DOF
controller for the DSA HDD servo system should satisfy
the following specifications:

1. Track-following servo system achieving PES 3σ value
less than 10% of a track pitch, that is, ≤ 0.1 μm.
2. Track-seeking response with settling time less than 0.3 ms
and overshoot less than 10% of a track. Moreover, the
displacement of PZT should settle down to zero at steady
state for further response to a sequential seeking command.
3. For robust stability, the DSA servo system should have
gain margin larger than 5 dB and phase margin more
than 40◦.

For simplicity, we will present a step-by-step design
procedure.

Step 1: DCF of G
According to the factorisation approach in the Appendix,
we first select F1 = [1.1746 × 105 56.1] and L1 = [5.65 ×
104 9.8 × 108]T to make the VCM loop and its estimator
have a bandwidth of 600 and 3000 Hz, respectively,
and select F2 = [−3.5362 × 107 955.7] and L2 = [8.8 ×
104 7.88 × 108]T for the counterparts of the PZT with 5
and 8 kHz bandwidths, respectively. Then, the DCF of G
can be easily computed by (33)–(40). We can evaluate the
nominal DSA servo system since it is only related to F
and L. Fig. 5 shows the nominal DSA sensitivity function
indicating a 600 Hz crossover frequency. The dashed lines
in Fig. 6 show the frequency response of the nominal DSA
open-loop system, which indicates that a gain margin of 5 dB
and a phase margin of 42◦ are obtained. By simulating the
nominal DSA servo system in the presence of disturbances,
we collect the PES samples and the corresponding power
spectra is shown in Fig. 10a, which clearly indicates that
the disturbances around the nominal servo bandwidth 600 Hz
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Fig. 6 Frequency response of DSA open-loop system

Table 1 Parameters of W (s)

i ωi ζ1i ζ2i

1 2π · 644 5 × 10−4 8 × 10−3

2 2π · 724 5 × 10−4 6 × 10−3

3 2π · 804 1 × 10−3 8 × 10−3

4 2π · 884 1 × 10−3 9 × 10−3

5 2π · 1024 5 × 10−4 3 × 10−3

6 2π · 1608 8 × 10−3 0.022

are not greatly compensated. Therefore, the design of R in
the next step would be dedicated to the suppression of these
disturbances.

Step 2: Design of R
According to Fig. 10a, we aim at suppressing the dominant
disturbances with peak frequencies of 644, 724, 804, 884,
1024 and 1680 Hz. First, we determine W in (19) by setting
n = 6 and ωi corresponding to each peak frequency. The
smaller value of ζ1i and a bigger relative ratio to ζ2i can lead
to a higher reduction ratio at the disturbance frequency. In
our case, the values of these parameters are listed in Table 1.
Second, we set β = 0.3 and τ = 1/2π8000 for the � filter.
Finally, we can easily calculate R from (15)–(16).

The proposed DSA sensitivity function S is shown in
Fig. 5 in comparison with the nominal one SN . It is clear
that the gains at the disturbance frequencies are greatly
decreased without amplifying the gains at the neighbouring
frequencies. The frequency response of the DSA open-
loop system is shown in Fig. 6, which indicates that
the proposed DSA controller provides high gains around
the target disturbance frequencies. It should be noted that
although these high gains lead to multiple 0-dB crossover
frequencies, their corresponding phases are all above −180◦
implying that the closed-loop system is still stable. This
again verifies the benefit of the factorisation approach for
sensitivity loop shaping with guaranteed stability. To verify
the control allocation of the DSA, Fig. 7 shows the Bode plot
of � function (20). We can see that the designed � has a roll-
off characteristics, and especially at the target disturbance
frequencies the magnitudes of � are nearly one and the
corresponding phases are around 250◦. In other words,
the relative phases of the VCM and PZT loop are kept
about 110◦, which implies a friendly cooperation of the two
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Fig. 7 Bode plot of � function (The ‘�’ indicates the frequency
responses at the target disturbance frequencies)
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Fig. 8 Comparison of � function illustrating DSA control
allocation with respect to β

actuators. In addition, Fig. 8 shows the frequency responses
of � with respect to various β values, which indicates that
the gain significantly decreases with a smaller β. This in turn
leads to a larger disturbance rejection contribution from the
PZT, but note that it also tends to saturate the PZT.

Step 3: Design of Q
For track-seeking control, we set γ = 0.72, and then Q can
be obtained from (24)–(25). Fig. 9 shows the frequency
responses of the closed-loop system of the DSA (T ), the
VCM (T1), and the PZT (T2), respectively. We can see that
the DSA frequency bandwidth is located between that of
the VCM loop and that of the PZT loop, which indicates
that the DSA servo system should be faster than the VCM
loop but slower than the PZT loop as expected. In addition,
the maximal peak of T , that is, ‖T‖∞, satisfies the design
constraint (30) for no overshoot. Comparatively, a smaller
γ , for example, 0.5, will result in a lower bandwidth; while
a too large γ , for example, 0.9, will result in a larger ‖T‖∞
indicating an excess overshoot.
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Fig. 9 Frequency response of DSA closed-loop transfer function
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Fig. 10 Power spectra of PES samples

a Nominal DSA servo system with R = 0 (PES 3σ = 0.1 μm). The arrows

indicate the target NRROs to be rejected.
b Proposed DSA servo system (PES 3σ = 0.082 μm). The proposed DSA

servo system achieves a 18% reduction ratio of PES-3σ value compared

with the nominal DSA servo system
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Fig. 11 Time response to one track seeking
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Fig. 12 Frequency responses plots under the DSA plant model
parameter uncertainties

a Closed-loop transfer function
b Sensitivity function. (Solid lines: with unperturbed plant; dashed lines:

with interaction model parameter ε variation of ±20%; dash-dot lines: with

PZT’s resonant frequency variation of ±5%.)
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4.2 Performance validation

The DSA control system is simulated using MATLAB/
Simulink at a sampling frequency of 25 kHz. We first
evaluate the track-following servo system by setting r = 0
and injecting the disturbances d characterised by Fig. 3.
In this mode, only the feedback controller K 2 takes action.
The power spectra of the resultant PES is shown in Fig. 10.
It is obvious that with the proposed DSA controller the
target disturbances as specified in W (19) are remarkably
rejected compared with those with nominal DSA controller
(with R = 0). The PES 3σ value is reduced from 0.1
to 0.082 μm, which is a 18% reduction ratio. Next, the
one-track-seeking performance is evaluated by setting r = 1
μm and d = 0. In this mode, the feedforward controller K 1

works to generate appropriate seeking trajectories for VCM
and PZT, respectively. Fig. 11 shows the time response
to one track seeking, which indicates that the settling
time under the proposed DSA controller is only 0.3 ms
considerably smaller than that of the VCM. Moreover,
the selected γ ensures the PZT displacement is within
its limit as required by (31). It should be noted that in
real implementation, when the head position approaches
the target track, the proposed unified controller does not
require extra switching manipulation for transferring to the
track-following mode.

We also note that the dynamic interaction is actually
decoupled using a feedforward control input as shown in
(5). As such, we further simulate the performance robustness
against the interaction model parameter ε variation and
the PZT’s resonant frequency variation. Fig. 12 shows the
frequency responses of the DSA closed-loop system and the
sensitivity function, which indicate that the characteristic of
the plots actually does not vary much when the plant is
perturbed by the uncertainties. Moreover, Fig. 13 compares
the performance robustness test results of the track seeking
and following. It is clear that the performance is maintained
within about 10% of the unperturbed servo system in all
cases.
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Fig. 13 Performance robustness of the proposed controller
against the DSA plant model parameter uncertainties (Case 0: with
unperturbed plant; cases 1–2: with interaction model parameter
ε variation of ±20%; cases 3–4: with PZT’s resonant frequency
variation of ±5%.)

4.3 Comparative study

We also carry out a comparative study between the proposed
unified controller and a conventional decoupled master–
slave (DMS) controller [2]. In the DMS control scheme,
the total DSA sensitivity function is the product of the
VCM and PZT sensitivity functions. Hence, the controller
design is decoupled into two independent loop designs for
the VCM and PZT, respectively. Since the DMS controller
is easy to design and offers basic performance, it is widely
used as a baseline controller to investigate advanced DSA
controllers (e.g. see [8, 9, 11, 23]). In our study, we
design the DMS controller using a lead-lag controller for
the VCM and a high DC-gain low-pass filter for the PZT.
For the sake of fair comparison, the DMS controller is
tuned to have similar servo bandwidth and stability margin
as those of the proposed unified controller. Fig. 14 shows
the comparison of the PES power spectra between two
controllers. We can see that the achievable PES 3σ of
conventional controller is a bit larger than that of the
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Fig. 14 Comparison of PES power spectra (DMS: PES
3σ = 0.083 μm; Proposed: PES 3σ = 0.082 μm)
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Fig. 15 Comparison of one track seeking
The DMS-based servo exhibits excess overshoot resulting in longer
settling time
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proposed controller because it lacks sufficient control efforts
to reject the NRROs avout 800 Hz. The track-seeking
comparison is also shown in Fig. 15, which indicates that
the conventional controller results in a remarkably long
settling time because of the excess overshoot. This is mainly
because the conventional DMS controller is merely a single-
degree-of-freedom controller, while the proposed unified
controller combines a feedforward path to improve the
seeking performance.

5 Conclusion

In this paper, we have developed a unified approach to
track seeking and following control of a DSA HDD system.
The design method can explicitly reflect the design criteria
of fast seeking and disturbance rejection in terms of two
design parameters. We further discuss the selection of
the design parameters for proper DSA control allocation.
Finally, simulation results are presented to verify the
efficacy of the proposed controller. It can be concluded
that the proposed unified controller can achieve desirable
performances for both track seeking and following that are
equivalent to that by two separate conventional controllers.
The developed DSA HDD controller is comparatively
simpler for implementation.
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7 Appendix: A factorisation representation of
the DSA model

First, let the DSA model G(s) in (8) be represented in a
state-space realisation as follows

G(s) = C(sI − A)−1B (32)

where

A =
[

A1 0
0 A2

]
=

⎡
⎢⎣

0 1 0 0
0 0 0 0
0 0 0 1
0 0 −1.52 × 109 −2597

⎤
⎥⎦

B =
[

B1 0
0 B2

]
=

⎡
⎢⎣

0 0
121 0

0 1
0 32.88

⎤
⎥⎦

C = [
C1 C2

] = [
1 0 1 0

]
and (A1, B1, C1) and (A2, B2, C2) are the state-space
representations of the VCM model G1 and PZT model G2,
respectively. Also, we have ε = −3.1 for the interaction
model (3). Since the pairs (A, B) and (A, C) are stabilisable
and detectable, respectively. we can select F and L such that
(A − BF) and (A − LC) are both Hurwitz. Thus, a DCF of
G(s) [24] is given by

N (s) = C(sI − A + BF)−1B (33)

D(s) = I − F(sI − A + BF)−1B (34)

Ñ (s) = C(sI − A + LC)−1B (35)

D̃(s) = I − C(sI − A + LC)−1L (36)

X (s) = I + C(sI − A + BF)−1L (37)

X̃ (s) = I + F(sI − A + LC)−1B (38)

Y (s) = −F(sI − A + BF)−1L (39)

Ỹ (s) = −F(sI − A + LC)−1L (40)

It can be seen that the DCF representation of the DSA model
is expressed by explicit formulas in terms of its state-space
realisation. Hence, it is numerically easy to use.
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Now, to obtain (33)–(40) is reduced to choosing two gains
F and L which actually represent the state feedback gain
matrix and state estimator gain matrix of the DSA model,
respectively. Since the DSA model is decoupled, the gains
F and L can be partitioned as

F =
[

F1 0
0 F2

]
, L =

[
L1

L2

]
(41)

Hence, we can individually design the gains for the VCM
and PZT loops by using the pole placement method [19].
Since the gains F and L govern the characteristics of the
nominal feedback control loop, they should be selected
appropriately such that the PZT loop has a faster dynamics
than the VCM loop and the estimator faster than the state
feedback loop, and meanwhile sufficient stability robustness
is provided.

10 IET Control Theory Appl., pp. 1–10
© The Institution of Engineering and Technology 2012 doi: 10.1049/iet-cta.2010.0117


