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A Continuous-Time Linear System Identification
Method for Slowly Sampled Data
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Abstract—Both direct and indirect methods exist for identifying
continuous-time linear systems. A direct method estimates contin-
uous-time input and output signals from their samples and then
use them to obtain a continuous-time model, whereas an indirect
method estimates a discrete-time model first. Both methods rely
on fast sampling to ensure good accuracy. In this paper, we pro-
pose a more direct method where a continuous-time linear model
is directly fitted to the available samples. This method produces an
exact model asymptotically, modulo some possible aliasing ambi-
guity, even when the sampling rate is relatively slow. We also state
conditions under which the aliasing ambiguity can be resolved, and
we provide experiments showing that the proposed method is a
valid option when a slow sampling frequency must be used but a
large number of samples is available.

Index Terms—Continuous time systems, identification, param-
eter estimation, sampled data systems.

I. INTRODUCTION

D YNAMICAL systems encountered in the physical world
are usually of a continuous-time nature (see [1] for a

list of examples in biology, economics and physics). How-
ever, when measuring input and output signals, we obtain
discrete-time signals formed by samples of possibly noisy and
prefiltered versions of these continuous-time signals. Contin-
uous-time linear system identification involves identifying a
continuous-time linear model using these samples [2], [3].
Compared to its discrete-time counterpart where abundant
techniques are available (see, e.g., [4] and [5]), relatively less
research has been done in this area. Available methods for
continuous-time linear system identification are summarized
below.

1) Indirect Methods [6]: In this approach, the sampled
signals are used to identify a discrete-time version of the linear
system first. This is done by using any standard discrete-time
linear system identification technique. The discrete-time model
so obtained is then converted to a continuous-time model by
using any standard conversion method (e.g., bilinear (Tustin)
approximation, matched pole-zero method, zero-order hold
(ZOH) method, etc., [7]). The advantage of this approach is that
the actual identification is done using discrete-time techniques
which are well developed and their behaviors well understood.
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However, a drawback of this approach is that the accuracy of
the standard linear model conversion methods depends on the
sampling frequency, which therefore can not be too small. On
the other hand, a very high sampling frequency causes the poles
of the discretized version of the system to cluster at ,
making them difficult to identify.

2) Direct Methods [8]: In this case, the parameters of a
continuous-time linear model are tuned to minimize an objec-
tive function constructed using the sampled signals. Generally
speaking, the construction of the objective function requires (ex-
plicitly or implicitly) the estimation of the continuous-time sig-
nals from their samples. Therefore, for these methods to be ac-
curate, the sampling frequency needs to be high (this require-
ment can be replaced by assumptions on the inter-sample be-
havior of the input and output signals). Based on the definition
of the cost function, the direct methods can be further divided
into time-domain and frequency-domain methods.

3) Time-Domain Methods: These methods aim to transform
the linear system’s differential equation into an algebraic
(linear) equation. In theory, this can be achieved by intro-
ducing some kind of preprocessing of the continuous-time
signals before the sampling operation (e.g., state variable
filtering, integration). In practice, however, the preprocessing
is implemented in the discrete-time domain, after the sampling
operation. For this to be done, the available samples can be used
to approximate the continuous-time signals using polynomial
methods (e.g., ZOH, first-order hold (FOH)) [9], [10] or to
approximate the continuous-time signals’ derivatives [11], [12].
A main advantage of this approach is that the continuous-time
parameters can be solved via a linear least-squares solution.

4) Frequency-Domain Methods [13], [14]: Here, the avail-
able samples are used to estimate the spectrum of the input and
the output signals. As with time-domain methods, this requires
some assumption on the continuous-time signals. An advantage
of this approach is that it provides a convenient framework for
characterizing the inter-sample behavior of the output signal
based on that of the input, as well as for dealing with the case
when the input signal is assumed to be bandlimited. However, a
disadvantage of this approach is that the continuous-time param-
eters are obtained by solving a nonlinear optimization problem.

A problem related to the identification of a continuous-time
linear system is that of estimating a linear model for a contin-
uous-time stochastic process based on sampled data [15]–[17].
An approach for estimating the parameters of a continuous-
time autoregressive moving average (CARMA) model was re-
cently proposed in [18] and [19], and consists of estimating the
model by fitting the discrete-time autocorrelation function to
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that obtained from the observed samples. In this paper we ex-
tend this idea to propose a novel continuous-time system iden-
tification method. More precisely, our proposed identification
strategy consists of two steps. In the first step, an averaged au-
tocorrelation of the (possibly nonstationary) continuous-time
input signal is identified to fit the discrete-time autocorrelation
function estimated from the input samples.1 In the second step,
the identified averaged input autocorrelation is used to iden-
tify the desired continuous-time system to fit the discrete-time
cross-correlation between the input and output samples. In com-
parison with other direct methods, our method also aims to tune
the continuous-time parameters to minimize an objective func-
tion constructed from the available samples. However, the key
difference to the existing direct methods is that we do not need
to estimate the continuous-time signals. It turns out that the
proposed method produces, in theory, the exact system model
asymptotically, modulo some possible aliasing ambiguity, as the
number of samples tends to infinity, for any sampling frequency.
However, numerical problems associated with the finite quan-
tization of samples introduce a lower bound on the sampling
frequency. Nevertheless, numerical simulations show that this
lower bound can be smaller than the 3 dB bandwidth of the
system in practice. Hence, as we show using experimental re-
sults in Section IX-A, our proposed scheme has advantages over
existing schemes when the sampling rate is relatively low and
the number of samples is relatively large. Many lightly damped
mechanical structures (such as flexible beams) have the proper-
ties of relatively high bandwidth, which calls for relatively low
sampling rate, and relatively stable dynamic structure, which
allows a large number of samples to be collected. Example 2
in Section IX-A describes such a structure where the proposed
scheme is applicable.

The aliasing ambiguity mentioned above is generated by the
well-known fact that a continuous-time linear model produced
using input–output data sampled at a given frequency, always
has poles ambiguous in the sense that their imaginary parts can
be shifted by any integer multiple of the sampling frequency
without changing the dynamic response of the linear system
at the sampling points. In Section VI, we state conditions
under which aliasing ambiguity can be resolved asymptotically
without a prior knowledge of the region of the poles.

The rest of the paper is organized as follows. In Section II, we
introduce some necessary background material. In Section III,
we describe the continuous-time linear system identification
problem, and we motivate the proposed approach which is
described in Section IV. In Section V, we state the resulting
identification criterion, and in Section VI we state condi-
tions under which the aliasing ambiguity can be resolved. In
Section VII, we derive an adaptive parameter optimization
algorithm for solving the proposed identification criterion. In
Section VIII, we address the estimation of the averaged input
autocorrelation function, which is required by the proposed

1While this first step follows an idea similar to the one in [18] and [19], it dif-
fers in three aspects: 1) We allow the input signal to have nonstationary second
order statistics; 2) We consider the presence of an anti-alias filter within the
sampling device (see Remark 4); and 3) we use a different parametrization of
the input autocorrelation function, to deal with the presence of this filter (see
Section VIII).

identification strategy. Finally, some simulation results are
presented in Section IX, and concluding comments are given in
Section X. For the ease of readability, all proofs are contained
in the Appendix.

II. PRELIMINARIES

Throughout the paper we use the following:
Notation: Discrete-time expressions (i.e., signals and linear

systems) are denoted using bold letters and their continuous-
time counterparts using nonbold letters. Also, time-domain ex-
pressions are denoted in lowercase and their frequency-domain
counterparts in uppercase. Finally, vectors are denoted with a
single underbar (except when appearing as superscripts) and
matrices with a double underbar.

1) The -Transform of a Vector: Let be a continuous-
time signal, its Laplace transform and

be a vector of samples of .
Consider the set , and
define the -transform of the vector , as the map

given by

(1)

We define the operator (i.e., maps the
Laplace transform of a continuous-time signal into the -trans-
form of the vector formed by the first samples obtained using
a sampling period ).

Remark 1: Notice that in our definition of the -transform
of a vector we only allow to take values in . This restriction
is required for the result in Lemma 3 (in Appendix A) to hold.
Due to this restriction, (1) is equivalent to the discrete Fourier
transform (DFT) of the vector . The advantage of using the
notation is that it permits in many cases expressing as a
rational polynomial function in . Although this is a subtlety, it
facilitates the derivation of the proposed algorithm (in particular
the result in Lemma 2).

III. CONTINUOUS-TIME LINEAR SYSTEM IDENTIFICATION

The setting for continuous-time linear system identification
is depicted in Fig. 1. The input signal and the output noise

are uncorrelated random processes. The discrete-time
signals and are generated by first filtering the input
signal and the noisy output signal using the anti-alias filters

and , respectively, and then sampling them with a
sampling period . It is assumed that is modeled by

(2)

where is the vector of parameters, with
and .

The research problem is to estimate the parameters based
on the sampled signals and . To this end there are dif-
ferent approaches as explained in Section I above. Notice that,
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Fig. 1. Continuous-time system identification setting.

generally speaking, these methods rely on the assumption that
the signal (resp. ) is generated as follows:

(3)

for some function and some discrete-time sequence
. More precisely, assuming that the intersample behavior of
is ZOH or FOH is equivalent to assume that is a zero

or first order B-spline [20], [21], respectively. Also, assuming
that is band limited is equivalent to assume that equals
some properly scaled and dilated version of the function.

Under the assumption (3), the generating sequence can
be reconstructed from the samples , and in this
way, the whole information about the continuous-time signal

(resp. ) is contained in the samples . However, a
drawback of this assumption is that it is approximately correct
only if the sampling frequency is very high. If this is not the case,
a more suitable assumption is that (resp. ) is generated
by

(4)

where the generating function is usually a zero-mean,
white, continuous-time random process2 and
denotes the impulse response at time of a linear time-varying
filter. In this case, the function cannot be reconstructed
from the samples , and therefore, cannot be perfectly
reconstructed. Hence, a different approach needs to be used.

IV. PROPOSED STOCHASTIC APPROACH

We use a stochastic approach based on second-order statis-
tics. The second-order statistics of (resp. ) are deter-
mined by its time-varying correlation which is defined by

(5)

with denoting the expected value. Then, a characterization
of the nonstationarity of is given by the following con-
dition.

1) Condition 1: There exist functions and
( denotes the set of positive real numbers) such that,

for all ,

(6)

Now, we have the following result.

2Notice that, strictly speaking, a realization of such a random process may
not be a Lebesgue measurable function, and therefore, (4) is not strictly correct.
However, we ignore this technical subtlety which falls beyond the scope of this
work.

Lemma 1: Let be a continuous-time random process and
let be two continuous-time functions. For each

, define and , and
let

be the (normalized) cross-correlation between and .
If has uniformly bounded second moments (i.e., there exists

such that , for all ), then

(7)

where denotes convolution and the superscript denotes time-
reversal (i.e., ). The averaged autocorrelation
function is defined by

(8)

and the nonstationary contribution is defined in (41),
Appendix A. Moreover, if satisfies Condition 1, then, for
all ,

(9)

where denotes pointwise multiplication (i.e.,
), and denotes absolute value.

Proof: See Appendix A.
Remark 2: The function in (6) states a bound on the

rate of change of the second-order statistics of . Hence, for
small values of where these statistics remain approximately
constant, we have that . Notice that, if this condition
holds within a time interval longer than the settling-time of the
impulse response , then . Hence, under this
mild assumption, and therefore (7) becomes

(10)

Now, in Fig. 1, let be the autocorrelation of
and be the cross-correlation between and

. Then, in view of Remark 2, if the statistics of do not
change within a time interval longer than the settling-time of

, it follows that, for all ,

(11)

(12)

where and denote the inverse Laplace transforms of
and , respectively.

Suppose that is known. Then, (12) states a relationship
between and . Since can be estimated from
the available samples, (12) can be used to solve . In Section V,
, we derive an identification criterion based on this idea, and in
Section VII, we derive a parameter optimization algorithm for
solving it.

The method outlined above relies on the knowledge of .
Depending on the application, this information can be known a
priori (e.g., if is a stationary random process with known
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power spectrum), or otherwise estimated from the available
samples. In Section VIII we use an argument similar to the one
given above to show that can be estimated accurately
from using (11), modulo some aliasing ambiguity.

V. PROPOSED IDENTIFICATION CRITERION

In this section we assume that the averaged autocorrelation
function of the input signal is known, and we use
(12) to state a criterion to identify . We denote the impulse re-
sponse of by and the parametric version of
by , i.e.,

(13)

Also, we define an estimate of by

(14)

where the forgetting factor is used to assign less weight to
older measurements that are no longer representative of the
(possibly slowly time-varying) parameters , and the scaling
constant is used so that, when the joint
statistics of and are stationary, the expected value
of equals in (12). Hence, we can define the
optimal vector of parameters up to time , as the one
that makes as close as possible to . Hence,
in the frequency domain we have that [see (15), shown at the
bottom of the page], where denotes

the -transform of the vector
and denotes the averaged power spectrum
of . Now, if we assume that , , and have
rational forms, we can write

and (15) becomes (16), shown at the bottom of the page.
Remark 3: To simplify the presentation above, we did not

consider in (15) the values of and for negative
values of . This is a reasonable assumption since in most appli-
cations these functions vanish very quickly in the negative direc-
tion. However, if these values are to be considered, the analysis

above can be still applied by splitting into its causal and
(strictly) anticausal components.

Remark 4: Notice that the identification criterion (16) takes
into account the presence of anti-alias filters within the input and
output sampling devices. Although they are usually not consid-
ered in the continuous-time identification literature (e.g., [18],
[19]), anti-alias filters are almost always present in real life, ei-
ther implicitly or explicitly. These filters are often built with
analog components which are subject to significant deviations
from nominal values. For this reason, a mismatch between input
and output filters often occurs, which if not taken into account,
will induce a bias in the identified model. We give a numerical
experiment illustrating this point in Section IX-D.

VI. CONSISTENCY

In this section, we address the question of consistency, i.e.,
whether the limit value of tends to the true vector of pa-
rameters as , i.e.,

or, . Unlike discrete-time system
identification, the estimated continuous-time model based on
sampled data is not always consistent. This is due to the problem
of aliasing ambiguity. We will show this via an example of in-
consistency later in this section.

The main result of this section is to provide conditions under
which aliasing ambiguity can be resolved from the sampled
data. Roughly speaking, we show that the estimate is
consistent when an anti-aliasing filter is used. To this end,
we introduce the following result, which will also be used
in Sections VII and VII-B to derive the proposed parameter
optimization algorithm and its initialization, respectively.

Lemma 2: Let ,
and be

polynomials on of orders , and , respectively. Let
and for define

(17)

If , then

(15)

(16)
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where is the monic polynomial on of order ,
whose roots are obtained from the roots

of as follows:

(18)

and the matrix (defined in Appendix B (50))
states a linear relationship between the coefficients of
and those of the resulting discrete-time numerator.

Proof: See Appendix B.
Now consider (16) and put . Let

, and denote their orders by
and , respectively. We have that

(19)

where denotes the vector of coefficients of . Also,
using the notation , Lemma 2 gives

(20)

From (19) and (20), the minimum of (16), as , is found
when

(21)

(22)

The vector is not uniquely determined by (21). To see this
notice that if is a solution of (21), and the imaginary parts of
the poles of its associated continuous-time denominator
are shifted by any integer multiple of the sampling frequency, to
generate a new denominator , its corresponding vector of
coefficients is also a solution of (21). However, this aliasing
ambiguity can be resolved if there is only one solution to
(21) which makes fall in the range of . Therefore, it
can be resolved in general if do not have full column
range. Assuming that is strictly proper (i.e., ), this
condition is satisfied when or .
Put in other words, aliasing ambiguity can be resolved when
a nontrivial anti-aliasing filter is applied or has relative
degree greater than 1. If this is not the case, the ambiguity can
only be resolved by a prior knowledge of the region of the poles
of the true system .

A similar situation occurs when estimating the input auto-
correlation using (11) (see Section VIII for more details).

To this end, we assume that is generated by filtering a
continuous-time white random process using a filter . By
following a similar argument, aliasing ambiguity only exists if
no input anti-alias filter is used and the numerator of is
one order smaller than its denominator. To illustrate this point,
we consider the following example taken from [19], where the
authors mistakenly concluded in [19, Section III-A] that the
estimate is always consistent, by stating that

(recall that denotes the true vector of
parameters) without considering aliasing ambiguity. We will
show that aliasing ambiguity exists in this case and the contin-
uous-time model can not be uniquely identified.

1) Example 1: Let be defined by

which has poles at . Choose , and sup-
pose that no anti-alias filter is used when sampling . Using
Lemma (3), it follows that [see (23), shown at the bottom of the
page]. To find a continuous-time equivalent of we do
a residual-pole decomposition of (23), and we map each dis-
crete-time pole to continuous-time by reversing the (18). Sup-
pose that when inverting (18) we shift the imaginary parts of the
continuous-time poles by , obtaining the poles

instead of . After doing a spectral factorization of
the result, we obtain

Since the only restriction on the numerator of is that it is
one order smaller than the denominator, all the obtained by
shifting the imaginary parts of the continuous-time poles by any
integer multiple of the sampling frequency are valid solutions
for . Therefore, the aliasing ambiguity cannot be resolved.

VII. PARAMETER OPTIMIZATION ALGORITHM

In this section we derive a parameter optimization algo-
rithm for solving the proposed identification criterion (V). In
Section VII-A, we derive an adaptive identification algorithm
based on a quasi-Newton search method, whose initialization
is presented in Section VII-B.

A. Adaptive Gradient Search Algorithm

The optimization problem (16) can be written as follows:

(24)

(25)

(23)
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where

(26)

is a function of the -dimensional vector
. Using a quasi-Newton method, (24) and (25) is solved using

the following iterative procedure:

(27)

The -dimensional vector denotes the gradient of at
, whose th component is given by ( denotes the th entry

of ):

(28)

The matrix denotes an approximation of the in-
verse of the Hessian of at , and is computed using the
Broyden–Fletcher–Goldfarb–Shannon (BFGS) formula [22]:

(29)

Finally, the scalar denotes the step size at iteration ,
which is obtained from a linear search algorithm in which,
starting from the initial value , the value of is
iteratively halved until

(30)

or a maximum number of iterations is reached.
The computation of the gradient in (28) requires

the evaluation of the sample correlation as well as
and its first-order derivatives

(31)

The sample correlation can be computed using the following
update formula:

(32)

(recall that ). Also, as shown in
Appendix C, using Lemma 2, we obtain

(33)

(34)

where the -valued row vectors and
are given by

(35)

(36)

with denoting the matrix with its first column removed.
Remark 5: The memory of the adaptive algorithm (27) is

determined by the forgetting factor in (29) (via the weight
) and (32). This algorithm can be turned

into batch one (i.e., nonadaptive) by choosing .

B. Initialization

The recursive optimization algorithm (27) needs an initial-
ization (or guess) of the unknown parameters. As concluded in
Section IX-A below, sample-correlation fitting approaches like
the one in [18] and [19] or our proposed continuous-time system
identification method, are valid options when a slow sampling
frequency must be used but a large number of samples is avail-
able. In this case, all other available methods fail, and hence
they cannot be used to initialize (27). Therefore, the advantage
of these approaches would be undermined if an initialization
method is not provided. In the context of discrete-time system
identification, a guess is often obtained using the method in [23].
In this section, we derive a method to obtain a guess for (16) by
following the idea in [23].

Using Lemma 2, we can write (16) as (37), shown at the
bottom of the page, where denotes the vector of coefficients
of the discrete-time denominator . Now, we can inter-
pret (37) as a weighted least-squares problem with weighting
factor . For the purposes of obtaining a guess, we
can replace (37) by an iterative procedure in which, at iteration

, the discrete-time denominator is replaced by its
value obtained using the parameters from
the previous iteration. By doing so we can, in principle, jointly
estimate the vector . However, a difficulty in doing
so is that the matrix depends (nonlinearly) on

(37)
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(via the mapping ), and therefore the problem, as
opposite to that in [23], is still nonlinear in the parameters. In
order to go around this issue, we define and

we jointly estimate , solving a linear least-squares
problem. This results in the iterative procedure shown in (38)
at the bottom of the page, which is initialized by choosing

. To retrieve the continuous-time parameters
from we take as the coefficients

of the monic polynomial in whose roots are obtained by
reversing the pole-mapping (18) on the roots of the polynomial

. Once is obtained, in
view of (16), (26) and (33), we can obtain by solving the
following linear least-squares problem:

Notice that and need only be recovered at the end of
the iteration process (38).

As its discrete-time counterpart [23], the recursive algorithm
(38) is not guaranteed to converge, and the iterations are stopped
when the minimization argument stops decreasing, which typi-
cally occurs after a small number of iterations.

Remark 6: It may happen that the polynomial
have a real negative root. In this case, when reversing the pole-
mapping (18), this pole needs to be split into two complex con-
jugated poles, in order to prevent from having complex co-
efficients. By doing so, the order of is increased by one for
every real negative root of . However, notice that in
(27), the sizes of and that of do not need to be the
same. Then, the order of can be reduced after the first itera-
tion of (27).

Remark 7: To resolve the aliasing ambiguity, following (22),
we select the denominator coefficients by shifting the iden-
tified poles by an integer multiple of the sampling (angular) fre-
quency , so that they minimize the difference be-
tween the vector of numerator coefficients of and its
projection onto the range of .

VIII. ESTIMATION OF AVERAGED INPUT AUTOCORRELATION

So far, we have assumed that the averaged autocorrelation
function is known. However, this may not be a realistic as-
sumption in certain applications. In this section we describe how
to estimate using the same ideas described in Section V for
estimating .

Recall that denotes the averaged power
spectrum of . To estimate we use the following ra-
tional parametric model:

where is the vector of parameters, with
and . Then, we con-

sider the optimization criterion shown in (39) at the bottom of
the page, where denotes the -trans-
form of the vector of sam-
ples of the estimate

and

The optimization problem (39) can be solved following the
steps on Section VII, taking into account that the polynomials

and have only terms of even powers.

IX. SIMULATIONS

In this section we analyze the performance of the proposed
method. To this end, we use the Rao-Garnier benchmark system
[6], which is given by

(38)

(39)
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Fig. 2. Frequency responses of ���� and � ���.

and was used as a benchmark example in [2], [3], [9], [24], and
[25]. This system has two pairs of complex conjugated poles at

and and a 3 dB bandwidth of
26.85 rad/s. As described in (4), the input signal

is generated by filtering white noise using

which has the same bandwidth as . The frequency
responses of and are shown in Fig. 2. The perfor-
mance comparison is done in terms of the identification error
defined by

(40)

A nontrivial issue is the generation of the discrete-time sam-
ples and . To do so, let be the power spectrum
of the discrete-time vector signal , and let
be a spectral factor (i.e., with the super-
script denoting transpose conjugation) obtained using any of
the methods described in [26]. Then, the vector
is generated by filtering a (vector) white noise using .

A. Comparative Performance Analysis

In this section we compare the performance of the proposed
method with that of the methods described in Section I. For the
indirect method, the discrete-time identification stage is done
using the prediction error method [4], and the model conversion
using the ZOH method. Notice that, in this way, the continuous-
time model obtained will necessarily have its numerator one
order smaller than its denominator (i.e., ),
which will make the comparison somehow “unfair” in the sense
that the other methods use . For the direct time-domain
method we use the state variable filter method [9] where the
cutoff angular frequency of the state variable filters is chosen as

26.85 rad/s. For designing the frequency domain
method we assume that the input signal is band limited (i.e., we
use Approach 1 in [14]). For the proposed method, we choose
to satisfy 12 s so that the sampling interval is longer
tham the settling-time of the impulse response of .
We also use the method described in Section VIII to estimate
the input autocorrelation .

Fig. 3. Identification error versus sampling frequency for: indirect
method (IM), time-domain method (TDM), frequency-domain method (FDM),
and the proposed method with � � �� (PM1), � � �� (PM2), � � ��
and known �� ��� (PM3), and a fixed sampling interval of � � 2000 s (PM4).

Fig. 4. Identification error versus number of samples �� � ����.

In the first experiment we compare the estimation error of
the different methods as a function of the sampling angular fre-
quency . To do so we eliminate the anti-alias filters
and and the output noise (see Fig. 1), and we av-
erage the identification error obtained over 10 runs. For the in-
direct method (IM), the time-domain method (TDM) and the
frequency-domain method (FDM) we use samples
(as shown in Fig. 4 below, the performance of these methods
does not significantly change with the number of samples). For
the proposed method we use both (PM1) and

samples (PM2). The results are shown in Fig. 3. We see
that, when using , the proposed method is able to
identify the system at frequencies above a threshold of
about 40 rad/s. The reason for this is that the algorithm is un-
able to estimate below this threshold. This is to some ex-
tent overcome when using . However, the error of
the proposed method still has peaks in the neighborhoods of

rad/s . The reason for this is that,
at these angular sampling frequencies, due to aliasing, the pair
of complex conjugated poles at combines into a
single real pole, preventing the proper identification of .
This effect is more evident when using the proposed method
assuming that is known (PM3). Also we see that, for fre-
quencies above the 40 rad/s threshold, while leads
to a smaller identification error than the one obtained using

, the error increases with an increase in . The reason
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TABLE I
AVERAGED IDENTIFICATION ERROR AND

VARIANCE FOR � � ��� AND � � ��

for this is that, increasing the sampling frequency while keeping
constant the number of samples causes a reduction in the sam-
pling interval . This is illustrated in Fig. 4 by
using the proposed method with a fixed sampling interval of

(PM4), showing that the error does not depend on
the sampling frequency. As a side remark, we point out that the
indirect method is unable to identify at sampling frequen-
cies above a threshold of 1400 rad/s. This is due to the clustering
of discretized poles at , as mentioned in Section I.

In the second experiment, we evaluate the dependence of the
identification error with the number of available samples at

. We do not consider the time-domain method in this
simulation since the sampling frequency we use is too slow. We
can see in Fig. 4 that the errors of the indirect and frequency-do-
main methods do not change significantly with . On the other
hand, the error of the proposed method diminishes with an in-
crease on , because it determines how well the sample corre-
lation estimate approaches the true correlation ,
and it becomes smaller that the errors of the other methods when

.
We conclude from Figs. 3 and 4 that the proposed method

outperforms the other methods when the sampling frequency is
slow and the number of samples is large. In the opposite situ-
ation when the sampling frequency is high and the number of
available samples is small, the other methods outperform the
proposed method.

We show in Table I the identification error and its variance,
averaged over 100 runs, obtained at and using

samples. We see that the identification error variance pro-
duced by the proposed method is significantly larger than that
produced by the other methods.

Example 2: Potential applications of the proposed method
include lightly damped mechanical structures. For example, a
flexible beam studied in [27, Fig. 11], which is a good generic
model for many flexible structures, has three dominant modes
and a bandwidth of 300 Hz. Suppose a sampling rate of 1 kHz is
used, which is the typical rate used for active vibration control.
Then, for collecting to samples, the
system is required to be structurally stationary for ten seconds
to one minute, which is a reasonable scenario.

B. Computational Cost Analysis

In this section we analyze the complexity of the proposed
method. We use the number of real multiplications as the com-
plexity index. More precisely, a real division counts as one real
multiplication, a complex multiplication requires four real mul-
tiplications and a complex division requires eight. Also, the so-

Fig. 5. Effect of undermodeling in the proposed method: pole-zero map.

Fig. 6. Effect of undermodeling in the proposed method: frequency response.

lution of the system of equations with unknowns (e.g., to
solve each iteration of (38)), requires approximately mul-
tiplications [28, Ch. 5.3], and finding the roots of a polynomial
or degree requires about multiplications, when using
the QR algorithm to find the eigenvalues of a companion ma-
trix [28, Ch. 7.5.6]. Using these approximations, and recalling
that denotes the number of frequency points in (16) and (38),
and denotes the total number of estimated
parameters, each iteration of the initialization algorithm (38) re-
quires multiplications. Also, each iteration of the param-
eter optimization algorithm (27) requires about multi-
plications, and each iteration of the linear search algorithm (30)
requires .

We evaluate the complexity of the proposed method , aver-
aged over 100 runs, obtained at and using
samples. We have that and . The initialization
algorithm requires, on average, three iterations, and therefore
requires about multiplications. Also, the parameter
optimization algorithm requires 11.52 main iterations and 113.8
linear search iterations, requiring multiplications.
Hence, on average, the proposed method has an overall com-
plexity of about multiplications.

C. Effects of Undermodeling and Overmodeling

In this section we study the effects of undermodeling and
overmodeling in the proposed identification method. To study
the effects of undermodeling, we reduce the number of poles
from 4 to 3. In Figs. 5 and 6 we see the locations of poles and
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Fig. 7. Effect of overmodeling in the proposed method: pole-zero map.

Fig. 8. Effect of overmodeling in the proposed method: frequency response.

zeros, as well as frequency responses, of the true system and of
those systems identified using ten runs of the proposed method.
We use samples and . We see that the algo-
rithm properly estimates the zero of the true system, as well as
the low frequency poles. Also, the remaining pole is allocated
at around 32 rad/s, in an attempt to approximate with a single
pole, the slope change produced by the pair of complex conju-
gated poles at .

In order to see the effect of overmodeling, we increase the
number of poles to 5 and the number of zeros from 1 to 2.
We see in Figs. 7 and 8 that the method properly identifies the
poles and zeros of the system, and the extra pole is placed near
the extra zero so that their effects cancel each other.

D. Using Anti-Alias Filters

In this section we evaluate the identification performance
when the anti-alias filters and are used. We consider
three scenarios. In the first (PM1), we design the anti-alias
filters using second order Butterworth low-pass filters with
cutoff angular frequency , and we consider them in
the identification criterion (15). As mentioned in Remark 4,
a mismatch between input and output anti-alias filters often
occurs. To simulate this situation, we perturbed the poles of the
output anti-alias filter by adding a zero mean Gaussian random
variable with standard deviation 0.02 to its real and imaginary

Fig. 9. Effect of using anti-alias filters (AAF) (� � �� samples).

Fig. 10. Identification error versus number of samples with output noise �� �
����.

components.3 In the second scenario (PM2), we carry out the
identification without reflecting this perturbation in identifica-
tion criterion (15), which results in a degraded performance.
On the other hand, we consider this perturbation within (15) in
the third scenario (PM3), which exhibits a performance similar
to that of scenario PM1. This indicates that the accuracy of the
proposed method is not significantly affected by the presence of
anti-alias filters, if they are properly taken into account within
the identification criterion.

E. Presence of Output Noise

In this section, we analyze the performance of the proposed
method in the presence of output noise . Output noise
has the effect of corrupting the sample correlation estimate

in (14), so that a larger number of samples is required
for to properly approach the true correlation .
However, its effect vanishes asymptotically as the number of
samples goes to infinity. This is shown in Fig. 10 where we
compare the accuracy of the proposed method with an output
signal-to-noise ratio (SNR) of 0 dB and without output noise
SNR .

3We have only perturbed the poles of the output anti-alias filter, and not those
of the input filter, in order to avoid degrading the identification of the input power
spectrum using VIII. By doing so, we are able to observe only the degradation
of the system identification criterion (15).
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Fig. 11. Identification error versus timing mismatch level �� � ���� � �
�� �.

F. Presence of Sampling Timing Mismatch

In the last simulation we study the effect timing errors in
the sampling devices. To this end we assume that the irreg-
ular sampling grid is periodic with a five-sample period. This
corresponds to the sampling pattern which occurs when using
time-interleaved analog-to-digital converters affected by timing
mismatch errors [29]. We generate this mismatch by adding a
zero mean Gaussian random variable with standard deviation
to the ideal sampling time, and we define the timing mismatch
level by (recall that denotes the sampling time). In Fig. 11,
we show the identification error for different timing mismatch
levels and different number of samples. We see that the identi-
fication error of the proposed method decreases with the timing
mismatch level, up to a threshold which is given by the number
of samples.

X. CONCLUSION

We have proposed a novel identification method that directly
fits a continuous-time linear model to the given sampled input
and output signals. In this way, the proposed method is able to
produce asymptotically, as the number of samples approaches
infinity, the exact model of the linear system being identified,
modulo a possible aliasing ambiguity which can be resolved
under some given conditions. This is valid in theory, for any
sampling frequency. In practice, however, numerical problems
introduce a lower bound on the sampling frequency. Never-
theless, simulation results show that this lower bound can be
smaller than the -3-dB bandwidth of the system. In compar-
ison with the available methods in the literature, the proposed
method is a valid option when a slow sampling frequency must
be used but a large number of samples is available.

APPENDIX A
PROOF OF LEMMA 1

We have that

Now, since and for all , in
view of Fubini’s theorem we can exchange the expectation with
the integrations and in view of Lebesgue’s dominated conver-
gence theorem we can exchange the limit with the integrations.
By doing so,

Using (5), we can write

Now, using (8) and defining (41), shown at the bottom of the
page, we have that

To show (9), from (6) we have that

Then,

(41)
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APPENDIX B
PROOF OF LEMMA 2

We need the following lemma:
Lemma 3: For all , the following relation holds:

(42)

i.e., maps a single pole in the Laplace domain into a single
pole in the -transformed domain.

Proof: We have that

Hence, it is straightforward to verify that

Finally, (42) follows since we only let take values in
.

To simplify the proof of Lemma 2 we assume that
has distinct roots. Define
( is defined as in (17) but with replacing ), and
do a residual-pole decomposition of to obtain

(43)

Defining it follows that

(44)

with the matrix given by ,
where for each , is the
vector of coefficients of the monic polynomial obtained from

by eliminating its th root, i.e.,

Now, combining (43) and (42), we can write

(45)

with and . Defining
we have that

(46)

with given by

Taking common denominator on the right-hand side of (45),
we obtain

(47)

where is the vector of parameters of (i.e.,
). It follows that

(48)

with the matrix constructed in a way similar to , but
considering instead of .

Finally, it is easy to verify that

(49)

with given by

Otherwise.

Then, the result follows putting (44), (46), (48), and (49) into
(47) and defining

(50)

APPENDIX C
COMPUTATION OF AND

From (26) and (17), we have that

and (33) follows from Lemma 2. Also, from (26) we have that
[see the first equation at the top of the page]. Then, from (31)
it follows that [see the second equation at the top of the page]
(recall that denotes the row vector with its first entry
removed) and (34) follows from Lemma 2.
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