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SUMMARY

This paper proposes a convex approach to regional stability andL2-gain analysis and control synthesis for
a class of nonlinear systems subject to bounded disturbance signals, where the system matrices are allowed
to be rational functions of the state and uncertain parameters. To derive sufficient conditions for analysing
input-to-output properties, we consider polynomial Lyapunov functions of the state and uncertain
parameters (assumed to be bounded) and a differential-algebraic representation of the nonlinear system.
The analysis conditions are written in terms of linear matrix inequalities determining a bound on the L2-
gain of the input-to-output operator for a class of (bounded) admissible disturbance signals. Through a
suitable parametrization involving the Lyapunov and control matrices, we also propose a linear (full-order)
output feedback controller with a guaranteed bound on the L2-gain. Numerical examples are used to
illustrate the proposed approach. Copyright # 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The input-to-output analysis of dynamical systems is one of the most important problems in
control systems theory [1, 2]. For instance, the linear robust H1 control theory is a well-
established research area [3, 4]. The nonlinear counterpart is characterized in terms of the
L2-gain of the input-to-output operator that can be considered as a generalization of the
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H1-norm of linear systems [5]. Unfortunately, the nonlinear H1 problem (with an abuse of
notation) needs the solution of Hamilton–Jacob inequalities (HJI or equations}HJE) which are
difficult to solve. Some alternative approaches have been developed to solve HJI (or HJE)
indirectly by reducing the problem to algebraic inequalities (or equations), but this is only
feasible for very simple nonlinear systems [6].

On the other hand, the so-called linear matrix inequality (LMI) approach has been widely
used to solve several problems for linear systems such as robust control, gain-scheduling, multi-
objective control, and filtering [7, 8]. Since the work [9] that showed a solution to the nonlinear
problem using LMIs, researchers have proposed different solutions to the nonlinear robust
H1 control problem using a wide range of modelling techniques [10–12]. At the same time,
many authors extended the linear parameter varying (LPV) theory to deal with nonlinear
systems, resulting in the quasi-LPV representation [13]. In other words, a nonlinear system

’x ¼ f ðxÞ is described by the parameter-dependent system ’x ¼ AðsðxÞÞx; sðxÞ 2 Sx; where the
nonlinearities are viewed as state-dependent parameters concentrated in the vector sðxÞ that
belongs to a known polyhedral set Sx: However, the quasi-LPV approach may lead to serious
conservativeness, since the nonlinearities of the system are considered as free time-varying
parameters which are actually determined by the system trajectories [14]. Moreover, there are
some shortcomings related to the quasi-LPV form that may lead to the instability of the
nonlinear closed-loop system [15], i.e. the closed-loop LPV system is stable but the original
nonlinear system may be unstable. In addition, the quasi-LPV approach with parameter-
dependent Lyapunov functions needs an estimate of the parameter variation rate (i.e. ’sðxÞ must
belong to a polytopic region) and this assumption has to be verified after the control design [13].
In parallel, for a more restricted class of systems, some researchers have devised a convex
formulation for polynomial systems based on the sum of squares (SOS) decomposition [16, 17].

In this paper, we address the nonlinear H1 control problem using the LMI framework. We
consider a class of nonlinear systems which are subjected to both parameter uncertainties in the
system model and an affine (bounded) disturbance input. In contrast to the quasi-LPV
representation, the system matrices are allowed to be rational functions of the state and
uncertain parameters. More specifically, the nonlinear system is recast in terms of the following
representation:

’x ¼ A1xþ A2p; 0 ¼ P1ðxÞxþP2ðxÞp

where the auxiliary vector p ¼ pðxÞ contains all the nonlinearities. These nonlinearities are
defined by means of the equality constraint P1ðxÞxþP2ðxÞp ¼ 0: It can be shown that the
above representation can model the whole class of rational systems well posed inside X: For this
particular class of systems, we determine the regional stability and a bound on the L2-gain of
the nonlinear system considering polynomial Lyapunov functions. We then extend these results
to the synthesis problem, that is, we design a full-order linear dynamic output feedback
controller that minimizes an upper bound on theL2-gain while guaranteeing that the state stays
inside a given region for a given class of disturbance signals. Both problems are solved in terms
of LMIs. Numerical examples are used to demonstrate the approach.

The rest of the paper is structured as follows. Section 2 states the problems of concern,
Section 3 introduces the key concepts for rewriting the stability conditions in terms of LMIs,
Section 4 addresses the problem of solving state-dependent LMIs, Sections 5 and 6 present the
main results of this paper, respectively, Section 7 illustrates the approach, and Section 8
concludes the paper.
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The notation used in this paper is standard. Rþ is the set of non-negative real numbers, Rn

denotes the set of n-dimensional real vectors, Rn�m is the set of n�m real matrices, In is the
n� n identity matrix, 0n�m is the n�m matrix of zeros and 0n is the n� n matrix of zeros. For a
real matrix S; S0 denotes its transpose, S? a basis for the null space of S; and S > 0 means that S
is symmetric and positive definite. For block matrices, diagf� � �g is a diagonal block matrix. The
time derivative of a function rðtÞ will be denoted by ’rðtÞ and the argument ðtÞ is often omitted.
The finite-horizon 2-norm of a bounded signal cðtÞ is defined as jjcðtÞjj2;½0;T � ¼ ð

R T
0 cðtÞ0cðtÞ dtÞ1=2:

For two sets A � Rna and B � Rnb ; the notation A�B represents that ðA�BÞ � RðnaþnbÞ is a
meta set obtained by the cartesian product. For a known polytope F; VðFÞ is the set of all
vertices of F:Matrix and vector dimensions are omitted whenever they can be inferred from the
context.

2. PROBLEM STATEMENT

Consider the following time-invariant nonlinear system:

’xðtÞ ¼ f ðxðtÞ; d;wðtÞÞ; zðtÞ ¼ gðxðtÞ; d;wðtÞÞ; xð0Þ ¼ 0 ð1Þ

where xðtÞ 2 Rnx is the state taking values on the set X; d 2 Rnd the uncertain (constant)
parameters taking values on the set D; wðtÞ 2 Rnw the disturbance input taking values on the set
W; and zðtÞ 2 Rnz the performance output taking values on the set Z: Hereafter, the time
argument is generally omitted for simplicity of notation.

The main goal of this paper is to analyse the input-to-output properties of system (1) in the
nearby of the system equilibrium point for zero initial conditions, i.e. xð0Þ ¼ 0: Therefore, we
need for any disturbance input w 2W; zero initial conditions, and any interval of time ½0;T �;
T50; that there exist uniquely defined signals x : ½0;T �/X and z : ½0;T �/Z satisfying (1).
The input-to-output properties will be characterized by the following map:

s :W�Z/R ð2Þ

that is assumed to be locally absolutely integrable from 0 to T ; i.e.Z T

0

jsðw; zÞj dt51 8T50

for all pair ðw; zÞ satisfying (1). The mapping sðw; zÞ will be referred to as the supply function.
To guarantee the existence and uniqueness of solution, we assume for system (1) that:

A1: f ðx; d;wÞ is locally Lipschitz and gðx; d;wÞ is continuous and bounded over X� D�W:
As usual for nonlinear systems, we further assume the following to simplify the analysis.
A2: The origin of the unforced system belongs to X and it is an equilibrium point for all

admissible uncertainty.
Adapting the dissipative theory of dynamical systems to the above scenario, the following

definition will be of interest.

Definition 1 (Dissipativity [1, 18])
A dynamical system as defined in (1) with a supply function sðw; zÞ is said to be dissipative if
there exists a positive definite function V : X/Rþ (called the storage function) such that the

D. F. COUTINHO ET AL.90

Copyright # 2007 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2008; 18:88–110

DOI: 10.1002/rnc



following holds: Z T

t

sðwðtÞ; zðtÞÞ dt5VðxðTÞÞ � VðxðtÞÞ 8t 2 ½0;TÞ ð3Þ

for all signals ðx;w; zÞ satisfying (1) and all T50:

In particular, we are interested in the following supply function:

sðw; zÞ ¼
4 gw0w�

1

l
z0z ð4Þ

where g and l are positive scalars. Notice for a suitable choice of l that the above function can
encompass the problems of (i) L2-gain analysis with l ¼ g; and (ii) the regional stability of
system (1) with respect to (w.r.t.) X and W when l!1; as detailed later in this paper.

(P1) The problem to be addressed in this paper is to investigate under what conditions the
zero-state dissipation inequality (3) for the supply function as defined in (4) is satisfied using
semi-definite programming (SDP).

The following definition of regional stability will be of interest.

Definition 2 (Regional stability)
System (1) is regionally stable with respect to X and W; if the trajectory xðtÞ driven by wðtÞ 2W
belongs to X for all d 2 D and t50: In such case, the set W is called an admissible disturbance
set.

A connection between the dissipative theory [1] and the Lyapunov stability [19] is provided by
the following lemma.

Lemma 1 (Dissipativity and Lyapunov stability)
Consider system (1) with A1 and A2. LetW be an admissible set in the sense of Definition 2. Let
s :W�Z/R be a given supply function. Suppose there is a continuously differentiable
function V : X� D/Rþ satisfying the following conditions for positive scalars e1 and e2; and a
storage function as defined in (4):

e1x0x4Vðx; dÞ4e2x0x 8ðx; dÞ 2 X� D ð5Þ

’Vðx; dÞ5sðw; zÞ 8ðx; d;wÞ 2 X� D�W ð6Þ

Then, the trajectory xðtÞ driven by wðtÞ 2W lies in the following bounding set:

RðcnÞ ¼
4

fx 2 X : Vðx; dÞ4cn; d 2 D; cn 2 Rþg ð7Þ

for some
cn ¼ max

c
fc : RðcÞ � Xg

Moreover, the dissipation inequality in (3) is satisfied for all signals x;w; z satisfying (1) and all
T50:

The proof of the above lemma is straightforward from the dissipativity theory [1, Theorem 6],
and Lyapunov stability [19, Theorems 3.1 and 3.4].
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3. BASIC RESULTS

This section introduces the key points for obtaining a convex characterization of Lemma 1.
Firstly, a differential-algebraic representation of nonlinear systems is presented. Then, the class
of Lyapunov functions to be considered throughout this paper is defined. Finally, some
comments regarding invariant sets will end this section.

3.1. System model

Let us suppose that the nonlinear system defined in (1) can be recast in the following form:

’x ¼A1xþ A2pþ A3w

z ¼E1xþ E2pþ E3w

0 ¼P1ðx; dÞxþP2ðx; dÞpþP3ðx; dÞw ð8Þ

where p 2 Rnp is an auxiliary vector; P1ðx; dÞ 2 Rm�nx ; P2ðx; dÞ 2 Rm�np and P3ðx; dÞ 2 Rm�nw

are affine matrix functions of ðx; dÞ; and A1;A2; . . . ;E3 are constant matrices with appropriate
dimensions. To simplify the notation, we may use the auxiliary matrices and vectors without
explicitly mentioning their respective dependence on x and d: The above representation is
hereafter denoted as differential-algebraic representation or DAR in short.

The basic methodology for rewriting a nonlinear system in terms of a DAR is to lump all
nonlinear and uncertain terms in the vector p; and then define the relationship between their
elements by means of the algebraic constraint P1xþP2pþP3w ¼ 0:

Notice that a possible differential representation of system (8) can be obtained as follows:

’x ¼ ðA1 � A2ðP02P2Þ
�1P02P1Þxþ ðA3 � A2ðP02P2Þ

�1P02P3Þw

z ¼ ðE1 � E2ðP02P2Þ
�1P02P1Þxþ ðE3 � E2ðP02P2Þ

�1P02P3Þw ð9Þ

A straight consequence of the above relations is that matrix P02P2 should be nonsingular for all
x 2 X and d 2 D: To guarantee that the DAR is well defined or, equivalently, that (9) holds, we
further assume the following.

A3: The matrix P2 is full-column rank for all x 2 X and d 2 D:
Under the above assumption, the DAR in (8) is regular in the sense of Definition 1 in [20],

which follows from Lemma 1 in the same reference.
The following lemma characterizes the class of nonlinear systems which has an equivalent

DAR formulation.

Lemma 2 (Rational matrix decomposition)
Let s 2 S � Rns be a generic parameter. For any rational matrix function M : S/Rn1�n2

with no singularities at S; there exist constant matrices M1;M2; and affine matrix functions
G1ðsÞ;G2ðsÞ with appropriate dimensions such that

MðsÞ ¼M1 �M2ðG02ðsÞG2ðsÞÞ
�1G02ðsÞG1ðsÞ

The proof of the above lemma is straightforward from [9, Lemma 2.1]. A natural conclusion
from the above result is that the DAR can model the whole class of rational systems with no
singularities inside X� D:

To illustrate the representation, we give the following example.
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Example 1
Consider the following scalar (autonomous) system:

’x ¼ �
x

1þ x4
þ w; z ¼ x ð10Þ

which is well posed for all x 2 R:
The above system can be rewritten as in (8) by the following definitions:

p ¼

x

1þ x4

x2

1þ x4

x3

1þ x4

x4

1þ x4

2
6666666666664

3
7777777777775
; P1 ¼

1

0

0

0

2
666664

3
777775; P2 ¼

�1 0 0 0

x �1 0 0

0 x �1 0

0 0 x �1

2
666664

3
777775;

P3 ¼ 0;A1 ¼ 0;A3 ¼ 1

A2 ¼ ½�1 0 0 0�

E1 ¼ 1;E2 ¼ 0;E3 ¼ 0

Observe that P2 is non-singular for all x 2 R; and so the regularity of the representation is
guaranteed.

3.1.1. Related representations of dynamical systems. It turns out that the DAR is not new in
control systems theory. For instance, the same modelling technique is used in [20] in the context
of uncertain systems.

In the context of nonlinear systems, the DAR is closely related to the linear fractional
representation (LFR) introduced by El Ghaoui and co-authors [9, 21]. The approaches differ
between each other in the way that the nonlinear systems is rewritten to apply the LMI
framework. More precisely, El Ghaoui et al. interpret system (1) as an interconnected system
given by

’x ¼ Axþ Bwwþ Bpp; q ¼ CqxþDqwwþDqpp; z ¼ CzxþDzwwþDzpp; p ¼ Oðx; dÞq ð11Þ

where p; q are respectively fictitious inputs and outputs, and

Oðx; dÞ ¼ diagfx1Ir1 ; . . . ; xnIrnx ; d1I#r1 ; . . . ; dndI#rnd g ð12Þ

A DAR of a nonlinear system can be obtained from its LFR model by means of the following
equalities:

A1 ¼ A; A2 ¼ Bp; A3 ¼ Bw; E1 ¼ Cz; E2 ¼ Dzp; E3 ¼ Dzw

P1 ¼ Oðx; dÞCq; P2 ¼ Oðx; dÞDqp � I ; P3 ¼ Oðx; dÞDqw; p ¼ p
ð13Þ

A straightforward consequence from the above relations is that the LFR tools developed
in [22, 23] can be applied to obtain a DAR model of the nonlinear system. However,
the LFR representation as well as the DAR one are not unique. In other words, the
system equivalence can be obtained from a different choices of A;Bw; . . . ;Oðx; dÞ in (11) or
A1;A2; . . . ;P3 and p in (8). As a result, a bad choice of these matrices may lead to very
conservative results.
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In the LFR context, the optimalz choice is obtained from the notion of a minimal LFR
[22, 24], which is not always easy to find. On the other hand, the non-uniqueness of
representations having the form ’x ¼ AðxÞx was discussed in [6] for state-dependent algebraic
Riccati equations and then extended to the LMI framework in [13]. In this paper, we follow the
similar solution proposed by Trofino [25] for DAR models that addresses the problem from a
different perspective leading to less conservative results. More details are given later in Section 4.

3.2. Lyapunov function candidate

Consider the following class of Lyapunov functions:

Vðx; dÞ ¼ x0Pðx; dÞx; Pðx; dÞ ¼
Yðx; dÞ

Inx

" #0
P2 P01

P1 P0

" #
Yðx; dÞ

Inx

" #
ð14Þ

where P0 ¼ P00 2 Rnx�nx ;P1 2 Rnx�ny ;P2 ¼ P02 2 Rny�ny are constant matrices to be determined;
and Yðx; dÞ 2 Rny�nx is a given rational matrix function of ðx; dÞ having no singularities for all x
and d of interest.

For simplicity, define the following auxiliary notation:

z ¼
x

x

" #
; x ¼ Yðx; dÞx; P ¼

P2 P01

P1 P0

" #
ð15Þ

From the above, the Lyapunov function and its time derivative can be written as Vðx; dÞ ¼ z0Pz
and ’Vðx; dÞ ¼ 2z0P’z; respectively, where ’z is as follows:

’z ¼
’x

’x

" #
¼

Yðx; dÞ ’xþ ’Yðx; dÞx

’x

" #
ð16Þ

In light of (8) and (15), notice that ’x is a rational function of ðx; d;p;wÞ: Hence, the following
DAR of ’x will always exist:

’x ¼ J1xþ J2fþ J3w

0 ¼F1ðx; dÞxþ F2ðx; dÞfþ F3ðx; dÞw ð17Þ

where J1; . . . ;F3 and f are defined similarly to the ones in (8).
From the above definitions, the time derivative of the Lyapunov function is as follows:

’Vðx; dÞ ¼ 2z0P
J1 0 J2 J3

A1 A2 0 A3

" # x

p

f

w

2
666664

3
777775 ð18Þ

Notice that matrix Yðx; dÞ plays an important rule on the conservativeness of the approach,
since it defines the complexity of the Lyapunov function. In other words, a more complex
Yðx; dÞ leads to less conservative results at the cost of extra computations.

zThe term optimal is used for expressing the less conservative representation.
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Remark 1
The representation in (17) is similar to the complete square matricial representation
(CSMR) of homogeneous forms proposed in [26] to represent polynomial forms arising
from the stability analysis of polynomial systems. The main differences between these
representations are: (i) the approach in [27] considers a quadratic equality constraint to define
the augmented vector; and (ii) the Lyapunov function is constrained to be a homogeneous form.
In contrast, the proposed approach allows the use of rational or polynomial Lyapunov
functions.

3.2.1. A particular representation of ’x. From the authors’ experience, a good compromise
between conservativeness and computational effort is achieved by choosing Yðx; dÞ as an affine
matrix function of ðx; dÞ:

The above claim is based on two main points: (i) a systematic form of constructing the DAR
in (17) is possible to obtain when Yðx; dÞ is affine; and (ii) the most general Lyapunov function
will be a polynomial form of degree 4 in x and 2 for d with the following definition:

Yðx; dÞ ¼ ½x1Inx � � � xnxInx d1Inx � � � dndInx �
0

In light of the above arguments, the proposed solution is from now on particularized to the case
where Yðx; dÞ is an affine function of ðx; dÞ:

Thus, the matrix Yðx; dÞ can be represented in the following form:

Yðx; dÞ ¼
Xnx
i¼1

Rixi þ
Xnd
i¼1

Sidi þU ð19Þ

where Ri (for i ¼ 1; . . . ; nx), Si (for i ¼ 1; . . . ; nd) and U are constant matrices with the same
dimensions of Yðx; dÞ; and xi; di are, respectively, the elements of x and d:

In view of (16) and (19), the following ’Vðx; dÞ is obtained:

’Vðx; dÞ ¼ 2z0P
Yþ

Pnx
i¼1 Rixri

Inx

" #
’x ¼ 2z0P *Y ’x; *Y ¼

Y x; dþ
Pnx

i¼1 Rixri
� �

Inx

" #
ð20Þ

where ri denotes the ith row of the identity matrix Inx :
Taking into account (8), the above results in

’Vðx; dÞ ¼ 2z0P *YðA1N1zþ A2pþ A3wÞ ð21Þ

where N1 is a matrix such that N1z ¼ x; e.g. N1 ¼ ½0nx�ny Inx �:

3.3. Estimating the bounding sets

The estimation of invariant sets from quadratic Lyapunov functions is a standard problem in
the LMI framework, see e.g. [8, Section 5.2].

In this paper, a normalized estimate R as defined below is considered for simplicity.

R¼
4 Rðc

nÞ

cn
¼ fx : x0Pðx; dÞx41; d 2 Dg ð22Þ

where the Lyapunov matrix is redefined as Pðx; dÞ ¼ Pðx; dÞ=cn: Therefore, a sufficient
condition to guarantee that R � X is derived in the following.
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Assume that the state domain, X; is a given polytope with known vertices. So, it can be
represented in terms of a collection of hyperplanes as follows:

X ¼ fx : a0kx41; k 2Kg; K ¼ f1; 2; . . . ; nf g ð23Þ

where ak 2 Rnx are given constant vectors associated with the nf faces of X: It turns out that X
can be equivalently represented by VðXÞ:

From the above definition, the condition R � X can be cast as follows:

2� a0kx� x0ak50 8x : x0Pðx; dÞx� 140 8ðx; d; kÞ 2 X� D�K

Applying the S-procedure (see, e.g. [8, Section 2.6]) to the above yields

1

x

" #0
ð2m� 1Þ �ma0k

�mak Pðx; dÞ

" #
1

x

" #
50 8ðx; d; kÞ 2 X� D�K

where m > 0 is a free scalar introduced by the S-procedure.
In view of (14) and (15), the above can be recast as follows:

1

z

" #0
ð2m� 1Þ �ma0kN1

�mN 01ak P

" #
1

z

" #
50 ð24Þ

If the above is satisfied in addition to (5) and (6), then R as defined in (22) is an invariant set for
all w 2W; where W is an admissible disturbance set.

4. STATE- AND PARAMETER-DEPENDENT LMIs

We start this section recalling the Finsler lemma [28, 29].

Lemma 3 (Finsler’s Lemma, [29])
Let x 2 Rn; Q 2 Rn�n (symmetric), and C 2 Rm�n be such that rankðCÞ4n: The following
statements are equivalent:

(i) x0Qx > 0; 8Cx ¼ 0; x=0;
(ii) ðC?Þ0QC? > 0;
(iii) 9m 2 R : Q� mC0C > 0;
(iv) 9L 2 Rn�m : Qþ LCþC0L0 > 0:

To obtain a convex characterization of Lemma 1 (i.e. to solve problem P1), the Finsler’s lemma
is applied to the results stated in Section 3. This procedure leads to a set of convex conditions in
terms of state- and parameter-dependent LMIs (or in short SPDLMIs). A discussion on this
issue is developed in the rest of this section.

4.1. Handling equality constraints

The approach used in this paper involves representing the nonlinear system in an augmented
space composed by the state vector x and the algebraic vector p: The relationship between
these two vectors is defined by means of an equality constraint. Besides, the Lyapunov function
is formulated in terms of an auxiliary variable z that is dependent on x by the following
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constraint:
C1z ¼ 0; C1 ¼ ½Iny �Y� ð25Þ

As a consequence, the conditions of Lemma 1 are associated with a set of equality constraints.
For instance, the positiveness of Vðx; dÞ can be checked as follows:

z0Pz > 0 8z : C1z ¼ 0; ðx; dÞ 2 X� D ð26Þ

where z ¼ zðx; dÞ and C1 ¼ C1ðx; dÞ:
One can check the above by guaranteeing that P is positive definite, which is generally

conservative. The solution considered in this paper is to apply Lemma 3 yielding the following
convex condition to test if Vðx; dÞ > 0:

Pþ LC1 þC01L
0 > 0 8ðx; dÞ 2VðX� DÞ ð27Þ

where P is a symmetric matrix and L a free multiplier to be determined. Notice that we have
assumed that X and D are given polytopes to solve the problem.

To prove that (27) implies (26) is quite simple. That is, pre- and post-multiplying (27) by z0

and z leads to (26) and the results holds for all ðx; dÞ 2 X� D from convexity.

4.2. Conservativeness of parameterized LMIs

From the later discussion, the conditions of Lemma 1 can be written as a set of parameterized
inequalities taking the form

s0GðsÞs > 0 8s 2 S ð28Þ

where s 2 Rns represents a generic parameter belonging to a polytope S with known vertices,
and Gð�Þ ¼ Gð�Þ0 is an affine matrix function of s: For instance, condition (27) can be cast as
above with GðsÞ ¼ Pþ LC1ðsÞ þC01ðsÞL

0:
Obviously, to check (28) the test below

GðsÞ > 0 8s 2VðSÞ ð29Þ

may be conservative, since the above implies r0GðsÞr > 0 for all s 2 S; r 2 Rns : Trofino [25, 30]
introduced the idea of linear annihilators to decrease the conservativeness of testing
parameterized LMIs.

The main advantage of the approach in [25, 30] is that the annihilator is built over the entire
parameter-dependent LMIs contrasting with related techniques in which the annihilator is only
associated with either the system representation or the Lyapunov function time-derivative
representation as detailed later in this section. In this way, this approach is considered
throughout the paper, and the idea is as stated below.

A matrix NðsÞ is a linear annihilator of s if it is a linear function of s and NðsÞs ¼ 0: For
instance, consider the following matrix:

NðsÞ ¼

s2 �s1 0 � � � 0

0 s3 �s2 � � � 0

..

. ..
. ..

. ..
. ..

.

0 � � � 0 sns �sðns�1Þ

2
6666664

3
7777775

ð30Þ

where si are ith elements of s and NðsÞ 2 Rðns�1Þ�ns :
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To add the constraint NðsÞs ¼ 0 to (28), the Finsler lemma can be applied leading to the
following parameter-dependent LMI:

GðsÞ þ LNðsÞ þNðsÞ0L0 > 0 8s 2VðSÞ ð31Þ

where L is a constant multiplier added to the problem. Notice that the above implies the original
condition by pre- and post-multiplying it by s0 and s; respectively.

4.2.1. Related work. One of the first attempts on addressing the problem of the conservative-
ness associated to state-dependent conditions are the works of Huang and co-authors [6, 13].
They considered the problem in the following form.

Consider the following class of nonlinear systems:

’x ¼ f ðxÞ ¼ AðxÞx; x 2 X

where AðxÞ is a nonlinear matrix function of x smooth at origin with appropriate dimensions.
The choice of AðxÞ is a potential source of conservativeness, since there is a wide range of

techniques to address the problem leading to different representations that are not completely
equivalent. To analyse the conservativeness of linear-like representations, the following lemma
is of interest.

Lemma 4 (Parametrization of linear-like representations, [13])
Let ’x ¼ f ðxÞ be a nonlinear system, where f ðxÞ : Rn/X is such that the conditions for existence
and uniqueness are guaranteed for all x 2 X and f ð0Þ ¼ 0: Suppose there exists a matrix
function A0ðxÞ : Rn/Rn�n such that f ðxÞ ¼ A0ðxÞx: Then, all possible AðxÞ satisfying
f ðxÞ ¼ AðxÞx can be parameterized as follows:

AðxÞ ¼ A0ðxÞ þ UðxÞNðxÞ ð32Þ

where NðxÞ is an annihilator of x:

The above lemma can be applied to decrease the conservativeness of choosing linear-like
representations of nonlinear systems. To illustrate this point, consider the following bilinear
system:

’x1 ¼ �
x1 þ x1x2

2
; ’x2 ¼

x21 � x2

2

The above system can be represented in a linear-like form as follows:

’x ¼ A0ðxÞx; A0ðxÞ ¼

�
1þ x2

2
0

x1 þ x2

2
�
1þ x1

2

2
664

3
775

For a Lyapunov matrix P ¼ I2; it is not possible to prove that A0ðxÞ
0
þ A0ðxÞ50 for all x=0:

However, if AðxÞ ¼ A0ðxÞ þ UNðxÞ; where

U ¼
0:5

�0:5

" #
and NðxÞ ¼ ½x2 � x1�

then AðxÞ0 þ AðxÞ ¼ �I2; and so the system is globally stable.
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In the context of the SOS approach, Chesi et al. [27] have proposed a similar technique to
represent ’VðxÞ}namely, the CSMR. More precisely, the technique in [27] models a rational
system by means of an LFR in which the state is viewed as a time-varying parameter yðtÞ (i.e.
Oðx; dÞ ¼ OðyðtÞÞ) and considers an homogeneous polynomial Lyapunov function of degree 2m:
A quadratic form of degree 2m is defined as v2mðxÞ ¼ xfmg

0

ðW þ LðaÞÞxfmg; where xfmg is a vector
containing only monomials of degree m in x and LðaÞ is a linear parametrization of the set of
quadratic annihilators of xfmg; i.e. L ¼ fL ¼ L0 : xfmg

0

Lxfmg ¼ 0g:
For a Lyapunov function VðxÞ ¼ xfmg

0

Pmx
fmg; the time derivative is as follows:

’VðxÞ ¼ 2xfmg
0

Pm ’x
fmg ¼ 2xfmg

0

Pm
@xfmg

@x
’x ¼ 2xfmg

0

Pm
@xfmg

@x
ðAxþ BpOðyðtÞÞqÞ ð33Þ

¼ 2xfmg
0

Pm %Axfmg þ 2xfmg
0

Pm %Bpðq� xfm�1gÞ ð34Þ

where %A and %Bp are suitable matrices. The representation in (34) is the CSMR of ’VðxÞ: The
above technique considers quadratic annihilators to xfmg and q� xfm�1g: However, the coupling
between the system nonlinearities (represented by the time-varying parameter yðtÞ) and the state
x is not taken into account.

5. INPUT-TO-OUTPUT ANALYSIS

We start this section by giving the following theorem that proposes a convex solution to
problem (P1) in terms of SPDLMIs.

Theorem 1
Consider system (1) with A1 and A2, its DAR in (8) satisfying A3 and the following notation:

C2 ¼
x �N1

0 C1

" #
; C3 ¼

P1N1 P2 P3

NðxÞN1 0 0

" #

Let X and D be given polytopes. Let Y be a given affine matrix function of ðx; dÞ: Suppose the
matrices P ¼ P0; L;Mk ðk 2KÞ;W ; and positive scalars m; g and l are a solution to (27) and the
following LMIs that are constructed at VðX� DÞ:

ð2m� 1Þ �ma0kN1

�mN 01ak P

" #
þMkC2 þC02M

0
k > 0; k 2K ð35Þ

N 01A
0
1
*Y0Pþ P *YA1N1 P *YA2 P *YA3 N 01E

0
1

A02
*Y0P 0 0 E02

A03
*Y0P 0 �gInw E03

E1N1 E2 E3 �lInz

2
6666664

3
7777775
þW ½C3 0� þ

C03

0

" #
W 050 ð36Þ

Then, the trajectory xðtÞ driven by an admissible disturbance signal lies in the set R as defined in
(22) for all d 2 D: Moreover, the dissipation inequality in (3) is satisfied.
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Proof
Suppose (27), (35) and (36) are satisfied for all ðx; dÞ 2VðX� DÞ: Then, by convexity, they are
also satisfied for all x 2 X and d 2 D:

Pre- and post-multiplying the LMI (27) by z0 and z; respectively, yields

x0Pðx; dÞx > 0 8ðx; dÞ 2 X� D ð37Þ

since C1z ¼ 0 and N1z ¼ x:
Define two scalars as follows: e1 ¼ inf ðx;dÞ2X�D eigðPðx; dÞÞ and e2 ¼ supðx;dÞ2X�D eigðPðx; dÞÞ;

where eigðPðx; dÞÞ stands for the eigenvalues of Pðx; dÞ: In view of (37) and the above, the
following holds:

e1x0x4x0Pðx; dÞx4e2x0x 8ðx; dÞ 2 X� D ð38Þ

Consider the LMI (36). Pre- and post-multiplying it by ½z0 p0 w0 u0� and its transpose,
respectively, and applying the Schur complement leads to

’Vðx; dÞ þ
z0z

l
� gw0w50 8ðx; dÞ 2 X� D ð39Þ

since C3½z
0 p0 w0�0 ¼ 0; and ’Vðx; dÞ is as defined in (21).

Similarly, pre- and post-multiplying (35) by ½1 z0� and its transpose, respectively, implies (24).
In light of (38) and (39), R ¼ fx : Vðx; dÞ41g is an invariant set for all wðtÞ 2W; where W is
admissible. The rest of the proof follows from Lemma 1. &

Remark 2
Notice that the conditions of Theorem 1 are satisfied then the regularity of the DAR is
guaranteed. This is implied by: (i) partitioning W in (36) accordingly to the matrix ½C3 0�;
(ii) applying the Schur complement to the second row and column block in the left-hand side
matrix of (36), and (iii) the fact that these operations results in W21P2 þP02W

0
2150: In other

words, P2 is full-column rank and the DAR is regular in the sense of [20, Definition 1].

The following two results are straight applications of Theorem 1.

Corollary 1 (Regional stability analysis)
Consider Theorem 1 and let l!1: Suppose the matrices P ¼ P0; L;Mk ðk 2KÞ;W ; and the
scalars m and g are a solution to the following optimization problem:

min
ðx;dÞ2VðX�DÞ

g subject to ð27Þ; ð35Þ and ð36Þ

Then, system (1) is regionally stable in R w.r.t. the following class of disturbance signals:

W ¼ w :

Z 1
0

w0w dt4
1

g

� �
ð40Þ

Proof
As l!1; Theorem 1 implies

R1
0 gw0w dt > 1: As a consequence, the set defined in (40) is an

estimate of the class of admissible disturbance signals. &

Remark 3
To make Corollary 1 numerically tractable, we have to modify (36) by taking into account that
l!1: From the Schur complement, one can drop the fourth row and column in the left-hand
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side matrix of (36) leading to the following modified LMI:

N 01A
0
1
*Y0Pþ P *YA1N1 P *YA2 P *YA3

A02
*Y0P 0 0

A03
*Y0P 0 �gInw

2
6664

3
7775þWC3 þC03W

050

Corollary 2 (L2-gain estimate)
Consider Theorem 1 and let l ¼ g: Suppose the matrices P ¼ P0; L; Mk ðk 2KÞ; W ; and the
scalars m and g are a solution to the following optimization problem:

min
ðx;dÞ2VðX�DÞ

g subject to ð27Þ; ð35Þ and ð36Þ

Then, the L2-gain of system (1), jjGwzjj1; is bounded by g: More precisely, the following is
satisfied:

jjGwzjj1 ¼
4

sup
0=w2W

jjzjj2
jjwjj2

5g 8ðx; dÞ 2 X� D ð41Þ

for an admissible W.

6. OUTPUT FEEDBACK CONTROL

Consider the following class of input affine systems:

’x ¼ f ðx; d;wÞ þ Bu; z ¼ gðx; d;wÞ þ Fu; y ¼ hðx; d;wÞ; xð0Þ ¼ 0 ð42Þ

where y 2 Rny is the measurement signal, u 2 Rnu the control input and B;F are constant
matrices with appropriate dimensions.

The problem of concern in this section is to design an output feedback controller such that the
dissipation inequality (3) is satisfied in the closed-loop.

To this end, consider the following (robust, linear and dynamic) output feedback controller:

u ¼ Ccxc; ’xc ¼ Acxc þ Bcy; xcð0Þ ¼ 0 ð43Þ

where xc � Rnx is the control state, and Ac;Bc;Cc are constant matrices with appropriate
dimensions to be determined.

In light of (42) and (43), the closed-loop system takes the following augmented representation:

’xa ¼ faðxa; d;wÞ; z ¼ gaðxa; d;wÞ; xað0Þ ¼ 0 ð44Þ

where xa 2 R2nx is the augmented state, and

xa ¼
x

xc

" #
; faðxa; d;wÞ ¼

f ðx; d;wÞ þ BCcxc

Bchðx; d;wÞ þ Acxc

" #
; gaðx; d;wÞ ¼ gðx; d;wÞ þ FCcxc

To obtain a convex characterization of the synthesis problem, assume that the measurement
signal y can take the following representation:

y ¼ C1xþ C2pþ C3w ð45Þ

where C1;C2;C3 are constant matrices with appropriate dimensions accordingly to the DAR in (8).
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In view of (8) and the above, the closed-loop system can be recast as follows:

’xa ¼ A1axa þ A2apþ A3aw; z ¼ E1axa þ E2pþ E3w ð46Þ

where

A1a ¼
A1 BCc

BcC1 Ac

" #
; A2a ¼

A2

BcC2

" #
; A3a ¼

A3

BcC3

" #
; E1a ¼ ½E1 FCc�

Accordingly, the Lyapunov function candidate is redefined as below:

Vðxa; dÞ ¼ x0aPaðx; dÞxa; Paðx; dÞ ¼
Pðx; dÞ P3

P03 P4

" #
ð47Þ

where Pðx; dÞ is as defined in (14), P3 2 Rnx�nx and P4 ¼ P04 2 Rnx�nx are matrices to be
determined.

For convenience, define the following auxiliary notation:

za ¼
z

xc

" #
; Pa ¼

P N 01P3

P03N1 P4

" #
ð48Þ

In light of (48), Vðxa; dÞ ¼ z0aPaza and the time derivative of the Lyapunov function is as
follows:

’Vðxa; dÞ ¼ 2z0aPa
’za ¼ 2z0aPa

*YaðA1aN2za þ A2apþ A3awÞ ð49Þ

where

*Ya ¼

*Y

Inx

" #
; N2 ¼ ½02nx�ny I2nx �

The straightforward application of Theorem 1 for control design leads to bilinear matrix
inequalities (BMIs) [31] that are hard to solve. Even for linear systems, a convex
characterization of the robust output feedback problem is not yet available.}

Recently, de Oliveira et al. [33] have proposed a convex characterization to the robust output
feedback problem for linear systems using arguments from the separation principle. The design
problem is performed in two steps: (i) a state-feedback law, u ¼ Ccx; is synthesized a priori, and
(ii) the control matrices Ac and Bc are designed by means of a convex optimization problem for
a given gain matrix Cc:

In this paper, we follow a similar idea. To this end, we assume that a state feedback u ¼ Ccx is
available such that the dissipation inequality is satisfied, and we recall the parametrization
introduce in [34, 35] for filter design. Basically, the Lyapunov inequalities are pre- and post-
multiplied by matrices of the type

Gi ¼ diagfIni ;P3P
�1
4 ; Imi

g; i ¼ 1; 2; 3

and an appropriate parametrization on the Lyapunov and control matrices are performed.
The above procedure leads to the following result.

}For a parameter-dependent control law, Scherer [32] has proposed an elegant solution to the H2 and H1 output
feedback problems.
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Theorem 2
Consider system (42) with A1 and A2, and its DAR form satisfying A3 with (45). Consider the
notation of Theorem 1. Let Y be a given affine matrix function of ðx; dÞ: Let Cp 2 Rnu�nx

be a given constant matrix. Let X and D be given polytopes. Further, define the following
notation:

C1a ¼ ½C1 0�; C2a ¼ ½C2 0�; C3a ¼
NðxÞN1 0 0 0 0

P1N1 0 P2 P3 0

" #

Suppose the matrices P ¼ P0; Ap; Bp; Q ¼ Q0; L;Mk (for k 2K) andW ; and positive scalars m; g
and l are a solution to the following LMIs which are constructed at VðX� DÞ:

P N 01Q

QN1 Q

" #
þ LC1a þC01aL

0 > 0 ð50Þ

ð2m� 1Þ �ma0kN1 0

�mN 01ak P N 01Q

0 QN1 Q

2
664

3
775þMkC2a þC02aM

0
k > 0; k 2K ð51Þ

c11 c021 c031 c041 N 01E
0
1

c21 c22 c032 c042 C0pF
0

c31 c32 0 0 E02

c41 c42 0 �gInw E03

E1N1 FCp E2 E3 �lInz

2
666666664

3
777777775
þWC3a þC03aW

050 ð52Þ

where the blocks cij are as follows:

c11 ¼N 01A
0
1
*Y0Pþ P *YA1N1 þN 01C

0
1B
0
pN1 þN 01BpC1N1

c21 ¼QN1
*YA1N1 þ BpC1N1 þ C0pB

0 *Y0Pþ A0pN1

c22 ¼C0pB
0 *Y0QþQN1

*YBCp þ A0p þ Ap

c31 ¼A02
*Y0Pþ C02B

0
pN1

c32 ¼A02
*Y0N 01Qþ C02B

0
p

c41 ¼A03
*Y0Pþ C03B

0
pN1

c42 ¼A03
*Y0N 01Qþ C03B

0
p

Then, the dissipation inequality is satisfied for system (42) with (43), where the control matrices
are as below:

Ac ¼ ApQ
�1; Bc ¼ Bp; Cc ¼ CpQ

�1 ð53Þ
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Moreover, Vðx; d;xcÞ as defined in (47) with P3 ¼ Inx is a Lyapunov function for ðx; xcÞ ¼ 0; and
the closed-loop system is regionally stable w.r.t.

R ¼ fðx; 0Þ : Vðx; d; 0Þ41g ð54Þ

and W; where W is admissible.

Proof
Suppose the LMIs of Theorem 2 are satisfied for all ðx; dÞ 2VðX� DÞ; then by convexity they
are also satisfied for all ðx; dÞ 2 X� D: Let P3 ¼ Inx and P4 ¼ Q�1: From (53), we get the
following parametrization:

Cp ¼ CcP
�1
4 ; Bp ¼ Bc; Ap ¼ AcP

�1
4 ð55Þ

Also, define the following matrices:

G1 ¼ diagfInyþnx ;P3P
�1
4 g; G2 ¼ diagfI1þnyþnx ;P3P

�1
4 g; G3 ¼ diagfInyþnx ;P3P

�1
4 ; Inwþnzg

Consider the LMI (50). Notice from the above that (50) can be cast as given below:

G1

P N 01P3

P03N1 P4

" #
þ *LC1a þC01a *L

0

 !
G01 > 0 ð56Þ

where L is redefined as *L; accordingly.
Similarly, the LMI in (51) can be written as follows:

G2

ð2m� 1Þ �ma0kN1 0

�mN 01ak P N 01P3

0 P03N1 P4

2
664

3
775þ *MkC2a þC02a *M0k

0
BB@

1
CCAG02 > 0; k 2K ð57Þ

where the matrices Mk are redefined as *Mk; accordingly.
Notice that the LMI (52) can also take the following form:

G3

f11 f021 f031 f041 N 01E
0
1

f21 f22 f032 f042 C0cF
0

f31 f32 0 0 E02

f41 f42 0 �gInw E03

E1N1 FCc E2 E3 �lInz

2
666666664

3
777777775
þ *WC3a þC03a *W 0

0
BBBBBBBB@

1
CCCCCCCCA
G0350 ð58Þ
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where W is redefined as *W ; accordingly, and the blocks fij are as follows:

f11 ¼N 01A
0
1
*Y0Pþ P *YA1N1 þN 01C

0
1B
0
cP
0
3N1 þN 01P3BcC1N1

f21 ¼P03N1
*YA1N1 þ P4BcC1N1 þ C0cB

0 *Y0Pþ A0cP
0
3N1

f22 ¼C0cB
0 *Y0P3 þ P03N1

*YBCc þ A0cP4 þ P4Ac

f31 ¼A02
*Y0Pþ C02B

0
cP
0
3N1

f32 ¼A02
*Y0N 01P3 þ C02B

0
cP4

f41 ¼A03
*Y0Pþ C03B

0
cP
0
3N1

f42 ¼A03
*Y0N 01P3 þ C03B

0
cP4

From the Schur complement and the pre- and post-multiplication by ½z0 x0c p0 w0� and its
transpose, respectively, we get for (58) the following:

’Vðxa; dÞ þ
z0z

l
� gw0w50 ð59Þ

where ’Vðxa; dÞ is as defined in (49).
In view of (56), (57) and (59), the rest of the proof follows from Theorem 1. &

Remark 4
Matrix P3 can be viewed as a similarity transformation on the control matrices, since the
original parametrization is as follows:

Ac ¼ P�13 ApQ
�1P3; Bc ¼ P�13 Bp; Cc ¼ CpQ

�1P3

Thus, P3 is any non-singular matrix and it can be set as Inx without loss of generality. From this
fact, the Lyapunov function as defined in (47), i.e. Vðx; d; xcÞ ¼ x0Pðx; dÞxþ 2x0P3xc þ x0cP4xc;
is not conservative at all, since: (i) P3 is free, and (ii) a quadratic function is considered to the
(linear) control space.

Remark 5
To make the conditions of Theorem 2 convex, we have assumed that a parameterized
matrix Cp is given. To determine this matrix, one can consider any (parameterized) robust
state-feedback law such that the system is locally stable. When a local solution is not
available, we propose the following procedure: (i) consider a linearized system as state
below:

’r ¼ #AðdÞrþ #BðdÞwþ Bu; #z ¼ #CðdÞrþ #DðdÞwþ Fu ð60Þ

where

#AðdÞ ¼
@f ðx; d;wÞ

@x

����
x¼0;w¼0

; #BðdÞ ¼
@f ðx; d;wÞ

@w

����
x¼0;w¼0

; #CðdÞ ¼
@gðx; d;wÞ

@x

����
x¼0;w¼0

and

#DðdÞ ¼
@gðx; d;wÞ

@w

����
x¼0;w¼0
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and (ii) determine Cp as follows:

min
X ;Cp; d2VðDÞ

Z : X > 0;

#AðdÞX þ X #AðdÞ0 þ BCp þ C0pB
0 #BðdÞ X #CðdÞ0 þ C0pF

0

#BðdÞ0 �ZInw #DðdÞ0

#CðdÞX þ FCp
#DðdÞ �ZInz

2
6664

3
777550

The following two results are straight applications of Theorem 2.

Corollary 3 (Regional stabilization)
Consider Theorem 2 and let l!1: Suppose matrices P ¼ P0; L; Mk ðk 2KÞ; Q; and W ; and
positive scalars m and g are a solution to the following optimization problem:

min
ðx;dÞ2VðX�DÞ

g subject to ð50Þ; ð51Þ and ð52Þ

Then, the closed-loop system (42) is regionally stable in R as defined in (54) w.r.t. to the class of
disturbance signals defined in (40).

Remark 6
For Corollary 3 to be numerically tractable, we have to modify (52) by taking into account that
l!1: To this end, the LMI (52) should be as follows:

c11 c021 c031 c041

c21 c22 c032 c042

c31 c32 0 0

c41 c42 0 �gInw

2
666664

3
777775þW #C3a þ #C03aW

050

where

#C3a ¼
NðxÞN1 0 0 0

P1N1 0 P2 P3

" #

Corollary 4 (Nonlinear H1 control)
Consider Theorem 2 and let l ¼ g: Suppose the matrices P ¼ P0; L;Mk ðk 2KÞ; Q; and W ; and
positive scalars m and g are a solution to the following optimization problem:

min
ðx;dÞ2VðX�DÞ;w2W

g subject to ð50Þ ð51Þ and ð52Þ

Then, the L2-gain of the closed-loop system (42) is bounded by g; where W is admissible.

7. NUMERICAL EXAMPLES

To illustrate the proposed approach, we give the following examples.

D. F. COUTINHO ET AL.106

Copyright # 2007 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2008; 18:88–110

DOI: 10.1002/rnc



Example 2
Consider a 2DOF camera with an image-based control law, as described in [36], whose closed-
loop dynamics is as stated below:

’x1

’x2

" #
¼

a1

x1 þ a2

�a2 �
8a22x2

ð1þ x22Þ
2

0 �
a2ð1� x22Þ

ð1þ x22Þ

2
66664

3
77775

x1

x2

" #
þ

a1

0

" #
w; z ¼ ½0 1�

x1

x2

" #
ð61Þ

where a1 ¼ 0:1 and a2 ¼ 1:5: From physical reasoning, the state vector is constrained to the
following regions: x1 2 ½�1:4; a� and x2 2 ½�0:6; 0:6�: The problem to be addressed in this
example is to estimate an upper bound on jjGwzjj1 for some a (as large as possible).

To this end, consider the following DAR form for system (61):

’x ¼ A2pþ A3w; z ¼ C1x; 0 ¼ P1xþP2p

where A3 ¼ ½1 0�0; C1 ¼ ½0 1�; and

p ¼
x1

x1 þ a2

x2

ðx1 þ a2Þð1þ x22Þ

x32
ðx1 þ a2Þð1þ x22Þ

x22
ðx1 þ a2Þð1þ x22Þ

2

x22
ðx1 þ a2Þð1þ x22Þ

"

x2

1þ x22

x22
1þ x22

x32
ðx1 þ a2Þð1þ x22Þ

2

#
:

0

A2 ¼
�a1a2 0 0 �8a1a

2
2 0 0 0 0

0 �a1a2 a1a2 0 0 0 0 0

" #
; P1 ¼

1 01�4 0 01�2

0 01�4 1 01�2

" #0

P2 ¼

�ðx1 þ a2Þ 0 0 0 0 0 0 0

0 ðx1 þ a2Þ 0 0 0 �1 0 0

0 0 1 0 �x2 0 0 0

0 0 0 1 �1 0 0 x2

0 x2 0 0 �1 0 0 0

0 0 0 0 0 �1 �x2 0

0 0 0 0 0 x2 �1 0

0 0 0 x2 0 0 0 �1

2
666666666666666664

3
777777777777777775

Notice that the regularity of system (61) is guaranteed if x1 > �1:5 which implies the regularity
of the above DAR.

To define the Lyapunov function candidate, we choose Y ¼ ½x1I2 x2I2�
0: For comparison

purposes, the LFR approach is also applied to the same example considering a quadratic
Lyapunov function [9] and a homogeneous one [27] with

xfmg ¼ ½x21 x1x2 x22�
0
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The results are summarized in Table I, where the proposed approach obtained the less
conservative result. The conservativeness of the approach in [27] is possibly due to the modelling
of the nonlinearities as time-varying parameters and the polynomial vector xfmg is a
homogeneous form.

Example 3
Consider the following Van der Pol equation:

’x1 ¼ x2; ’x2 ¼ �x1 þ ð0:8þ 0:2dÞð1� x21Þx2 þ uþ w1; y ¼ x1 þ w2 ð62Þ

where x ¼ ½x1 x2�
0 is the state vector belonging to X ¼ fx : jxij5ag; and a is a given

positive scalar. The time-invariant parameter d is unknown, but bounded to ½�1; 1�:
The problem of interest in this example is to determine an estimate of the class of
admissible disturbance inputs (as large as possible) such that the system is regionally stable in
closed-loop.

To this end, consider the following DAR form for system (62):

’x ¼ A1xþ A2pþ A3wþ Bu; 0 ¼ P1xþP2p; y ¼ C1xþ C3w ð63Þ

where the system matrices and vectors are given by w ¼ ½w1 w2�
0 and the following:

p ¼ ½x1x2 dx2 x21x2 dx21x2�
0; A1 ¼

0 1

�1 0:8

" #
; A3 ¼

0 0

1 0

" #

A2 ¼
0 0 0 0

0 0:2 �0:8 �0:2

" #
; B ¼

0

1

" #
; C1 ¼ ½1 0�; C3 ¼ ½0 1�

P1 ¼

x2 0

0 d

0 0

0 0

2
666664

3
777775; P2 ¼

�1 0 0 0

0 �1 0 0

x1 0 �1 0

0 0 d �1

2
666664

3
777775

Applying the procedure on Remark 5, we get the following parameterized matrix Cp:

Cp ¼ ½�307:42177 � 324:81903�

Table I. Upper bounds on jjGwzjj1:

Methodology

Estimates LFR quadratic LFR polynomial Proposed approach

g 0.05 0.02 0.01
a 1.40 4.00 5.00
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To define the Lyapunov function candidate, let Y be as follows:

Y ¼

x1I2

½0 x2�

dI2

2
664

3
775

From Corollary 3 and Remark 6, we get g ¼ 0:2 for a ¼ 1; and the following control matrices:

Ac ¼
�2:4991553 3:265075

�0:1328802 �1:2749113

" #
; Bc ¼

�0:0416680

0:0001435

" #

and Cc ¼ ½�163:93216 125:77996�:
For comparison purposes, we apply the quasi-LPV technique to the robust controllers

proposed in [33, 37], respectively. It turns out that both approaches do not give feasible
solutions for the same limits on x and d:

8. CONCLUDING REMARKS

This paper has proposed a convex approach to the input-to-output analysis and output
feedback control for a class of uncertain nonlinear systems subject to bounded disturbances.
The proposed conditions are cast in terms of (state- and parameter-dependent) LMIs that
assure: (i) the regional stability of the system for bounded disturbance signals and (ii) an upper
bound on the system (induced)L2-gain. The stability results are extended for designing a robust
output feedback control law that assures the regional stability of the closed loop with a
guaranteed input-to-output performance.
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