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A dual of mixed p and on the losslessness of (D, G)-scaling
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Abstract

This paper studies the mixed structured singular value,
u, and the well-known (D, G)-scaling upper bound, v. A
complete characterization of the losslessness of v (i.e.,
v being equal to u) is derived in terms of the num-
bers of different perturbation blocks. Specifically, it is
shown that v is guaranteed to be lossless if and only if
2(m, + m¢) + m¢ < 3, where m,, m¢, and mc¢ are the
numbers of repeated real scalar blocks, repeated complex
scalar blocks and full complex blocks, respectively. The
results hinge on a dual characterization of p and v, which
intimately links p with v. Further, a special case of the
aforementioned losslessness result leads to a variation of
the well-known Kalman-Yakubovich-Popov lemma and
Lyapunov inequalities.

1 Introduction

The paper {4] that coined the structured singular value
is also the paper that introduced the D-scaling upper
bound, which, to this date is still the most widely used
upper bound of the structured singular value. As claimed
in [9], D-scaling for complex structures is in practice close
to the actual structured singular value (u for short), which
is somewhat surprising considering that computation of p.
for complex structures is NP-hard {11]. Even more sur-
prising is that for several nontrivial complex structures
the D-scaling upper bound is lossless (i.e. equal to )

(see [9)).

Similar claims and results are not known for the mixed
real/complex i. Mixed real/complex u is an extension of
u that allows the structure to consist of complex and real
parts. Such mixed structures arise, for example, if robust
stability is to be tested with respect to parametric uncer-
tainties. In Fan, Tits and Doyle [5] the (D, G)-scaling up-
per bound for mixed p is introduced, but, unlike its pure
complex counterpart, this upper bound—which we call
v—can be far from the actual mixed p [13]. About loss-
lessness of v little is known. Fan, Tits and Doyle [5] have
shown that v is lossless if there is one non-repeated real
scalar and one full complex block. Young [12] showed
that v is lossless for rank~one matrices.

In this paper we show that the upper bound v of mixed p
is lossless if-and-only-if

2(mr 4+ me) +me < 3, ¢y

TDepartment of Electrical and Computer Engineer-
ing, The University of Newcastle, N.S.W. 2308, Aus-
tralia. Ph: +61-49-217023, Fax: +61-49-216993, Email:
meinsma@ee.newcastle.edu.au

0-7803-3590-2/96 $5.00 © 1996 IEEE

where m,, m¢, and mc¢ are the numbers of repeated
real scalar blocks, repeated complex scalar blocks and
full complex blocks, respectively. It is an if-and-only-if
condition in the sense that if the number of blocks vi-
olate (1) then—irrespective of the size of the blocks—
always matrices M exist for which p(M) < v(M). In
this paper we also derive a transparent dual formula-
tion of p and v which is a result of independent inter-
est. It is partly based on Rantzer’s proof of the Kalman-
Yakubovich-Popov lemma [10].

Section 2 introduces notation and a few well established
results. In Section 3 the dual characterizations of p and
v are derived. As an example of the use of these dual re-
sults we show that u(M) = v(M) if M has rank one (the
proof is a substantial simplification compared to that of
Young [12]). The dual characterizations are used in Sec-
tion 4 to prove the losslessness of v for the mentioned
structures. In Section 5 we give examples that show that
for all other structures v is not guaranteed to be lossless.
Section 6 is about a variation of the Kalman-Yakubovich-
Popov lemma. Section 7 contains a more direct proof
of losslessness of v for the simpler case that the struc-
ture consists of one repeated real scalar block only. The
proof relies on a variation of Lyapunov inequalities and
on the notion of (antistable) square roots (ASRs) of non-
Hermitian matrix. Interestingly, the definition of ASRs
supersedes that of the ubiquitous square roots of Hermi-
tian matrices. Basic properties of ASRs are reviewed in
the appendix.

Sections 2 through 6 cover the same material as [7] save
some details and proofs that have been omitted due to
lack of space.

2 Notation and (D, G)-scaling

The norm ||T{| of a matrix T € C™*™ is in this note the
spectral norm. The Euclidean norm of T is denoted as
fIT||]2. T" is the complex conjugate transpose of T, and
He T is the Hermitian part T defined as

HeT= %(T+T").

For scalar T the Hermitian part is the real part. Given a
subset X of C**™ the (mixed) structured singular value of
M € C**" is denoted by ux(M) and defined as

1
inf{J]A]| : I — AM is singular and A € X}’

ux(M) =

ux(M) is set to zero if I — AM is nonsingular for every
A € X. Obviously pux(M) depends on the “structure”
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X. Whenever ux(M) is used it is implicitly assumed that
some structure X is given. Invariably X is assumed block-
diagonal of the form

X = diag(RIk,,...,RIka, (2)
cL,,...,Ch,,,,
Cf] xf]‘.“ ,Cfmc Xfmc)’

where m,, mc and mc are the number of repeated real
scalar blocks, repeated complex scalar blocks and full
complex blocks, respectively.

2.1 (D, G)-scaling

Let H denote the set of g x ¢ Hermitian matrices and de-
note its subset of positive definite elements by P9. Given
the structure X of (2), the sets Dx and Gx are defined as

Dx = diag(P*',... P*™r,
PY,... ,P'™e,
Pley, ..., PLe, ),

Ox = diag(H*',... H""",
01]>(1|)'~- yolmcxlmc)
0f]>(f|l"- !ofchfmc)'

Given M € C**™ and « € R the matrix function ®,(D, G)
is defined as

0,(D,G) = M"DM +j(GM — M"G) — o*D.

This notation is a bit different from that of [5]. Fan, Tits
and Doyle [5] showed that ux(M) < o« if @ > 0 and
®+(D,G) < 0 for some D € Dx and G € Gx. The infi-
mal « for which such D and G can be found is thus an
upper bound of ux(M) and this upper bound is denoted
throughout as vx(M), i.e.,

‘Vx(M) = inf

pepieq @ >0 Po(D,G) <0}

The importance of the upper bound vx lies in the fact
that it can be computed “efficiently” (in polynomial time)
whereas computation of ux is NP-hard. It may be verified
that

®.(D,G) = He (M" + a1)(D + %G)(M — ).

This allows to characterize vx somewhat more compactly.

Given «, any element E of Dx + jGx can be uniquely de-
composed as E = D + (j/a)G with D € Dx and G € Gx
(namely, take D = He E and let (j/x)G be the skew-
Hermitian matrix E — He E). Therefore

vx(M) <o & 3E € Dx+jGx suchthat
He (M" + «al)E(M — al) < 0.

This we use frequently.

3 Dual characterization of p and v

In this section we give a dual characterization of ux and
vx. In the next section we use these results to prove that

ux = vx for structures of the form X = diag (Rl ,CP*?).
The dual characterizations of px and vx that we present
are easy and they are remarkably similar. It is tempting
to think they have wider use than just the next sections,
and this is exemplified by the fact that with these dual
formulations it is easy to prove that ux(M) = vx(M) for
rank-one matrices M (irrespective of the structure). This
is done at the end of this section.

The characterizations presented are dual in that they are
an application of a duality argument for convex sets. The
following preparatory result is in essence standard (see
Boyd et.al. [2, page 29]).

Lemma 3.1 Suppose F(E) € C™*™ depends affinely on
E € C**". Let £ be some convex subset of C**™. Then
no € € & exists for which

He F(E) < 0
iff there is a nonzero W = W" > 0 such that
Retr WF(E)>0 VEe€. (3)

<

Lemma 3.2 (Dual characterization of vx) Let X be any
structure (2). Then vx(M) > « iff there is a nonzero
W = WH" > 0 such that

Retr (M —al)W(M" + al)E >0 VE € Dx+jGx. (4)

Proof: vx(M) > o iff no E € Dx + jGx exists for which
He (M" + oI)E(M — «l) < 0.

By Lemma 3.1 that is the case iff there isa W = W" > 0
such that Retr W{M" + «I)E(M — «l) > 0 for all such E.
The traces of W(M"+ «I)E(M — «l) and (M — al)W(M" +
«I)E are the same. ™

We next reformulate this characterization of vx without
using E. To this end we partition E and (M — al)W(M" +
«l) compatible with structure X as

Er 0 0
E = 0 . 0 ,
L 0 0 Em1+mc+mc_
[Z4 ? ? T
M-aWM +al) = |, - ? &)
L ? ? me+mc+mc_

A “?" denotes an irrelevant entry. Varying E over all
elements of Dx + jGx can be done by varying each block
E: independently of the other blocks, and as each block
may be arbitrarily close to zero, we have that (4) holds iff
for everyi e {1,... ,m, + mc + mc} we have that

Retr ZiF_i 2 0 (6)

holds for all E; in the appropriate sets.
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Lemma 3.3 (Dual characterization of vx) Let X be any
structure (2). Then vx(M) > o iff there is a nonzero
W = WY > 0 such that

Z; is Hermitian and > 0 Vi€ {l,... ,m.},
He Z; >0 Vie{m:+1,... ,m: + m¢},

RetrZ; >0 vie{me+mc+1,... ,m: + me¢ + mch
)]

Here Z; is the i-th block on the diagonal of (M —
al)W(M" + «l) as shown in (5).

Proof: vx(M) > « iff (6) holds for all i and E: in the ap-
propriate sets. We distinguish three cases.

(Case 1)) Ifi € {1,...,m,} then E; is any matrix whose
Hermitian part He E; is positive definite. For all such E;
we have that Retr Z;E; > 0 iff Z; is Hermitian and > 0.
(See [7] for more details.)

(Case 2:) Fori € {m, +1,...,m, + m.} the E; is any
Hermitian positive definite matrix. Retr Z;E; > 0 for all
such E; iff He Z; > 0.

(Case 3:) Fori € {m; +mc +1,...,my + mc + mc} the
E; is any matrix of the form E; = dil with0 < di € R.
Retr Z;E; > 0 for all such E; iff Retr Z; > 0. ]

Next we derive a characterization of ux in similar terms.
For that we need the following lemma. It is readily
proved.

Lemma 3.4 (Three little lemmas) Let f,g be two column
vectors of the same dimension.

1. (f — g)(f + ¢g)" is Hermitian and > 0 iff g = &f for
some § € [-1,1].

2. The Hermitian part of (f — g)(f+g)" is > 0 iff g = &f
for some 6 € C with 5| < 1.

3. Retr (f —g)(f+g)" =||fl3 — |lgl|l}. Hence Retr (f ~
g)(f + g)" > 0 iff g = Af for some matrix A with
flalf < 1.

o

Lemma 3.5 (Dual characterization of px) Let X be any
structure (2). Then px(M) > o iff there is a nonzero vec-
tort € C™ such that

Retr (M —aD)tt"(M" + al)E>0 VE € Dx +iGx. (8)

Equivalently, ux(M) > « iff there is a nonzero vector t €
C™ such that

Zi is Hermitian and >0 Yie{1,...,m:},
He Z; >0 Vie{m, +1,... ,m; +mc},
RetrZi 20 vie{mr+me+1,...,me +mc + mch

©)

Here Z; is the i-th block on the diagonal of (M —
al)tt"(M" 4+ «l) as partitioned compatibly with X. 0

Proof: The equivalence of (8) and (9) was shown earlier.
We prove that px(M) > « iff (9) holds. Note that Z; can
be written as the product of a column vector and a row
vector as

Zi=[Mu - Mig—) Mu—al Mg -]t (10)
([Mil s Mii-ny Mig+al M((H.]) ] t)H.

We will formulate necessary and sufficient conditions for
(9) to hold. We distinguish the three cases.

(Case 1.) Let i € {a,...,m} By
Lemma 3.4, Item 1 we have that (10) is Her-
mitian and > 0 iff [0---0 «f 0.--0]t =
& [Mar Mi(m,+me+me)] t for some &; € [-1,1].

(Case 2.) leti € {m, + 1,...,my + mc}. By
Lemma 3.4, Item 2 we have that the Hermitian
part of (10) is > 0 iff [0---0 &I 0---0]t =
8: [Mus Mi(my+mc+me)] t for some & € C with
[8:) £ 1.

(Case 3.) leti € (m +m¢ +1,...,mr + m¢ + mch
By Lemma 3.4, Item 3 the real part of the
trace of (10) is > 0 iff [0---0 oI 0---0]t =
A; [Ma {t for some A; with
A < 1.

Mi(m,—+mc+mc)

The three cases combined show that there s
a nonzero t that satisfies (9) if and only if
(xl — AM)}t = 0 for some t ind some A =
diag (81,... ,0m, Om,41y-ce yBmpamerAryen. , Amc) € X
with JAll < 1, i.e., iff px(M) > «. "

In summary, the results in this section say that vx(M) >
o iff a nonzero W = W" > 0 exists with certain properties
(7), and that px(M) > o iff that W can be chosen to have
rank 1. Another interpretation, and which is more in line
with that of Packard and Doyle [9] and Rantzer [10], is
as follows. Fix «. The set

{(M—a)W(M* +al) : W=W" >0}
is the convex hull of the set
O ={(M—altt"(M" +al) : te C*}.

Therefore vg(M) > « iff the convex hull of © has cer-

tain properties, whereas ux(M) > « iff © itself has those
properties. '

We end this section with an application which shows the
potential of the dual characterizations. Young [12] was
the first to prove the following lemma, but whereas his
proof is rather cumbersome, the proof based on dual
characterizations is a few lines only.

Lemma 3.6 pux(M) =vx(M) if M has rank one.

Proof: It suffices to show that vx(M) > o implies
ux(M) > «. Suppose vx(M) > «. Therefore there
is a nonzero nonnegative definite W = W for which
(M — al)W(M" + al) satisfies the positivity conditions
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(7). Let x,y € C* be such that M = xy", and decompose
W compatibly with that as

W=tt"+W

inwhichWy = O,W: wH >0and t € C*. Sucha
decomposition always exists. Then we have

(M — al)tt"(M" 4 «l)
= (xy" — al)(W—W)(yx" + al)
= (M=oa)W(M" + al) + o*W.

By assumption, (M — al)W({M" + «l) satisfies the positiv-
ity conditions (7), but then so does (M — «I)tt"(M" + «l)
because o*W is Hermitian and > 0. Hence ux(M) > «,
which is what we needed to prove. (Note that the vector
t is nonzero, because, otherwise, (M — al)W(M" 4+ «]) =
—a*W < 0 which would have contradicted 7)) "

4 The case X = diag (Rl ,CP?*?)

In this section we prove that ux = vx if the structure has
the form X = diag(RI.,,C?*?). A straightforward appli-
cation of Lemma 3.3 and Lemma 3.5 is as follows.

Corollary 4.1 LetX = diag (RIm,CP*?). Thenvx(M) > «
iff a nonzero Hermitian W > 0 exists for which

M?} + (X.Im

My —alm My ]W { MY,

] is Hermitian > 0,

MH
Retr [M21 Maz — OLIp] w [MEZ i](xlp} >0.
(11)
Moreover ux(M) > « iffa W = W*® > 0 of rank one exists
with these properties (11). °

The following is a technical result that we need later. It
can be proved with induction (see [7] for proof).

Lemma 4.2 (Technical result) LetF and G be complex ma-
trices of the same dimensions. If a W = W" > 0 of rank
n is such that

FWGH is Hermitian and > 0,

then there exist n column vectors t. such that W =
T XZT et} and Ftut!G" is Hermitian and > 0 Vk. °

Theorem 4.3 px =vx if X = diag (Rl,,, CP*7).

Proof: Since px(M) < vx(M) it suffices to prove that

‘Vx(M) >« implies }Lx(M) > .

Suppose vx(M) > «. Then by Corollary 4.1 there is a
nonzero W = W*" > 0 that satisfies (11). By Lemma 4.2
we can write this W as W = 3, tit} such that for all k

R
M1 —al M) titl [M” : o

] is Hermitian > 0.
12

Since W = Y, tit}l satisfies (11), there is at least one
index k, say k = 1, for which t; #£ 0 and

MH
Retr [My; MY, — «I] it} [Mgz i: od] >0.

Hence W := t;t} is a rank one matrix that satisfies (11) so
that ux(M) > «a. .

5 Losslessness of (D, G)-scaling

Table 1: When ux = vx is guaranteed.

meg =0 me =1 mc=2| mec=3
My = Yes. Yes. Yes.
me =0 See [9] See [9] | See[9]
my =0 Yes. Yes. No.
me=1 | See[9] See [9] [ See{9]
my =1 Yes. Yes. No.
me =0 | Thm. 4.3 | Thm. 4.3 | Ex.5.1
My = No.
me = Ex. 5.2
my =0 No.
me=2 | See[9] .
my =2 No.
me = See [8]

Building on work by [4], Packard and Doyle [9] showed
that px = vx whenever

my =0, 2mc+mc <3. 12)

Together with the results of Section 4 we thus have that
px = vx for any of the structures X for which

Packard and Doyle [9] further show by examples that
px(M) < vx{M) can occur within any complex struc-
ture with 2m¢ + m¢ > 3 (and m. = 0). For m, = 2
it is possible to construct 2-by-2 matrices M for which
nx(M) < vx(M) (see [8]). Table 1 details (13) and gives
references for the various cases. 1In this section we give
two examples that complete the picture in that they—
combined with the other examples—show that for any
structure X that violates (13) there exist matrices M such
that ux(M) < vx(M).

Example 5.1 Let X = diag(R, C, C) and take

001 j
M=1]3 0 1}.
1 1 0
We show that ux(M) = 1 and that vx(M) = +/3. The

spectral norm of M is ||[MJ| = /3, so we have vx (M) < V3.
Furthermore, for the Hermitian nonnegative definite W

defined as
2 1 —j
W=11 2 j
i 2
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we have that

o ? ?
M-VIDWM"+V3D) = {? 0 0. (14)
2 00
(The “?” denotes an irrelevant entry.) Since all diagonal
entries of (14) are zero it follows from Lemma 3.3 that

vx(M) > /3. Hence vx(M) = /3.
Calculation shows that I3 —diag(61, 82, 53)M is singular iff
5283 +j61(52 +63)—] =0. (15)

Suppose 31 € [—1,1] and that |63] < 1. Then the 3, for
which (15) holds, equals 5, = (1 —j&1563)/(i61 + 83) and
satisfies

1—38183
361 + 83

2 1+4631551* — 2511m (53)
T 82+ 16312 —2611Im (83) —

1821% = '

Therefore max: |6:| > 1 for every solution of (15). Since
(61,82,83) = (1,j,—i) is a solution of (15) for which
max; [6i) = 1 we have that ux(M) =1. °

Example 5.2 Let X = diag(R, CI,) and take the same M
as in the previous example. From (14) we infer that also
for this structure vx(M) > v/3. Since vx(M) < [M]| = /3
we have, again, that vx(M) = V3. It further follows from
the previous example that I3 —diag(5:,5,12)M is singular
iff

53 +§28615; —1=0.

The solutions 5, = —j&; £ /1 — 62 have absolute value 1
for every &, € [—1,1]. Hence px(M) =1 < vx(M). °

6 A variation of the KYP lemma

The conditions of the Kalman-Yakubovich-Popov lemma
(XYP lemma) and the bounded real lemma are known to
be equivalent to the fact that ux = ~vx for the complex
structures X = diag (Cly,C?*?) (see [9]). In this section
we rephrase Theorem 4.3 as a KYP type result. More
precisely, Iltem 2 of the lemma below is this reformulation
(for a proof see [7]). Items 1 and 3 have been included for
comparison only: Item 1 is an application of the famous
KYP lemma in a strict inequality version (see e.g. [1]) and
Item 3 is an immediate consequence of Lemma 3.1 of [6].

Lemma 6.1 Let G is a square rational matrix with real-
ization G £ [A, B, C, D), and consider the following LMI
inP:

(16)

PA+AMPH  PB—C*]
—~C+B"P* —D-D"

Then

1. There is a Hermitian P = P" > 0 that satisfies (16)
iff A is stable and G(s) + [G(s)]" > 0 for all s in the
closed RHP including oo.

2. There is a P (Hermitian or not) with He P > 0 that
satisfies (16) iff A has no eigenvalues on the positive
real line [0, o0) and G(s)+[G(s)]" > 0 forall s € [0, o0)
including co.

3. There is a P (Hermitian or not) that satisfies (16) iff
A is nonsingular and G(s) + [G(s)]" > 0 at s =0 and
§$ = 00.

7 A special case: X = RI,,,

As a special case of Theorem 4.3 we have that px = vx if
X = RI,. In this section we indicate a more direct and
insightful proof of this result. The proof relies on the no-
tion of (antistable) square roots of non-Hermitian matri-
ces (cf. Dasgupta and Anderson [3]) and a variation of a
Lyapunov inequalities.

Lemma 7.1 (ASR) If T € C**™ has no eigenvalues on the
negative real axis (—o0,0], then there is a unique anti-
stable Z such that T = Z>. o

Such a Z will be called the antistable square root (ASR) of
T. Antistable means that all its eigenvalues lie in the open
RHP. The definition of ASR supersedes that of the usual
square root of positive definite matrices. (See Appendix
for review of ASR results.) The notion of antistable square
roots is used to prove a variation of a Lyapunov stability
condition:

Lemma 7.2 A € C**™ has no eigenvalues on the positive
real line [0, 00) iff 3P € C™*™ such that

PA+A"P" <0, HeP>0. (17)

Proof: If v € C" satisfies Av = sv with s € [0,00) then
v(PA + A"PH)v = sv(P + P")v which contradicts (17).
Conversely, if A has no eigenvalues on [0, 00), then by
Lemma 7.1 we have —A = Z? for some antistable Z. Let
Q be any of the many Hermitian matrices for which QZ +
Z"Q > 0. (It follows from standard Lyapunov theory that
such Q = Q" exist because Z is antistable.) Then P :=
QZ~! satisfies (17) because PA + A"PH = —QZ-Z"Q < 0
and P+ P =z2"9%Z"Q +QZ)z7" > 0. u

Theorem 7.3 Let X = Rl,. The following are equivalent.
1. ux(M) < 1, that is, 1 — 8M is nonsingular for every
de[-1,1].

2. (M —1) is nonsingular and (M — I)~'(I + M) has no
eigenvalues on the positive real axis [0, c0).

3. Thereis a C € C"*™ such that He C(I1—5M) < 0 for
all s € [-1,1].

4. vx(M) < 1, ie,3E € Dx+ijGx ={E : HeE > 0}
such that He (I1+ MME(M —1) < 0.

Proof: Define A = (M —I1)7'(I+ M). We prove 1 =2
2 = 3 = 4 =3 1. (In what follows conv(l,V)
denotes the set of convex combinations of U and V.)
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(1= 2){I-M:6e[-1,1]}=conv(I-M,I+ M) =
(I—=M)conv(l,—A). The set conv(l, —A) has a singu-
lar element iff some eigenvalue of A lies on [0, o).

(2 = 3.) By Lemma 7.2 there is a P such that He PA <
Oand He P > 0. Let C=P(M—1I)"". Then

{Ca—-8M):86 € [-1,1]} =Cconv(l—M, I+ M)
= Pconv(—I,A) = conv(—P,PA).

He conv(—P,PA) < 0 because both ~P and PA have
negative definite Hermitian part.

(3 = 4.) E defined as E = —(I+ M")~C works.
(4 = 1.) Direct, since ux{M) < vx{M).

Acknowledgement: We thank Peter Young for his comments on
the losslessness of (D, G)-scaling and Soura Dasgupta for some
discussions on the single real block case.

8 Appendix: Square roots

This appendix contains a more or less self-contained ex-
position of square roots of non-Hermitian matrices. Re-
call that a Z € CY*™ is called an antistable square root
(ASR) of T € C™*™ if Z is antistable and T = Z%.

Lemma 8.1 Let T € C"*™. The following holds.
1. The antistable square root of T is unique.

2. IfZ isan ASR of T, then A is an eigenvalue of T if and
only if /A is an eigenvalue of Z. (Here we assume
that the square root /A is taken to be in the closed
RHP.)

3. T has an antistable square root iff T has no eigenval-
ues on the negative real axis (—o0,0].

4. IfT> 0 then the well known positive definite square
root T'/2 is the same as the ASR of T.

Proof:

1. Suppose Z; and Z, are two ASRs of T. Define E =
Zy~Z;. Then

EZy + 228 =(Zy — Z23)21 + Z2(Z1 — Z2) = 0.

That is, E satisfies the Lyapunov equation EZ; +
Z,E = 0. Since both Z, and Z, are antistable it
follows from standard Lyapunov theory that E is
unique: E=0, i.e., Z1 = Z;.

2. Let v/A denote the square root in the closed RHP.
We have that

(T=Aln) = (Z2 = Ala) = (Z + VALL)(Z — VAL).

Since Z + /Al is nonsingular—its eigenvalues lie in
the open RHP—we have that T — AL, is singular if
and only if Z — VAL, is singular.

3. Item 2 implies that T can have an ASR only if none of
its eigenvalues lie on the negative real axis (—o0,0].
Let ] = Q7 'TQ be a Jordan normal form similar to
T (that is Q is nonsingular and J is diagonal possibly
with some entries 1 just above the diagonal). Note
that none of the diagonal entries of ] lie on the nega-
tive real axis (—o0, 0]. It follows trivially by construc-
tion that then J has an antistable square root Z. Then
Z :=QZQ' is an ASR of T because it is antistable
and 2 = QZQ7'QZQ™' =QZ*Q7' =QIQ' =T.

4. Thestandard “square root” T'/? of a positive definite
T is by definition > 0. Hence the eigenvalues of T'/?
are real > 0, i.e., T'/2is antistable.
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