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A Dual Formulation of Mixed and
on the Losslessness of Scaling

Gjerrit Meinsma, Yash Shrivastava, and Minyue Fu

Abstract—This paper studies the mixed structured singular value,�,
and the well-known (D;G)-scaling upper bound,�. A dual characteriza-
tion of � and � is derived, which intimately links the two values. Using
the duals it is shown that� is guaranteed to be lossless (i.e., equal to�)
if and only if 2(mr +mc) +m

C
� 3, wheremr;mc; and m

C
are the

numbers of repeated real scalar blocks, repeated complex scalar blocks,
and full complex blocks, respectively. The losslessness result further leads
to a variation of the well-known Kalman–Yakubovich–Popov lemma and
Lyapunov inequalities.

Index Terms—Duality, Kalman–Yakubovich–Popov lemma, linear ma-
trix inequalities, mixed structured singular values.

I. INTRODUCTION

In two adjoining papers, Doyle [1] and Safonov [2] coined the
structured singular value as a tool to test for robust stability of closed-
loop systems. TheD-scaling upper bound introduced in the very first
paper on structured singular values [1] is to date still the most widely
used upper bound of the structured singular value. As claimed in [3],
D-scaling for complex structures with full blocks is in practice close
to the actual structured singular value (or� for short), and for several
nontrivial complex structures theD-scaling upper bound is proved
to be lossless [1], [3].

Progress in the theory of mixed� has been slower. Mixed
real/complex� is an extension of� that allows the structure to consist
of real and complex parts. Such mixed structures arise, for example, if
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robust stability is to be tested with respect to parametric uncertainties.
In Fan et al. [4], an upper bound for mixed� is presented, but,
unlike its pure complex counterpart, this upper bound—which we
call �—can be far from the actual mixed� [5].

So far not much is known about losslessness of� for mixed
structures. Fanet al. [4] have shown that� is lossless if there is
one nonrepeatedreal scalar and one full complex block. Young [6]
showed that� is lossless for rank-one matrices.

In this paper we show that the upper bound� of mixed� is lossless
iff 2(mr+mc)+mC � 3, wheremr; mc; andmC are the numbers of
repeated real scalar blocks, repeated complex scalar blocks, and full
complex blocks, respectively. These losslessness results come as a by-
product of a dual formulation of� and� that we derive. The duality
theory forms the bulk of this paper and is of independent interest. It
is partly based on Rantzer’s proof of the Kalman–Yakubovich–Popov
(KYP) lemma [7], which in turn is influenced by [3].

Section II introduces notation and a few well established results.
In Section III the dual characterizations of� and� are derived. As an
example of the use of these dual results, we show that�(M) = �(M)

if M has rank one (the proof is a substantial simplification compared
to that in Young [6]). The dual characterizations are applied in
Section IV to prove the losslessness of� for the mentioned structures.
In Section V we give examples that show that for all other structures
� is not lossless. Section VI is about a variation of the KYP lemma
and Lyapunov inequalities.

II. NOTATION AND (D;G) SCALING

The normkTk of a matrixT 2 Cm�n is in this paper the spectral
norm. The Euclidean norm ofT is denoted askTk2: TH is the
complex conjugate transpose ofT , and HeT is the Hermitian part
of T defined as

HeT =
1

2
(T + T

H
):

Given a subsetX of Cn�n, the (mixed) structured singular valueof
M 2 Cn�n is denoted by�X(M) and is defined as

�X(M) =
1

inffk�k : I ��M is singular and� 2 X g
:

�X(M) is set to zero ifI ��M is nonsingular for every� 2 X.
Obviously�X(M) depends on the “structure”X. Whenever�X(M)

is used it is implicitly assumed that some structureX is given.
Invariably,X is assumed block-diagonal of the form

X = diag(RIk ; � � � ; RIk ; CIl ; � � � ; CIl ;

C
f �f

; � � � ; C
f �f

) (1)

where mr;mc; and mC are the number of repeated real scalar
blocks, repeated complex scalar blocks, and full complex blocks,
respectively.

A. (D;G) Scaling

Let Hq denote the set ofq� q Hermitian matrices, and denote its
subset of positive definite elements byP q. Given the structureX of
(1), the setsDX andGX are defined as

DX = diag(P k
; � � � ; P

k
; P

l
; � � � ; P

l
;

P If ; � � � ; P If )

GX = diag(Hk
; � � � ; H

k
0l �l ; � � � ; 0l �l ;

0f �f ; � � � ; 0f �f ):

0018–9286/97$10.00 1997 IEEE
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Given M 2 C
n�n and � 2 R, the matrix function��(D;G) is

defined as

��(D;G) =M
H
DM + j(GM �M

H
G)� �

2
D:

This notation is a bit different from that of [4], where Fanet al.
showed that�X(M) < � if � > 0 and��(D;G) < 0 for some
D 2 DX andG 2 GX . The infimal� for which suchD andG can
be found is thus an upper bound of�X(M), and this upper bound
is denoted throughout as�X(M), i.e.,

�X(M) = inf
�>0

f� : 9D 2 DX ; G 2 GX s.t.��(D;G) < 0g:

Computation of�X(M) can be done efficiently (in polynomial time).
It may be verified that

��(D;G) = He(MH
+ �I) D +

j

�
G (M � �I):

This allows us to characterize�X somewhat more compactly. Given
�, any elementE of DX + jGX can be uniquely decomposed as
E = D + (j=�)G with D 2 DX and G 2 GX (namely, take
D = HeE and let(j=�)G be the skew-Hermitian matrixE�HeE).
Therefore

�X(M) < �, 9E 2 DX + jGX such that

He(MH
+ �I)E(M � �I) < 0:

This we use frequently.

III. D UAL CHARACTERIZATION OF � AND �

In this section we give a dual characterization of�X and�X . In the
next section we use these results to prove that�X = �X for structures
of the formX = diag(RIm; Cp�p). The dual characterizations of�X
and �X that we present are easy, and they are remarkably similar.
They may have wider use than just the next sections, and they may,
for example, be used to simplify Young’s proof [6] of the fact that
�X(M) = �X(M) for rank-one matricesM , irrespective of the
structure. This is done at the end of this section.

The characterizations presented are dual in that they are an ap-
plication of a duality argument for convex sets. The following
preparatory result is in essence standard (see Boydet al. [8, p. 29]).
For completeness we give a proof.

Lemma III.1 (Separating Hyper-Planes):Suppose F (E) 2

C
m�m depends affinely onE 2 C

n�n. Let E be some convex
subset ofCn�n. Then, noE 2 E exists for which

HeF (E) < 0

iff there is a nonzeroW = W
H � 0 such that

RetrWF(E) � 0; 8E 2 E : (2)

Proof: SupposeW = W
H � 0;W 6= 0 satisfies (2). Then, for

any E 2 E

trW
1=2

(HeF (E))W1=2
= RetrWF(E) � 0:

This excludes the possibility that HeF (E) is negative definite as that
would have implied thattrW 1=2(HeF (E))W1=2

< 0.
Conversely, suppose that HeF (E) contains no negative definite

element. Stated differently,�HeF (E) does not intersect the cone of
positive definite matrices

P := fP : P = P
H
> 0g:

Since both�HeF (E) andP are convex, there is a separating hyper-
plane ([9, Th. 3, p. 133]), that is, a nonzeroH 2 Cm�m exists and
a numbera 2 R such that

RehH;�HeF(E)i � a � RehH;Pi:

The inner product here ishA;Bi = trAH
B. For anyP 2 P we have

that hH;P i = RetrHP = trP1=2(HeH)P1=2, and this shows that
a � hH;Pi implies HeH � 0 anda � 0. DefineW = HeH. Then,
�RetrWF(E) = tr �WHeF(E) = RehH;�HeF(E)i � a � 0:

Lemma III.2 (Dual Characterization of�X ): Let X be any struc-
ture (1). Then,�X(M) � � iff there is a nonzeroW = W

H � 0

such that

Retr(M� �I)W(M
H
+ �I)E � 0; 8E 2 DX + jGX: (3)

Proof: �X(M) � � iff no E 2 DX + jGX exists for which

He(MH
+ �I)E(M � �I) < 0:

By Lemma III.1, that is the case iff there is a nonzeroW =W
H � 0

such thatRetrW(MH+�I)E(M��I) � 0 for all suchE. The traces
of W (MH+�I)E(M ��I) and(M ��I)W (MH+�I)E are the
same.

We next reformulate this characterization of�X without usingE.
To this end we partitionE and(M ��I)W (MH +�I) compatible
with X as

E =

E1 0 0

0
.. . 0

0 0 Em +m +m

(M � �I)W (M
H
+ �I) =

Z1 ? ?

?
. .. ?

? ? Zm +m +m

: (4)

A “?” denotes an irrelevant entry. VaryingE over all elements of
DX + jGX can be done by varying each blockEi independently of
the other blocks, and as each block may be arbitrarily close to zero,
we have that (3) holds iff for everyi 2 f1; � � � ;mr +mc +mCg

we have that

Retr ZiEi � 0 (5)

for all Ei in the appropriate sets.
Lemma III.3 (Another Dual Characterization of�X ): Let X be

any structure (1). Then,�X(M) � � iff there is a nonzero
W = W

H � 0 such that

Zi is Hermitian and� 0; 8i 2 f1; � � � ; mrg;

HeZi � 0; 8i 2 fmr + 1; � � � ;mr +mcg;

RetrZi � 0; 8i 2 fmr +mc + 1; � � �g:

(6)

HereZi is theith block on the diagonal of(M ��I)W (MH+�I)

as shown in (4).
Proof: �X(M) � � iff (5) holds for all i and Ei in the

appropriate sets. We distinguish three cases.

Case 1) If i 2 f1; � � � ;mrg; then Ei is any matrix whose
Hermitian part HeEi is positive definite. For all such
Ei we have thatRetrZiEi � 0 iff Zi is Hermitian and
� 0. This may be seen as follows. IfZi = Z

H
i � 0; then

RetrZiEi = trZ
1=2
i

(HeEi)Z
1=2
i

� 0

since HeEi > 0. If Zi is Hermitian but not� 0; then
many Ei = E

H
i > 0 exist for which RetrZiEi =

trE
1=2
i

ZiE
1=2
i

< 0. Finally, supposeZi is not Hermitian.
DecomposeZi in a Hermitian and skew-Hermitian part,
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Zi = HeZi + Si, and note that the skew-Hermitian part
Si is nonzero. LetEi := "I � SHi ; depending on" > 0.
The Hermitian part ofEi is "I > 0, and for small enough
" > 0 we have

Retr ZiEi = Retr(HeZi + Si) "I� S
H
i

= tr "(HeZi)� SiS
H
i

= " trHeZi � kSik
2
F < 0:

The k � kF is the Frobenius norm.
Case 2) Fori 2 fmr+1; � � � ; mr+mcg theEi is any Hermitian

positive definite matrix.RetrZiEi � 0 for all suchEi
iff He Zi � 0. This follows from the fact thatRetrZiEi

equalstrE1=2
i (HeZi)E

1=2
i .

Case 3) Fori 2 fmr + mc + 1; � � � ;mr + mc + mCg the Ei
is any matrix of the formEi = diI with 0 < di 2 R.
RetrZiEi � 0 for all suchEi iff RetrZi � 0.

Next we derive a characterization of�X in similar terms. For that
we need the following lemma, which is readily proved.

Lemma III.4 (Three Little Lemmas):Let f; g be two column vec-
tors of the same dimension.

1) (f � g)(f + g)H is Hermitian and� 0 iff g = �f for some
� 2 [�1; 1].

2) The Hermitian part of(f � g)(f + g)H is � 0 iff g = �f for
some� 2 C with j�j � 1.

3) Retr (f � g)(f + g)H = kfk22 �kgk22. HenceRetr (f � g)(f +

g)H � 0 iff g = �f for some matrix� with k�k � 1.

Lemma III.5 (Dual Characterization of�X ): Let X be any struc-
ture (1). Then,�X(M) � � iff there is a nonzero vectort 2 Cn

such that

Retr (M� �I)tt
H
(M

H
+ �I)E � 0; 8E 2 DX + jGX: (7)

Equivalently,�X(M) � � iff there is a nonzero vectort 2 Cn

such that

Zi is Hermitian and� 0; 8i 2 f1; � � � ;mrg;

HeZi � 0; 8i 2 fmr + 1; � � � ;mr +mcg;

RetrZi � 0; 8i 2 fmr +mc + 1; � � �g:
(8)

HereZi is theith block on the diagonal of(M ��I)ttH(MH+�I)

as partitioned compatibly withX.
Proof: The equivalence of (7) and (8) was shown earlier. We

prove that�X(M) � � iff (8) holds. Note that eachZi can be written
as the product of a column vector and a row vector as

Zi =[Mi1 � � � Mi(i�1)Mii � �I Mi(i+1) � � � ]t

� ([Mi1 � � � Mi(i�1) Mii + �I Mi(i+1) � � � ]t)
H
: (9)

We will formulate necessary and sufficient conditions for (8) to hold.
We distinguish the three cases.

Case 1) Leti 2 f1; � � � ;mrg. By Lemma III.4-1) we have that
(9) is Hermitian and� 0 iff [0 � � � 0 �I 0 � � � 0]t =

�i[Mi1 � � � Mi(m +m +m )] t for some�i 2 [�1; 1].
Case 2) Leti 2 fmr + 1; � � � ;mr + mcg. By Lemma III.4-

2) we have that the Hermitian part of (9) is� 0 iff
[0 � � � 0 �I 0 � � � 0]t = �i[Mi1 � � � Mi(m +m +m )]t for
some�i 2 C with j�ij � 1.

Case 3) Leti 2 fmr + mc + 1; � � � ;mr + mc + mCg. By
Lemma III.4-3) the real part of the trace of (9) is� 0 iff
[0 � � � 0 �I 0 � � � 0]t = �i[Mi1 � � � Mi(m +m +m )]t

for some�i with k�ik � 1.

The three cases combined show that there is a nonzerot that
satisfies (8) if and only if(�I � �M)t = 0 for somet and some
� = diag(�1; � � � ; �m ; �m +1; � � � ; �m +m ;�1; � � � ;�m ) 2 X

with k�k � 1, i.e., iff �X(M) � �.
In summary, the results in this section say that�X(M) � � iff

a nonzeroW = WH � 0 exists with certain properties (6) and
that �X(M) � � iff W can be chosen to have rank one. Another
interpretation, which is more in line with that of Packard and Doyle
[3] and Rantzer [7], is as follows. The set

f(M � �I)W (M
H
+ �I) : W =W

H
� 0g

is the convex hull of the set

� := f(M � �I)tt
H
(M

H
+ �I) : t 2 C

n
g:

Therefore, �X(M) � � iff the convex hull of � has certain
properties, whereas�X(M) � � iff � itself has those properties.

We end this section with an application which shows the potential
of the dual characterizations. Young [6] was the first to prove the
following lemma, but whereas his proof is rather cumbersome, the
proof based on dual characterizations is only a few lines.

Lemma III.6 (Rank-One Matrices, cf. [6]):�X(M) = �X(M) if
M has rank one.

Proof: It suffices to show that�X(M) � � implies�X(M) �

�.
Suppose�X(M) � �. Therefore, there is a nonzero nonnegative

definiteW =WH for which(M��I)W (MH+�I) satisfies (6). Let
x; y 2 Cn be such thatM = xyH, and decomposeW compatibly
with that as

W = tt
H
+W; in which Wy = 0;W =W

H
� 0 and,t 2 C

n
:

If W 1=2y = 0 the above is satisfied fort = 0;W = W; and
if W 1=2y 6= 0; we can taket = (1= yHWy)Wy and W =

W � (1=yHWy)WyyHW . Then we have

(M � �I)tt
H
(M

H
+ �I) = (xy

H
� �I)(W �W )(yx

H
+ �I)

= (M � �I)W (M
H
+ �I) + �

2
W:

By assumption,(M � �I)W (MH + �I) satisfies (6), but then
so does(M � �I)ttH(MH + �I) because�2W is Hermitian
and � 0. Moreover, the vectort is nonzero, because otherwise
(M � �I)W (MH + �I) = ��2W = ��2W � 0 which would
have contradicted (6). Hence�X(M) � �.

IV. THE CASE X = diag(RIm; Cp�p)

In this section we prove that�X = �X if the structure has the form
X = diag(RIm; C

p�p). A straightforward application of Lemma
III.3 and Lemma III.5 is as follows.

Corollary IV.1: Let X = diag(RIm; Cp�p). Then�X(M) � �

iff a nonzero HermitianW � 0 exists such that

[M11 � �Im M12 ]W
MH

11 + �Im
MH

12

is Hermitian and� 0;

Retr [M21 M22 � �Ip ]W
MH

21

MH
22 + �Ip

� 0:

(10)
Moreover,�X(M) � � iff a W = WH � 0 of rank one exists with
these properties (10).

Lemma IV.2 (Technical Result):Let F andG be complex matri-
ces of the same dimensions.

1) If F andG have full column rank, thenFGH = GFH � 0 if
and only if F = GQ for someQ = QH > 0.

2) If a W = WH � 0 of rank n is such that

FWG
H is Hermitian and� 0
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then there existn nonzero column vectorstk such thatW =
k=n

k=1
tkt

H

k and

Ftkt
H

kG
H is Hermitian and� 0; for all k 2 f1; � � � ; ng:

Proof:

1) If F = GQ for some Q = QH > 0, then obviously
FGH � 0. Conversely, supposeF andG have full column
rank andFGH

= GFH � 0. ThenFGHG = GFHG so that
F = GQ with Q = (FHG)(GHG)�1. Q = QH � 0 because
GHG is invertible and(GHG)Q(GHG) = (GHG)FHG =

GH
(GFH

)G � 0. Q is in fact nonsingular becauseF = GQ

has full column rank.
2) By induction inn (which is the rank ofW ), if n = 1, orn = 0,

then obviously the result is correct. Now considern > 1. Write
W asW = V V H with V havingn columns.

First consider the case thatFWGH
= (FV )(GV )

H has rank
strictly less thann. Then eitherFV orGV does not have full column
rank. So there is a unitary vectort such that eitherFV t or GV t is
zero. DefineW as

W =W � V tt
H
V
H
= V (I � tt

H
)V

H

and note thatW � 0, that it has rankn � 1, and thatFWGH
=

FWGH � FV ttHV HGH
= FWGH is nonnegative definite. By

induction, therefore, there exist nonzeroftkg such that

W =

n�1

k=1

tkt
H

k

and such thatFtktHkG
H is Hermitian and� 0 for all k 2 f1; � � � ; n�

1g. Finally, with tn defined astn := V t we have that

W =W + tnt
H

n =

n

k=1

tkt
H

k

and thatFtktHkG
H is Hermitian and� 0 for everyk 2 f1; � � � ; ng.

Now suppose thatFWGH
= (FV )(GV )

H has rankn. Then
by 1) we have thatFV = GV Q for someQ = QH > 0. Let
Q = UDUH be an eigenvalue decomposition ofQ. Therefore,
FV U = GV UD. Define tk as the kth column of V U . Then
W = V V H

= (V U)(V U)H =
k
tkt

H

k , and sinceFtk = Gtkdk
(where0 < dk is the kth diagonal entry ofD), we also have that
Ftkt

H

kG
H is Hermitian and� 0:

Theorem IV.3:

�X = �X if X = diag(RIm; C
p�p

):

Proof: Since �X(M) � �X(M) it suffices to prove that
�X(M) � � implies �X(M) � �.

Suppose�X(M) � �. Then by Corollary IV.1 there is a nonzero
W = WH � 0 that satisfies (10). By Lemma IV.2-2) we can write
this W asW =

k
tkt

H

k such that for allk

[M11 � �I M12 ]tkt
H

k

MH

11 + �I

MH

12

is Hermitian and� 0:

SinceW =
k
tkt

H

k satisfies (10), there is at least one indexk, say
k = l, that also satisfies

Retr [M21 M22 � �I ]tlt
H

l

M
H

21

M
H

22 + �I
� 0:

HenceW := tlt
H

l is a rank-one matrix that satisfies (10) so that
�X(M) � �.

TABLE I
WHEN �X = �X IS GUARANTEED

V. LOSSLESSNESS OF(D;G) SCALING

Building on work by [1], Packard and Doyle [3] showed that
�X = �X whenever

mr = 0; 2mc +mC � 3: (11)

Together with the results of Section IV, we thus have that�X = �X
for any of the structuresX for which

2(mr +mc) +mC � 3: (12)

Packard and Doyle [3] further show by examples that�X(M) <

�X(M) can occur within any complex structure with2mc+mC > 3

(andmr = 0). For mr = 2 it is possible to find 2� 2 matrices
M 2 C2�2 such that�X(M) is less than�X(M) (see [10]). Table I
details (12) and gives references for the different cases.

In this section we give two more examples that complete the
picture in that they—combined with the other examples—show that
for any structureX that violates (12) there exist matricesM such
that �X(M) < �X(M).

Example V.1: Let X = diag(R;C;C) and take

M =

0 1 j

j 0 1

1 1 0

:

The claim is that�X(M) = 1 and that�X(M) =
p
3.

The spectral norm ofM is kMk = p
3, so we have�X(M) � p

3.
Furthermore, for the Hermitian nonnegative definiteW defined as

W =

2 1 �j
1 2 j

j �j 2

we have that

(M �
p
3I)W (M

H
+

p
3I) =

0 ? ?

? 0 0

? 0 0

: (13)

(The “?” denotes an irrelevant entry.) Since all diagonal entries of
(13) are zero, it follows from Lemma III.3 that�X(M) � p

3. Hence
�X(M) =

p
3.

Calculation shows thatI3 � diag(�1; �2; �3)M is singular iff

�2�3 + j�1(�2 + �3)� 1 = 0: (14)

Suppose�1 2 [�1; 1] and thatj�3j < 1. Then the�2 for which (14)
holds equals�2 = (1� j�1�3)=(j�1 + �3), and it satisfies

j�2j2 =
1� j�1�3

j�1 + �3

2

=
1+ �21 j�3j2 � 2�1Im(�3)

�2
1
+ j�3j2 � 2�1Im(�3)

� 1:

Therefore, maxi j�ij � 1 for every solution of (14). Since
(�1; �2; �3) = (1; j;�j) is a solution of (14) for whichmaxi j�ij = 1,
we have that�X(M) = 1.
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Example V.2: Let X = diag(R;CI2) and take the sameM as in
the previous example. From (13) we infer also that for this structure
�X(M) � p

3. Since�X(M) � kMk =
p
3, we have, again, that

�X(M) =
p
3. It further follows from the previous example that

I3 � diag(�1; �2I2)M is singular iff

�
2

2 + j2�1�2 � 1 = 0:

The solutions�2 = �j�1 � 1� �21 have absolute value one for
every �1 2 [�1; 1]. Hence�X(M) = 1 < �X(M).

VI. A V ARIATION OF THE KYP LEMMA

An application of the KYP lemma [11]–[13], called the strictly
positive real lemma, is known to be equivalent to the fact that
�X = �X for the complex structuresX = diag(CIm; Cp�p) [3].
In this section we rephrase Theorem IV.3 as a KYP-type result.

Lemma VI.1: SupposeG is a square rational matrix with realiza-
tion G(s) = C(sI �A)�1B +D, and consider the following linear
matrix inequality inP :

PA + AHPH PB � CH

�C +BHPH �D �DH < 0: (15)

Then:

1) there is a HermitianP = PH > 0 that satisfies (15) iffA is
stable andG(s) + [G(s)]H > 0 for all s in the closed right
half-plane, including1;

2) there is aP (Hermitian or not) with HeP > 0 that satisfies
(15) iff A has no eigenvalues on the positive real line[0;1)

andG(s) + [G(s)]H > 0 for all s 2 [0;1); including1;
3) there is aP (Hermitian or not) that satisfies (15) iffA is

nonsingular andG(s) + [G(s)]H > 0 at s = 0 ands =1.

Proof: Item 1) is the strictly positive real lemma in an inequality
version (see, e.g., [14]). Item 3) can be shown using [15, Lemma 3.1].
Items 1) and 3) are included for comparison only. We prove Item 2).
DefineE andN as

E =
P 0

0 I
; N =

A B

�C �D
and note that (15) is nothing butEN + NHEH = 2HeEN < 0.
If HeP > 0 andP satisfies (15), thenI � N is invertible because
HeE(I�N) = HeE�HeEN > 0. DefineM = (I�N)�1(I+N).
ThenM+I = 2(I�N)�1 is invertible andN = (M�I)(M+I)�1.
Let X = diag (RIm; C

p�p). We have that9P such that (15) holds
and HeP > 0:

, 9E 2 DX + jGX s.t. HeEN < 0;

, 9E 2 DX + jGX s.t. HeE(M � I)(I +M)�1 < 0;

, 9E 2 DX + jGX s.t. He(I +MH)E(M � I) < 0;

, �X(M) < 1 , �X(M) < 1;

, I�M diag(�1Im;�2) is nonsingular for all�1 2 [�1; 1] and
k�2k � 1;

, (I � N) � (I + N) diag(�1Im;�2) is nonsingular for all
�1 2 [�1; 1] and k�2k � 1;

, (1� �1)I � (1 + �1)A �B(I +�2)

(I + �1)C I ��2 +D(I +�2)
is nonsin-

gular for all �1 2 [�1; 1] andk�2k � 1;

, A has no eigenvalues on[0;1), and(I��2)+G(
1��

1+�
)(I+

�2) is nonsingular for all�1 2 [�1; 1] andk�2k � 1;

, A has no eigenvalues on[0;1), andI � (I + G(s))�1(I �
G(s))�2 is nonsingular for alls 2 [0;1)[1 andk�2k � 1;

, A has no eigenvalues on[0;1) andG(s) + [G(s)]H > 0 for
all s 2 [0;1) [1.

Lemma VI.1 remains valid if the matricesB; C; andD are void. In
that case, Lemma VI.1-2) reads as a variation of a Lyapunov stability
condition.

Corollary VI.2: A matrix A 2 Cn�n has no eigenvalues on the
positive real line[0;1) iff there isP 2 Cn�n such that

PA +A
H
P
H
< 0; HeP > 0:
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