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Abstract—This paper presents a nonlinear control method
for dual-stage actuator (DSA) systems to track a step command
input fast and accurately. Conventional tracking controllers for
DSA systems were generally designed to enable the primary
actuator to approach the setpoint without overshoot. However,
we observe that this strategy is unable to achieve the minimal
settling time when the setpoints are beyond the secondary
actuator travel limit. To further reduce the settling time,
we design the primary actuator controller to yield a closed-
loop system with a small damping ratio for a fast rise time
and certain allowable overshoot. Then, a composite nonlinear
control law is designed for the secondary actuator to reduce
the overshoot caused by the primary actuator as the system
output approaches the setpoint. The proposed control method
was applied to an actual DSA positioning system, which
consists of a linear motor and a piezo actuator. Experimental
results demonstrate that it can further reduce the settling time
significantly compared with the conventional control.

I. INTRODUCTION

A dual-stage actuator (DSA) servo system is characterized
by a structural design with two actuators connected in series
along a common axis. The primary actuator (coarse actuator)
is of long travel range but with poor accuracy and slow
response time. The secondary actuator (fine actuator) is
typically of higher precision and faster response but with a
limited travel range. The two actuators are complementary to
each other to provide both large travel range, high positioning
accuracy and fast response. The DSA servomechanism has
been widely used in the industry, e.g., [1]-[3].

Although the mechanical design of a DSA system appears
to be simple, it is a challenging task to design controllers
for the two actuators to yield an optimal performance. A
variety of approaches have been reported to deal with the
dual-stage control problems. For example, control design
for track following and settling can be found in [4], [5].
The secondary actuator saturation problem was explicitly
taken into account during the control design [6], [7]. In
[8], a decoupled track-seeking controller using a three-step
design approach is developed to enable high-speed one-track
seeking and short-span track-seeking for a dual-stage servo
system. The control design for the secondary actuator by
minimizing the destructive interference is proposed in [9] to
attain desired time and frequency responses.

In this paper, we consider a class of DSA systems that can
be depicted by Fig. 1(a), where M and m represent the mass
of the primary and secondary actuator, respectively. Fig. 1(b)
shows an example of our developed DSA positioning system,
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Fig. 1. DSA systems.

which consists of a primary stage driven by a linear motor
(LM) and a secondary stage driven by a piezo actuator (PA).
The secondary actuator has a limited travel range denoted
by ȳ2, which is very small relative to that of the primary
actuator. Under the assumption of M � m, |y1| � |y2|,
and |u2

û1
| � m

M , we can simply ignore the coupling forces
between the two actuators and the dynamic equations of the
DSA system are given by{

Mÿ1 = û1 − f(ẏ1) − d
mÿ2 = u2 − c0ẏ2 − k0y2

(1)

where the friction force f(ẏ1) is assumed to consist of
Coulomb friction and viscous friction that can be described
by the following equation:

f(ẏ1) = fcsgn(ẏ1) + kvẏ1 (2)

where fc is the Coulomb friction level and kv is the viscous
friction coefficient.

By far, most of the work on the DSA tracking control
to follow a step command input is based on the strategy
that the primary actuator control loop is designed to have
little overshoot, and the secondary actuator control loop
is designed to follow the position error of the primary
actuator [8]-[10]. Under this conventional strategy, the total
settling time can be reduced by the time that it takes for
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the secondary actuator to reach its travel limit. However,
we observe that when the setpoint is beyond the secondary
actuator travel range, this strategy is unable to minimize the
total settling time because the secondary actuator can make
little contributions due to its very limited travel range. To
further reduce the settling time under this circumstance, we
propose that the primary actuator controller can be designed
to yield a closed-loop system with a small damping ratio for
a fast rise time allowing a certain level of overshoot, and then
as the primary actuator approaches the setpoint the secondary
actuator control loop is used to reduce the overshoot caused
by the primary actuator. In this way, the total settling time is
obviously less than that of the conventional control provided
that the overshoot caused by the primary actuator is within
the secondary actuator travel range.

To perform the aforementioned control strategy, Section
II presents a nonlinear tracking control method for the DSA
systems in Fig. 1. Experimental results in Section III show
that our proposed control can significantly speed up the step
response compared with the conventional control.

II. NONLINEAR TRACKING CONTROL DESIGN

Our objective here is to design a control law such that the
two actuators cooperate to enable the total position output
y to track a step command input of amplitude yr rapidly
without exhibiting a large overshoot. In this section, we
firstly present friction compensation for the primary actuator,
and then a time-optimal control law is designed to yield a
primary closed-loop system with a small damping ratio so
as to achieve a quick rise time. Next, a composite nonlinear
control law is designed for the secondary actuator to cause
the DSA closed-loop system dynamics to be highly damped
as the total position output approaches the setpoint, and thus
the secondary actuator is enabled to reduce the overshoot
caused by the primary actuator.

A. Friction Compensation

The nonlinear friction exerts adverse effect on the tracking
performance. Generally, the friction parameters fc and kv

in (2) can be estimated using the experimental method in
[11]. Then, we can employ the model-based control structure
as shown in Fig. 2 to compensate for the friction f and
disturbance d. The friction compensator is given by

uf = fcsgn(ẏ1) (3)

Gn =
1

Ms2
(4)

Q =
3τs + 1

(τs)3 + 3(τs)2 + 3τs + 1
(5)

where τ is a time constant chosen as 5 to 10 times the servo
bandwidth such that the filter Q [12] can be approximated
as Q ≈ 1 within the frequency of interest. When the friction
compensator is applied, the input-output relationship in Fig.
2 can be derived as

y1 =
u1 − (1 − Q)d

Ms2 + (1 − Q)kvs
≈ 1

Ms2
u1. (6)
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Fig. 2. Block diagram of friction compensation for the primary actuator.

It can be seen that the nonlinear friction and disturbance are
approximately canceled by the friction compensator and the
primary actuator system from u1 to y1 can be treated as a
linear model with a pure double integrator, which facilitates
the design of u1 to further achieve desired performance.

From now on, we take (6) as the model of the primary
actuator system and then rewrite the DSA model (1) in a
state-space form as follows:⎧⎨

⎩
Σ1 : ẋ1 = A1x1 + B1u1, x1(0) = 0
Σ2 : ẋ2 = A2x2 + B2sat(u2), x2(0) = 0

y = y1 + y2 = C1x1 + C2x2

(7)

where the state x1 = [y1 ẏ1]T , x2 = [y2 ẏ2]T , and

A1 =
[

0 1
0 0

]
, B1 =

[
0
b1

]
, C1 =

[
1 0

]
,

A2 =
[

0 1
a1 a2

]
, B2 =

[
0
b2

]
, C2 =

[
1 0

]
with b1 = 1

M
, a1 = −k0

m
, a2 = − c0

m
and b2 = 1

m
. It is

clear that A2 is Hurwitz and the travel limit of the secondary
actuator is equivalently translated into input constraint with
the saturation function sat(u2) defined as

sat(u2) = sgn(u2)min{ū2, |u2|} (8)

where ū2 is the saturation level of the control input. More-
over, we assume that the states x1 and x2 are all measurable.
Hence, the following control law for the DSA system (7) is
based on full state feedback.

B. Primary Actuator Control Design

The role of the primary actuator is to provide large
travel range beyond that of the secondary actuator. Thus,
time optimal control is critical to move the position output
quickly from one point to another. The proximate time-
optimal servomechanism (PTOS) is a practical near time-
optimal controller that can accommodate plant uncertainty
and measurement noise. Hence, we apply the PTOS control
law [13] to the primary actuator Σ1 in (7) and the controller
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is independent of the secondary actuator control loop. The
PTOS control law is given by

u1 = sat
[
k2(f(e1) − ẏ1)

]
(9)

f(e1) =

{
k1
k2

e1 for |e1| ≤ yl

sgn(e1)
(√

2ū1b1α|e1| − ū1
k2

)
for |e1| > yl

(10)

e1 = yr − y1 (11)

where sat[·] is with the saturation level of ū1, α is referred
to as the acceleration discount factor, k1 and k2 are constant
gains, and yl represents the size of a linear region. To
make the functions f(e1) and f ′(e1) continuous such that
the control input remains continuous as well, we have the
following constraints

α =
2k1

b1k
2
2

, yl =
ū1

k1
. (12)

The PTOS control law introduces a linear region close to
the setpoint to reduce the control chatter. In the region |e1| ≤
yl, the control is linear and thus the gain K = [k1 k2] can
be designed by any linear control techniques. For instance,
using the pole-placement method we obtain a parameterized
state feedback gain K as follows

K =
1
b1

[4π2ω2
1 4πω1ζ1] (13)

where ζ1 and ω1 (Hz) respectively represent the damping
ratio and undamped natural frequency of the closed-loop
system C1(sI − A1 + B1K)−1B1, whose poles are placed
at 2πω1(−ζ1 ± j

√
1 − ζ2

1 ).
In conventional DSA control systems, the primary actuator

controller is generally designed to have little overshoot such
as by choosing a large damping ratio in (13). However, in
our proposed control a small damping ratio is chosen for
a fast rise time and the resultant overshoot is within the
secondary actuator travel limit, which can be then reduced by
the secondary actuator under a composite nonlinear control
law as will be given in Section II-C.

C. Secondary Actuator Control Design

The goal of the control design for the secondary actuator
Σ2 in (7) is to enable the secondary actuator to reduce
the overshoot caused by the primary actuator. We have the
following step-by-step design procedure.

Step 1: Design a linear feedback control law

u2L = Fx2 (14)

where F = [f1 f2] is chosen such that the secondary
actuator control system as given by

ẋ2 = A2x2 + B2sat(Fx2) (15)

is globally asymptotically stable (GAS) and the correspond-
ing closed-loop system in the absence of input saturation
C2(sI − A2 − B2F )−1B2 has a larger damping ratio and a
higher undamped natural frequency than those of the primary
actuator control loop. To do this, we choose

F = −BT
2 P (16)

where P = P T > 0 is the solution of the following
Lyapunov equation

AT
2 P + PA2 = −Q (17)

for a given Q = QT > 0. Note that the solution of P exists
since A2 is Hurwitz. To involve the closed-loop properties
explicitly with the control law, we define

Q =
[

q1 0
0 q2

]
, q1 > 0, q2 > 0 (18)

where q1 and q2 are tuning parameters. Substituting (18) into
(17) yields P , which gives the feedback gain (16) as follows

F =
b2

2a1a2
[a2q1 a1q2 − q1]. (19)

Moreover, the resulting poles of the closed-loop system
C2(sI − A2 − B2F )−1B2 with (19) if complex conjugate
have the undamped natural frequency and damping ratio as
follows:

ω2 =
1
2π

√
− b2

2

2a1
q1 − a1,

ζ2 =
b2
2q1 − b2

2a1q2 − 2a1a
2
2

4a1a2

√
− b2

2
2a1

q1 − a1

.

Thus, we can easily achieve the desired ω2 and ζ2 by
choosing a proper pair of q1 and q2.

Step 2: Construct the nonlinear feedback control law

u2N = γ(yr , y)H
[

y1 − yr

ẏ1

]
(20)

H =
1
b2

[
(a1 + b2f1 + b1k1) (a2 + b2f2 + b1k2)

]
(21)

where H is taken to achieve desired DSA closed-loop system
dynamics, which will be clear in Section II-D; and γ(yr , y)
is any nonnegative function locally Lipschitz in y, which
is chosen to enable the secondary actuator to reduce the
overshoot caused by the primary actuator as the total position
output approaches the setpoint. The choice of γ(yr , y) will
be discussed in Section II-D.

Step 3: Combine the linear and nonlinear feedback control
laws derived in Steps 1 and 2 to form a composite nonlinear
controller for the secondary actuator

u2 = u1L + u2N

= Fx2 + γ(yr , y)H
[

y1 − yr

ẏ1

]
. (22)

With the primary actuator controller in (9) and the sec-
ondary actuator controller as given by (22), we have the
following results regarding the step response of the DSA
closed-loop system.

Lemma 1: Consider the DSA system in (7) with the
primary actuator Σ1 under the PTOS control law (9) and
the secondary actuator Σ2 under the composite nonlinear
control law (22) for any nonnegative function γ(yr , y) locally
Lipschitz in y. Then the control laws will drive the total
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system output y to track asymptotically any step command
input of amplitude yr.

Proof : The primary actuator closed-loop system under the
PTOS control law can be represented as

ẋ1 = A1x1 + B1sat
[
k2(f(e1) − ẏ1)

]
(23)

where f(e1) is defined in (10). It has been proved in [13] that
the system (23) can track asymptotically any step command
input of amplitude yr, i.e.,

lim
t→∞ y1(t) = yr, lim

t→∞ ẏ1(t) = 0. (24)

Next, we define a Lyapunov function V = xT
2 Px2 with

P given in (17). Evaluating the derivative of V along the
trajectories of the system in (15) yields

V̇ = ẋT
2 Px2 + xT

2 P ẋ2

= xT
2 (AT

2 P + PA2)x2 + 2BT
2 Px2sat(Fx2)

= −xT
2 Qx2 − 2Fx2sat(Fx2)

≤ −xT
2 Qx2 < 0. (25)

Hence, the secondary actuator closed-loop system with the
linear feedback control only (15) is GAS. Furthermore, the
secondary actuator closed-loop system with the composite
nonlinear control law (22) can be expressed as

ẋ2 = A2x2 + B2sat(Fx2 + u2N). (26)

It is obvious that the system (26) satisfies the converging-
input bounded-state (CIBS) property (See [16] for the defi-
nition) since A2 is Hurwitz, |sat(·)| ≤ ū2, and the nonlinear
control input u2N has

lim
t→∞u2N(t) = 0 (27)

which can be easily deduced from (20) and (24).
The proof finishes by observing that the DSA closed-loop

system formed by (23) and (26) has a cascaded structure
and it satisfies the conditions of Theorem 1 in [16]. It then
follows that the cascade system formed by (23) and (26) is
GAS at the origin. Thus, for the secondary actuator closed-
loop system (26) we have limt→∞ x2(t) = 0 and therefore,

lim
t→∞ y(t) = lim

t→∞[C1x1(t) + C2x2(t)] = yr . (28)

Remark 1: Lemma 1 shows that the value of γ(yr , y)
does not affect the ability of the overall DSA closed-loop
system to track asymptotically any step command input.
However, from the perspective of transient performance, a
proper choice of γ(yr , y) should be carried out to improve
the performance of the overall DSA closed-loop system. This
is the key property of the proposed control design.

D. Selecting γ(yr , y) for Improved Performance

We design the primary actuator control loop with a small
damping ratio for a quick rise time and employ the secondary
actuator control loop that is designed to be highly damped to
reduce the overshoot caused by the primary actuator as the
total position output y approaches the setpoint. This control
strategy implies that the dynamics of the DSA closed-loop

system should be dominated by the primary actuator control
loop when the position output is far away from the setpoint,
while dominated by the secondary actuator control loop when
the position output approaches the setpoint. The purpose of
the function γ(yr , y) is to fulfill a smooth transition from the
primary control loop to the secondary control loop.

Consider the dual-stage system (7) with the control laws
in (9) and (22), and assume that the tracking error (yr − y)
is small such that the control inputs do not exceed the limits
and the control law (9) works within its linear region. Thus,
the DSA closed-loop system can be expressed as

Σ :
{

ẋ = Ax + Byr

y = Cx
(29)

where

A =
[

A1 − B1K 0
γ(yr , y)B2H A2 + B2F

]
,

B =
[

B1K
−γ(yr , y)B2H

]
·
[

1
0

]
, C = [C1 C2].

The DSA closed-loop transfer function from yr to y can be
obtained by

G(s) = C(sI − A)−1B

= (1 − γ)G1(s) + γG2(s) (30)

where

G1(s) =
b1k1

s2 + b1k2s + b1k1
, (31)

G2(s) =
−(a1 + b2f1)

s2 − (a2 + b2f2)s − (a1 + b2f1)
(32)

are the closed-loop transfer function of the primary and
secondary actuator control loop, respectively.

At this point, it is clear that the DSA closed-loop system
dynamics (30) change from the primary control loop to the
secondary control loop when γ increases from 0 to 1. This
desired feature is due to the proper selection of H in (21).
From the perspective of zero placement, when γ changes
from 0 to 1 the zeros of (30) is moved from the pole locations
of the secondary control loop (31) to those of the primary
control loop (32). Since the zeros near the poles reduce
the effects of the poles on the total response, we can use
γ to tune the system dynamics for desired performance. A
similar control technique for SISO linear systems can be
found in [14], which however uses the nonlinear feedback
law to increase the damping ratio of the closed-loop system
poles to reduce the overshoot.

The function γ(yr , y) can be chosen as a function of the
tracking error. The following shows one choice of γ:

γ(yr , y) = e−β|yr−y| (33)

where β ≥ 0 is a tuning parameter. The function γ(yr , y) in
(33) changes from 0 to 1 as y → yr . The parameter β can
be adjusted with respect to the amplitude of yr relative to
the secondary actuator travel limit ȳ2.
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Fig. 3. Experimental friction model of the LM (The vertical axis denotes
the steady-state control input u1 in Fig. 2 that compensates for the friction
force to make the LM move at the corresponding constant velocity).

III. EXPERIMENTAL RESULTS

This section presents the experimental results of the pro-
posed nonlinear control method applied to the actual DSA
positioning system as shown in Fig. 1(b).

A. System Modeling

The LM in Fig. 1(b) has a 0.5 m travel range, a 1 μm
resolution glass scale encoder, and a power amplifier. The PA
has a maximum travel range of ±15 μm, a piezoelectric am-
plifier, and an integrated capacitive position feedback sensor
with 0.2 nm resolution to measure the relative displacement
between the PA stage and the LM stage.

The nonlinear friction model in the LM is measured and
shown in Fig. 3. The friction compensator in Fig. 2 is
obtained by setting fc = 0.22, τ = 0.0008 and M =
6.7 × 10−8. It can be seen from Fig. 3 that the nonlinear
friction is almost compensated by the friction compensator.
Thus, the DSA positioning system can be expressed by (7),
the parameters of which are then identified from experi-
mental frequency response data as shown in Fig. 4. The
LM dynamics is closed to a double integrator and the PA
dynamics is of high stiffness that exhibits a flat gain in the
low frequency range. By using the least square estimation
method [15], we obtain the DSA model parameters in (7) as
b1 = 1.5×107, a1 = −106, a2 = −1810, b2 = 3×106, ū2 =
5 V. The solid lines in Fig. 4 show that the identified models
match the measured models well in the frequency range of
interest.

B. Results and Discussion

We follow the proposed control design procedure to obtain
the controller for the DSA positioning system. The PTOS
controller in (9) for the LM is obtained by choosing ū1 =
1 V, ω1 = 30 Hz and thus yl = 422 μm. We find that ζ1

can be adjusted as

ζ1(yr) =

{
0.5, yr ≤ 15 μm

ln(yr)−2.7√
π2+[ln(yr)−2.7]2

, yr > 15 μm (34)
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Fig. 4. Frequency responses of the LM model from u1 to y1 in Fig. 2
and the PA stage, the PA has a gain of 3 µm/V.
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Fig. 5. Dual-stage tracking control for yr = 15 µm. The settling times in
both control are similarly 4 ms. The proposed control has little improvement
over the conventional control because within the PA travel limit the PA
control loop dominates the DSA closed-loop system dynamics whatever the
LM control loop is tuned.

such that the resultant overshoot caused by the LM approx-
imately equals to the PA travel limit (15 μm) when yr > 15
μm. Hence, the linear gain K is given by

K = 10−3 × [2.4 0.025ζ1(yr)]. (35)

For the PA control design, we choose q1 = 0.56 and q2 =
7 × 10−8 to obtain the linear feedback gain F as follows

F = −[0.8385 0.0005] (36)

which results in ω2 = 300 Hz and ζ2 = 0.9. The nonlinear
feedback gain is given by

H = −[1.1602 0.0011− 0.00012ζ1(yr)] (37)

with ζ1(yr) in (34). The nonlinear function (33) is chosen
as

γ(yr , y) =
{

e−0.001|y−yr|, yr ≤ 15 μm
e−0.01|y−yr|. yr > 15 μm

(38)

In order to compare the proposed control with the conven-
tional control where the LM control loop is generally tuned
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Fig. 6. Dual-stage tracking control for yr = 100 µm. The settling time
in the conventional control is 16.5 ms, which is reduced to 11 ms in the
proposed control.

TABLE I

COMPARISON OF THE SETTLING TIME IMPROVEMENT

Travel distance Settling Time (ms) Improvement
(µm) Conventional Proposed (%)
15 4 4 0
50 12.5 10 20
100 16.5 11 33
500 21 15.5 26

to have no overshoot, we choose ζ1 = 0.9 for any yr and
retain the other tuning parameters, then following the same
design procedure yields a conventional controller that is used
for comparison with our proposed controller.

The controllers were implemented by a real-time DSP
system (dSPACE-DS1103) with the sampling frequency of 5
kHz. The velocities of the LM and PA stage are estimated by
the backward differentiation of the feedback position signals,
respectively. The experimental results for yr = 15, 100 μm
are shown in Figs. 5 and 6. The results for some other travel
distance are summarized in Table I for easy comparison. It
is shown that the proposed control can further reduce the
settling time by more than 20% when the travel distances
are beyond 15 μm. Finally, we tested the performance of the
proposed dual-stage control system under disturbance input.
Fig. 7 shows that the proposed control can achieve improved
positioning accuracy over the single-stage control.

IV. CONCLUSIONS AND FUTURE WORKS

We have proposed a nonlinear control method for the DSA
systems, where the primary actuator control loop has a small
damping ratio for a fast rise time and the secondary actuator
control loop is enabled by a nonlinear control law to reduce
the overshoot caused by the primary actuator. We have also
verified the proposed control on an actual DSA positioning
system. Experimental results demonstrated that it can further
reduce the settling time by more than 20% compared with
the conventional control. Our future work will extend the
nonlinear control design to higher order systems and the case
of output feedback.
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Fig. 7. Steady-state position error under disturbance input. When PA
control is switched off, the position error under the LM control is within
±8 µm, which is reduced to ±1 µm with PA control on.
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