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Abstract— This paper presents a new two-degree-of-freedom
(2DOF) control design method for a dual-stage actuator (DSA)
positioning system consisting of a linear motor (LM) and
a piezo actuator (PA). The 2DOF controller is proposed to
achieve disturbance rejection and short-span tracking in the PA
range and is designed using the doubly coprime factorization
(DCF) approach, with which the closed-loop transfer function
is expressed explicitly in terms of design parameters. This
greatly simplifies the optimization of design parameters in
meeting desired specifications. We further study how to use the
design parameters to deal with specific problems in the DSA,
i.e., control allocation and trajectory planning. Experimental
results demonstrate the practical implementation of the DSA
control system and verify its effectiveness for step tracking and
disturbance rejection.

I. INTRODUCTION

Dual-stage actuator (DSA) servo systems typically consist

of a coarse actuator and a fine actuator connected in series

to provide long travel range, high positioning accuracy and

fast response. The industrial applications include the dual-

stage hard disk drive (HDD) actuator [1], the dual-stage

XY positioning tables [2], and so on. The control design

for the DSA is a challenging task because 1) The DSA

system is a dual-input single-output (DISO) system, which

means that for a given desired trajectory, inputs to the two

actuators are not unique. Thus, a proper control strategy is

required for control allocation. 2) The secondary actuator

typically has a very limited travel range, which results in a

severe actuator saturation problem. A number of approaches

have been reported to deal with dual-stage control problems.

Control design for reference following can be found in [3],

[4]. In [5] and [6], the secondary actuator saturation problem

is explicitly taken into account during the control design.

In [7], a decoupled track-seeking controller is developed to

enable high-speed short-span seeking for a dual-stage HDD

servo system. Further, short and long-span seeking controls

are incorporated in a single control scheme with fast settling

time [8], [9].

In this paper, we present a new control design method for

a DSA positioning system consisting of a linear motor (LM)

and a piezo actuator (PA). We focus on the development of

a two-degree-of-freedom (2DOF) controller for disturbance
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rejection and step tracking in the PA range. A doubly coprime

factorization (DCF) [10] is used for the 2DOF controller de-

sign because it can provide the advantages that: 1) it parame-

terizes all linear internally stabilized 2DOF controller by two

free design parameters; 2) it offers a unifying design method

to solve the tracking and disturbance rejection problems;

3) the derived frequency transfer functions of disturbance

rejection response and seeking response are simply expressed

and they are uniquely in terms of the design parameters,

which makes the relationship between the design parameters

and the desired specifications explicit. Compared with the

existing DSA control methods, the proposed 2DOF controller

explicitly addresses both the step tracking and disturbance

rejection problem in a unifying design framework and gives

the solution to a specified performance index indicating the

tracking performance. Further, this paper has first revealed

that the tracking performance of asymptotical tracking and

disturbance rejection is equivalent to two independent opti-

mization problems. This result obviously can decouple the

design of the controller and thus simplify the design process.

Finally, we verify the effectiveness of the DSA controller

through experiment results. For tracking control beyond the

PA range, it is not the purpose of this paper and thereby is

not given in detail. Interested reads can refer to [9] for the

control strategy in this range.

Throughout this paper, we use the following notation. For

any signal u(t), we denote its Laplace transform by û(s).
‖ · ‖ denotes the Euclidean vector norm and ‖ · ‖2 the norm

in space L2.

II. 2DOF CONTROL DESIGN BASED ON DCF

The 2DOF control systems are the most general feedback

configuration in linear control schemes. Fig. 1 shows a

generic structure for this class of systems. In this setup, G
denotes the given linear time-invariant (LTI) plant model,

W denotes the known LTI stable and proper weight, and K
denotes the 2DOF controller to be designed. The signals r,

y, u, and d represent, respectively, the step reference signal,

the system output, the control input, and the disturbance with

energy bounded by δ2, i.e., ‖d‖2
2 ≤ δ2.

In this paper, we consider the asymptotic tracking and

disturbance rejection problem for the system in Fig. 1.

We need to design the controller K such that the closed-

loop system is internally stable and the system output y
asymptotically tracks a step signal r(t) = v, t ≥ 0 for all

disturbance d ∈ L2 with ‖d‖2 ≤ δ. The measure of the
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Fig. 1. A generic 2DOF control system.

tracking performance is defined as

J =

∫ ∞

0

‖e(t)‖2dt, (1)

where e(t) = r(t) − y(t) denotes the tracking error. Obvi-

ously, J depends on the disturbance d. We thus consider the

worst value of J over all possible d as the performance index

for the tracking and disturbance rejection problem, i.e.,

sup
‖d‖2≤δ

J. (2)

Therefore, it is our interest to seek a controller K among

all possible stabilizing 2DOF controllers to achieve the

minimum value of (2) defined by

Jopt = inf
K

sup
‖d‖2≤δ

J. (3)

The DCF is a well-suited approach to solve (3). Let RH∞

denotes the set of all stable, proper, rational transfer function

matrices. Let also the right and left coprime factorizations

of G be given by

G = ND−1 = D̃−1Ñ , (4)

where N , D, Ñ , D̃ ∈ RH∞ and satisfy the doubly Bezout

identify
[

X̃ −Ỹ

−Ñ D̃

] [

D Y
N X

]

= I (5)

for some X, Y , X̃ , Ỹ ∈ RH∞.

In [11], Nett has proposed explicit formulas for the doubly

coprime fractional representation of an LTI system in terms

of its state-space realization. This method is numerically easy

to use. To do this, we first represent the plant model G(s)
in state-space as follows:

G(s) = C(sI − A)−1B, (6)

where A, B, and C are matrices with appropriate dimensions.

Suppose the pairs (A, B) and (A, C) are stabilizable and

detectable, respectively. Select F and L such that (A−BF )
and (A−LC) are both Hurwitz. Thus, a DCF of G is given

by














































N(s) = C(sI − A + BF )−1B
D(s) = I − F (sI − A + BF )−1B

Ñ(s) = C(sI − A + LC)−1B

D̃(s) = I − C(sI − A + LC)−1L
X(s) = I + C(sI − A + BF )−1L

X̃(s) = I + F (sI − A + LC)−1B
Y (s) = −F (sI − A + BF )−1L

Ỹ (s) = −F (sI − A + LC)−1L.

(7)

According to [10], all linear internally stabilizing 2DOF

controllers K = [K1 K2] can be parameterized by

û = K1r̂ + K2ŷ, (8)

K1 = (X̃ − RÑ)−1Q, (9)

K2 = (X̃ − RÑ)−1(Ỹ − RD̃), (10)

where Q, R ∈ RH∞ are the free parameters to be designed.

By substituting the controllers K 1, K2 and the factorized

plant model (4) into Fig. 1, we can easily obtain the following

input-output relationship in frequency domain

ŷ = Tyr r̂ + Tydd̂, (11)

Tyr = NQ,

Tyd = (X − NR)ÑW,

where Tyr and Tyd denote the closed-loop responses from the

reference and disturbance to the system output, respectively.

It is advantageous that the closed-loop response functions

are expressed by the design parameters Q and R explicitly.

Hence, from Parseval’s theorem, we have

J =

∫ ∞

0

‖e(t)‖2dt = ‖r̂ − ŷ‖2
2

= ‖(I − Tyr)r̂ − Tydd̂‖2
2. (12)

Then, the following result is clear.

Theorem 1 [12]: Let G have non-minimum phase (NMP)

zeros z1, z2, · · ·, zm with corresponding Blaschke vectors

η1, η2, · · ·, ηm. Then the minimax tracking performance of

asymptotical tracking and disturbance rejection of the system

is given by

Jopt = inf
Q

‖(I − Tyr)r̂‖
2
2 + δ2 inf

R
‖Tyd‖

2
∞ (13)

= 2

m
∑

i=1

Re(zi)

|zi|2
cos2

∠(ηi, v) + δ2 inf
R

‖Tyd‖
2
∞.(14)

Remark 1: The theorem reveals that the optimal tracking

performance with the 2DOF controller is a sum of two terms

as shown in (13). The first term is the optimal tracking

performance of the system without the disturbance input d,

while the second one is the best achievable performance of

disturbance attenuation of the system without the reference

signal r. These two optimal problems have been studied in

[13], [14], respectively, the results therein are then applied

to yield (14).

From the controller design point of view, Theorem 1 also

implies that to achieve Jopt is equivalent to two independent

optimization problems in terms of the free parameters R and

Q, respectively. More specific, these two problems are

1) Design R ∈ RH∞ to minimize ‖(X − NR)ÑW‖∞,

2) Design Q ∈ RH∞ to minimize ‖(I − NQ)r̂‖2
2.

Intuitively, one may simply choose R = N −1X and Q =
N−1 to yield Jopt = 0. However, this option only applies

to the special case where the plant must be proper, right

invertible, stable and minimum phase, the resulting R and Q
are proper and the control input has no saturation. In practical

servomechanisms, these strict conditions are rarely satisfied
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Fig. 2. A DSA positioning system.

at the same time. Instead, the designer has to deal with one or

more of the constraints. In addition, the optimal Q would be

related to the reference signal of the system. Therefore, the

design of R and Q requires some extra techniques to obtain

a practical servo system without degrading the tracking

performance significantly. In general, we can attempt to

design R and Q such that Tyd = (X − NR)ÑW → 0
and Tyr = NQ → I in the frequency of interest according

to the design specifications [15]. Under this circumstance, a

suboptimal controller is achieved to approximate the optimal

one that yields (14), while to handle the constraints at hand.

The performance of the resulting servo system will then

compromise among the optimal tracking, robustness, and

easy implementation (e.g., least controller order). The design

examples along this line include [16] and [17] that tackle

NMP flexible beams and actuator torque constrains.

In the next section, we will apply such a 2DOF controller

design approach to a DSA servo system and discuss how

to select R and Q to achieve both fast step tracking and

disturbance rejection.

III. APPLICATION TO A DSA CONTROL SYSTEM

A. Plant Modeling

The DSA positioning system is depicted in Fig. 2, which

consists of a primary stage driven by an LM and a secondary

stage driven by a PA. The LM has a 0.5 m travel range, while

the PA has a limited travel range of ±15 µm. The nonlinear

friction force of the LM is overcome by a precompensator,

see [9] for details. The resonance of the PA stage flexure is

actively damped by its integrated control electronics. In this

setup, we can simply ignore the coupling forces between the

two actuators [9]. After these manipulations, the LM model

is approximated by:

G1 =
ŷ1

û1

=
k1

s2
, (15)

where y1 is the LM position output, u1 is the control input

with |u1| ≤ ū1 = 1 V, and k1 = 1.5 × 107. The PA model

is approximated by:

G2 =
ŷ2

û2

=
k2

s2 + as + b
, (16)
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Fig. 3. Frequency responses of the DSA plant model (Solid lines: Identified,
Dashed lines: Measured).

where y2 is the PA position output relative to the LM, u 2 is

the control input with |u2| ≤ ū2 = 5 V, and k2 = 3.0× 106,

a = 1810, b = 1.0 × 106. Fig. 3 shows the frequency

responses of the LM and PA system, which verify the

accuracy of the identified models in the frequency of interest.

The control output y = y1 + y2, i.e., the absolute position

of the PA, is the only available measured output for feedback

control. Hence, the overall DSA model G can be represented

as a DISO linear system

ŷ = Gû = [G1 G2]

[

û1

û2

]

. (17)

To get the DCF of G by (7), we then transform G into a

state-space form in terms of (6). For the disturbance source,

we are concerned with a shock disturbance acting on the

LM. The standard half sine wave with a duration of 10 ms

is typically used as the shock test [18]. Thus, we can model

the disturbance as

W =

[

0.05

0.0008s+1

0

]

, d =

{

sin(314t), t ∈ [0 0.01]
0, otherwise.

Obviously, we have ‖d‖2 ≤ δ = 0.071 .

B. 2DOF Controller Design

The 2DOF controller for the DSA step responses within

the PA Range should satisfy the following specifications:

1) The overshoot should be kept under 1 µm.

2) The control inputs to the LM and PA are not saturated,

i.e., should not exceed ±1 and ±5 V, respectively.

3) In response to a step reference, the displacement of PA

should settle down to zero at steady state such that it

can further response to a sequential reference.

4) The DSA servo system should have gain margin larger

than 6 dB and phase margin more than 50 deg.

We will present a step-by-step design procedure.

Step 1: DCF of G

According to (7), we should first select F and L such that

(A − BF ) and (A − LC) are both Hurwitz. Clearly, F is a

state feedback gain matrix, and L is a state estimator gain
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Fig. 4. Bode plot of disturbance rejection response T yd.

matrix. Since there is no coupling between the LM and the

PA, the gains F and L can be partitioned as

F =

[

F1 0
0 F2

]

, L =

[

L1

L2

]

. (18)

Hence, we can individually design the gains for the LM and

PA loops by using the pole placement method such that the

PA loop should have a faster dynamics than the LM loop,

and the estimator is faster than the state feedback loop. To

do this, we select F1 = [0.0024 2.2 × 10−5] and L1 =
[3037 3.8 × 106]T to make the LM loop and its estimator

have a bandwidth of 30 and 200 Hz, respectively, and select

F2 = −[0.286 3.7×10−4] and L2 = [243 −3.6×105]T for

the counterparts of the PA with 60 and 250 Hz bandwidths,

respectively. Then, the DCF of G can be computed by (7).

Step 2: Design of R
For disturbance rejection, we should make the disturbance

rejection function Tyd = (X − NR)ÑW → 0 in the low

frequencies. Let R = [R1 R2]
T and N = [N1 N2], we

then take

R1 = N−1

1 Xr1(s), R2 = N−1

2 Xr2(s), (19)

with

r1(s) =
1 − β

(ηs + 1)2
, r2(s) =

β

(ηs + 1)2
, (20)

where η > 0 and β ∈ [0 1] are tuning scalars. Note that the

order of r1,2 is chosen to make R1,2 proper at least. Then,

we have

Tyd =
(

1 −
1

(ηs + 1)2
)

XÑW. (21)

We can see that the term (1−1/(ηs+1)2) introduces low

gains in low frequencies for disturbance rejection. Moreover,

the available frequency region for the disturbance rejection

problem can be increased with a smaller η. Since stability

margin is also required for robustness, we can study the open-

loop characteristics of the DSA, which is defined by

OL(s) = GK2 =
Y1G1 + Y2G2 − X/(ηs + 1)2

X(1 − 1/(ηs + 1)2)
, (22)

where Y1 and Y2 are, respectively, the elements of Y with

Y = [Y1 Y2]
T . It is clear that the open-loop transfer

function is related to η only. However, the relationship

between the stability margin and η is implicit. Hence, we

have to tune η by trial and error such that a suitable stability
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Fig. 5. Bode plot of Γ function indicating DSA control allocation.

margin and disturbance rejection function in (21) are both

achieved.

Next, we discuss how to select β. In fact, for a given

Tyd (or equivalently a given position output), β is related

to the allocation of the control efforts of the two actua-

tors. Typically, the LM works mainly for the low-frequency

movement, while the PA responses more for high-frequency

disturbance. With such allocation in frequency domain, it is

possible to take full advantage of the PA to bypass the LM

uncertainty in the high-frequency band and improve the servo

bandwidth. A key point to analyze the control allocation

of the two actuators is the intersection of the two paths

in frequency domain. Specifically, we can analyze the ratio

of the open-loop systems of the two actuators. This idea is

identical to the so-called PQ method [3]. Let the controller

K2 = [K21 K22]
T , and then define the open-loop systems

of the LM and PA as OL1 = G1K21 and OL2 = G2K22,

respectively. Then we can obtain the ratio of OL1and OL2

as

Γ =
OL1

OL2

=
X(1 − β) − (ηs + 1)2Y1G1

Xβ − (ηs + 1)2Y2G2

. (23)

We can see that Γ is a function of β provided that η is de-

termined. In order to make the two actuators have maximum

cooperation, Γ is chosen to give a roll-off characteristics and

a phase margin of at least 60 deg at the 0-dB crossover

frequency [3].

In our case, we choose η = 1/(2π250) and β = 0.8. The

corresponding Bode plot of the Tyd is shown in Fig. 4. Fig.

5 shows the phase margin of 102 degree for Γ function as

desired. To check the stability margin, Fig. 6 shows the open-

loop system of the DSA, which achieves a phase margin of

54 deg at 146 Hz, and a gain margin of ∞. Compared with

the LM loop whose phase margin is only 13 deg at 84 Hz,

we can see that the PA loop improves the stability margin

and pushes the open-loop frequency bandwidth.

Step 3: Design of Q
Let Q = [Q1 Q2]

T , Due to the fact that G1 and G2 are

minimum phase, we thus aim at the design of Q1 and Q2

such that Tyr = N1Q1 + N2Q2 → 1 has a high frequency
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bandwidth and the control inputs for a step response are

within both actuators’ control limits. Furthermore, it is

required that the displacement of PA settles down to zero

at steady state. This means that y1(∞) = r and y2(∞) = 0
should be satisfied for a step response with amplitude r and

the disturbance with d(∞) = 0. Hence, we first analyze the

individual outputs of the two actuators. Partition D as

D =

[

D1 0
0 D2

]

, (24)

and suppose d = 0, it is thus easy to get
[

ŷ1

ŷ2

]

=

[

G1 0
0 G2

] [

û1

û2

]

=

[

N1D
−1

1
0

0 N2D
−1

2

]

DQr̂

=

[

N1Q1

N2Q2

]

r̂. (25)

We can see that the step responses of the two actuators

are completely decoupled in terms of Q1 and Q2. As the

transfer functions N1 and N2 have been properly designed

in Step 1 to individually reflect the LM and PA closed-loop

dynamics, we can then interpret Q1 and Q2 as the trajectory

planning functions for the two actuators.

From Theorem 1, we can infer that the minimal ‖(I −
NQ)r̂‖2

2 achievable is zero as the DSA model has no NMP

zeros. This can be completed by selecting Q1 = N−1

1 and

Q2 = 0, which, however, is not a practical solution due

to the improper Q1 and the saturation of u1. In order to

Q yGr
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Fig. 8. DSA controller structure for practical implementation.

compromise between the tracking speed and the limitation

of the control input, we choose Q1 and Q2 as

Q1 = N1(0)−1, (26)

Q2 = γN2(0)−1(1 − N1N1(0)−1), (27)

where γ ∈ [0 1] is a tuning parameter. It is obvious that

N1(0)Q1(0) = 1 and N2(0)Q2(0) = 0, which imply that

y(∞) = y1(∞) + y2(∞) = r + 0 = r. (28)

Moreover, define the LM and PA closed-loop dynamics by

T1 = N1N1(0)−1, T2 = N2N2(0)−1. (29)

We then have the step response transfer function of the DSA

Tyr = T1 + γT2(1 − T1). (30)

It is clear that when γ varies from 0 to 1, the cut-off fre-

quency of Tyr switches from that of T1 to that of T2. On the

other hand, we can see from (27) that the PA will follow the

scaled tracking error of the LM loop (γ(1−N1N1(0)−1)r),
where γ actually determines the contribution of the PA to the

overall position output. Since the PA has a faster response

than the LM loop, it is preferable to have a maximal position

output of the PA. Thus, we should maximize γ ∈ [0 1]
subject to ‖Tyr‖∞ ≤ 1.067 and ‖u2‖∞ ≤ 5 V , which are

introduced for an overshoot under 1 µm and for no saturation

of the PA, respectively. For the LM, its control input u1

is generally not saturated for step responses within the PA

range. Otherwise, we have to go back to Step 1 and reduce

F1 for slower LM dynamics. Although this iteration can be

avoided by adding extra tunable dynamics to (26) to generate

a slower trajectory for the LM, we believe it is not cost-

effective as the selection of Q1 as a constant gain can reduce

the overall controller order. In our case, we obtain γ = 0.5
to meet the requirement. Fig. 7 shows the Bode plot of the

closed-loop systems for the DSA(Tyr), the LM(T1), and the

PA(T2), respectively.

IV. EXPERIMENTAL RESULTS

Experiments are conducted to verify the effectiveness

of the proposed DSA controller. Fig. 8 shows an equiva-

lent 2DOF controller structure for practical implementation.

Compared the lumped 2DOF controller computed by (9) and
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Fig. 9. Experimental tracking control and disturbance rejection.

(10), the simplified controller has lower orders and thus leads

to less computational delay. For comparison, we also carry

out the experiments for the single-stage (SS) servo system,

where the LM is controlled by a PTOS controller [9] and

the PA is switched off. The controller is implemented by a

real-time DSP system (dSPACE-DS1103) with the sampling

frequency of 5 kHz. The step reference command and the

shock disturbance acting on the LM are, respectively, injected

at time 0 and 0.1 second.

From Fig. 9(a), we can see that the PA is effective to

speed up the step response and to cancel out the LM position

deviation due to the shock disturbance. As such, the dual-

stage servo significantly outperforms the single-stage servo

as shown in Fig. 9(b) in terms of the settling time and

disturbance rejection. Further, Fig. 9(c) indicates a much

smaller performance cost achieved by the DSA compared

to the SS servo. Although the Jopt derived in (14) for the

DSA under study can be close to 0, it is impractical due to

unconsidering the actuator saturation limitation, and is thus

used for benchmark only.

V. CONCLUSION

We have revealed that the tracking and disturbance re-

jection problems can be decoupled into two independent

optimization problems under the 2DOF control framework.

Then, this result is applied to the design of the 2DOF

controller for an actual DSA system for disturbance rejection

and step tracking in the PA range. Experimental results

demonstrated that the proposed DSA control system can

significantly speed up the step response and enhance the

shock disturbance rejection compared with the single-stage

servo system.
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