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Nonlinear Feedback Control of a Dual-Stage
Actuator System for Reduced Settling Time

Jinchuan Zheng and Minyue Fu, Fellow, IEEE

Abstract—This brief presents a nonlinear control method for
dual-stage actuator (DSA) systems to track a step command input
fast and accurately. Conventional tracking controllers for DSA
systems are generally designed to enable the primary actuator to
approach the setpoint without overshoot. However, this strategy is
unable to achieve the minimal settling time when the setpoints are
beyond the secondary actuator travel limit. To further reduce the
settling time, we design the primary actuator controller to yield a
closed-loop system with a small damping ratio for a fast rise time
and certain allowable overshoot. Then, a composite nonlinear
control law is designed for the secondary actuator to reduce the
overshoot caused by the primary actuator as the system output
approaches the setpoint. The proposed control method is applied
to an actual DSA positioning system, which consists of a linear
motor and a piezo actuator. Experimental results demonstrate
that our approach can further reduce the settling time significantly
compared with the conventional control.

Index Terms—Dual-stage actuator, friction, linear motor, motion
control, piezo actuator (PA), saturation.

1. INTRODUCTION

DUAL-STAGE actuator (DSA) servo system is character-

ized by a structural design with two actuators connected in
series along a common axis. The primary actuator (coarse actu-
ator) is of long travel range but with poor accuracy and slow re-
sponse time. The secondary actuator (fine actuator) is typically
of higher precision and faster response but with a limited travel
range. By combining the DSA system with properly designed
servo controllers, the two actuators are complementary to each
other and the defects of one actuator can be compensated by the
merits of the other one. Therefore, the DSA system can provide
large travel range, high positioning accuracy and fast response.
The DSA servomechanism has been widely utilized in the in-
dustry, e.g., the dual-stage hard disk drive (HDD) actuator [1],
[2]. The dual-stage HDD servomechanism can significantly in-
crease the servo bandwidth to lower the sensitivity to various
disturbances and thus push the track density [3]. Other DSA
systems include the dual-stage machine tools [4], macro/micro
robot manipulators [5], and dual-stage XY positioning tables
(61, [71.

Although the mechanical design of a DSA system appears to
be simple, it is a challenging task to design controllers for the
two actuators to yield an optimal performance because of the
specific characteristics in the DSA systems.

1) The DSA system is a dual-input single-output (DISO)

system, which means that for a given desired trajectory,
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alternative inputs to the two actuators are not unique. Thus,
a proper control strategy is required for control allocation.
2) The secondary actuator typically has a very limited travel
range, which results in the actuator saturation problem.
A variety of approaches have been reported to deal with the
dual-stage control problems. For example, control design for
track following and settling can be found in [8]-[10]. The sec-
ondary actuator saturation problem is explicitly taken into ac-
count during the control design [11], [12]. In [13], a decoupled
track-seeking controller using a three-step design approach is
developed to enable high-speed one-track seeking and short-
span track-seeking for a dual-stage servo system. The control
design for the secondary actuator by minimizing the destructive
interference is proposed in [14] to attain desired time and fre-
quency responses.

In this brief, we consider a class of DSA systems that can be
depicted by Fig. 1(a), where M and m represent the mass of the
primary and secondary actuator, respectively. Fig. 1(b) shows
an example of our developed DSA positioning system, which
consists of a primary stage driven by a linear motor (LM) and a
secondary stage driven by a piezo actuator (PA). The secondary
actuator has a limited travel range denoted by 2, which is very
small relative to that of the primary actuator. Under the assump-
tion of M > m, |(y1/y2)| > 1, and |(uz/u1)| > m/M, we
can simply ignore the coupling forces between the two actuators
and the dynamic equations of the DSA system are given by

{Mylzﬂl—f—d

mijs = Uz — coY2 — Koy

ey
where the friction force f is modeled as the following equation:

[ = fesen(in) + ki + A (2)

where f. represents the Coulomb friction level, k,, is the viscous
friction coefficient and A is the unmodeled friction.

By far, most of the work on the DSA tracking control to
follow a step command input is based on the strategy that the pri-
mary actuator control loop is designed to have little overshoot,
and the secondary actuator control loop is designed to follow
the position error of the primary actuator [13]-[15]. Under this
conventional strategy, the total settling time can be reduced by
the time that it takes for the secondary actuator to reach its travel
limit. However, when the setpoint is beyond the secondary ac-
tuator travel range, this strategy is unable to minimize the total
settling time. To further reduce the settling time under this cir-
cumstance, we propose that the primary actuator controller can
be designed to yield a closed-loop system with a small damping
ratio for a fast rise time allowing a certain level of overshoot,
and then as the primary actuator approaches the setpoint the
secondary actuator control loop is used to reduce the overshoot
caused by the primary actuator. In this way, the total settling
time is much less than that of the conventional control provided
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M , m = masses

i1, » u, = applied control force
k, = spring constant

¢, = damping coefficient

f = friction force

d = disturbance force

u, Y y, = absolute position of M
M », = relative position of m to M
f<©) d<¥) » = absolute position of DSA

Piezo actuator (PA)
driven stage

Linear
bearing rail

Linear motor (LM)
driven stage

(b)

Fig. 1. DSA systems. (a) Illustration of a DSA model. (b) A developed DSA
positioning system.

that the overshoot is within the secondary actuator travel range.
A similar control strategy for a DSA model without passive
coupling between the two stages has been investigated in [16],
where the primary actuator overshoots to the amount of the sec-
ondary actuator travel range and retains this overshoot in steady
state. However, since we consider that the secondary actuator
is coupled with the primary actuator through a spring-damper
element, our control strategy differs in that the primary actu-
ator overshoots but returns to the target position in steady state,
which implies that the secondary actuator has no relative dis-
placement to the primary actuator and as such does not require
a constant control input in steady state.

To perform the aforementioned control strategy, Section II
presents a nonlinear tracking control method for the DSA sys-
tems in Fig. 1(a). We first design a friction compensator fol-
lowed by a proximate time-optimal controller for the primary
actuator to achieve a quick rise time. Then, a composite non-
linear control law for the secondary actuator is developed by
a step-by-step procedure. The composite nonlinear feedback
law will enable the secondary actuator to reduce the overshoot
caused by the primary actuator as the system output approaches
the setpoint. Experimental results in Section III show that our
proposed control can significantly speed up the responses com-
pared with the conventional control.

II. NONLINEAR FEEDBACK CONTROL DESIGN

Our objective here is to design a control law such that the two
actuators cooperate to enable the total position output y to track
a step command input of amplitude vy, rapidly with no over-
shoot larger than 1 pm. In this section, we first present friction
compensation for the primary actuator, and then a time-optimal
control law is designed to yield a primary closed-loop system

Primary actuator plant

______________________________

Friction
model

Fig. 2. Block diagram of friction compensation for the primary actuator.

with a small damping ratio so as to achieve a quick rise time.
Next, a composite nonlinear control law is designed for the sec-
ondary actuator to cause the DSA closed-loop system dynamics
to be highly damped as the total position output approaches the
setpoint, and thus, the secondary actuator is enabled to reduce
the overshoot caused by the primary actuator.

A. Friction Compensation

The nonlinear friction exerts adverse effects on the tracking
performance. Here, we employ the model-based control struc-
ture as shown in Fig. 2 to compensate for the friction f and dis-
turbance d. The friction compensator is given by

1

G, =——
Ms?

3

3rs+1
4

- (15)2 +3(78)2+31s+ 1

where 7 is a time constant chosen as 5 to 10 times the servo
bandwidth such that the filter () [17] can be approximated as
Q) = 1 within the bandwidth of interest. When the friction com-
pensator is applied, the input—output relationship in Fig. 2 can
be derived as

w-(-QU+f) _ 1
M s? T M2t

It can be seen that the nonlinear friction and disturbance are ap-
proximately canceled by the friction compensator and the pri-
mary actuator system from u; to y; can be treated as a linear
model with a pure double integrator, which facilitates the de-
sign of u; to further achieve desired performance.

From now on, we take (5) as the model of the primary actuator
system and then rewrite the DSA model (1) in a state-space form
as follows:

Y1 = ©)

Y131 = Avz + Biug,
22 : i}2 = AQ.TQ + BQSat(UQ),
y=y1+y2 = Ciz1 + Coms

$2(0) =0 (6)

where the state 21 = [y; 91]7, 22 = [y2 9], and
0 1 0
A1—|:0 0] B1—|:bl:| Ci=[1 0]

S

a1 a2 by

with b; = (1/M), a; = —(k‘o/m)7 ap = —(Co/m), and by =
(1/m). Itis clear that A, is Hurwitz and the limited travel range
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of the secondary actuator is equivalently translated into input
constraint with the saturation function sat(us) defined as

sat(uz) = sgn(ug)min{s, [ua|} @)

where w5 is the saturation level of the control input. Moreover,
we assume that the states x; and x> are all measurable. Hence,
the following control law for the DSA system (6) is based on
full state feedback.

B. Primary Actuator Control Design

The role of the primary actuator is to provide large travel
range beyond that of the secondary actuator. Thus, time optimal
control is critical to move the position output quickly from one
point to another. The proximate time-optimal servomechanism
(PTOS) is a practical near time-optimal controller that can ac-
commodate plant uncertainty and measurement noise. Hence,
we apply the PTOS control law [18] to the primary actuator >y
in (6) and the controller is independent of the secondary actu-
ator control loop. The PTOS control law is given by

uy = sat[kg(f(el) — yl)] (8)
ey, for [e1] <y

= - _ 9

f(ex) sgn(er) (\/2ﬁ1b1a|el — Z—;) , forlei| > ui ©)

e1=Yr — Y1 (10)

where sat[ -] is with the saturation level of @1, (0 < a < 1)
is referred to as the acceleration discount factor, k1 and ko are
constant gains, and y; represents the size of a linear region. To
make the functions f(e;) and f’(e;) continuous such that the
control input remains continuous as well, we have the following
constraints:

2k

= —= 11
= (11)
_
w=g (12)

The PTOS control law introduces a linear region close to the
setpoint to reduce the control chatter. In the region |e1| < yi,
the control is linear and thus the gain K = [ky k»] can be de-
signed by any linear control techniques. For instance, using the
pole-placement method [19], we obtain a parameterized state
feedback gain K as follows:

1
K=o [4m*wi 4mw: (1] (13)

1

where (7 and w; (hertz), respectively, represent the damping
ratio and undamped natural frequency of the closed-loop
system C1(sI — A; + B1K)~1 By, whose poles are placed at
2nwi (=G £ jv/1 - (F).

In conventional DSA control systems, the primary actuator
controller is generally designed to have little overshoot such as
by choosing a large damping ratio in (13). However, in our pro-
posed control a small damping ratio is chosen for a fast rise
time and the resultant overshoot is within the secondary actuator
travel limit, which can be then reduced by the secondary actu-

ator under a composite nonlinear control law as will be given
in the next subsection. Thus, the settling time in the proposed
control could be less than that in the conventional control.

C. Secondary Actuator Control Design

The goal of the control design for the secondary actuator Yo
in (6) is to enable the secondary actuator to reduce the overshoot
caused by the primary actuator. We have the following step-by-
step design procedure.

Step 1) Design a linear feedback control law

uzr, = Fo (14)

where F' = [f; f2] is chosen such that the secondary

actuator control system as given by

.i’g = A2$2 + BQSat(F:EQ) (15)

is globally asymptotically stable (GAS) and the cor-

responding closed-loop system in the absence of

input saturation, Co(sI — Ay — BoF)™1Bs, has a

larger damping ratio and a higher undamped natural

frequency than those of the primary actuator control

loop. To do this, we choose

F=-BIp (16)

where P = PT > 0 is the solution of the following
Lyapunov equation:

ATP+PAy = -Q (17)

for a given Q = Q7 > 0. Note that the solution of

P exists since A is Hurwitz. To involve the closed-

loop properties explicitly with the control law, we
define

(18)

¢ 0
= >0 >0
Q [0 qJ T q2

where ¢; and ¢» are tuning parameters. Substituting
(18) into (17) yields P, which gives the feedback
gain (16) as follows:

o

2@1 a9

[a2g1 a1g2 — q1]. (19)

Moreover, the resulting poles of the closed-loop
system Cy(sI — Ay — BoF)™'By with (19) if
complex conjugate have the undamped natural fre-
quency and damping ratio as follows:

1 b3
Wy =—{/——"—q1—a
2 o 2a1fh 1

. b3q1 — b3aiqe — 2a1a3
G = = .
daras\) —22-q1 — a

102 %a; 11 1

Thus, we can easily achieve the desired w, and (o
by choosing a proper pair of ¢; and go.
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Step 2) Construct the nonlinear feedback control law

Y — Yr

1
H= E[(al + baf1 + b1k1)

uan = Y(yr, y) H [

(az + bafa +bik2)]  (21)
where H is taken to achieve desired closed-loop
system dynamics, which will be clear later; and
v(yr,y) is any nonnegative function locally Lips-
chitz in y, which is chosen to enable the secondary
actuator to reduce the overshoot caused by the
primary actuator as the total position output ap-
proaches the setpoint. The choice of y(y,,y) will
be discussed later.

Step 3) Combine the linear and nonlinear feedback control
laws derived in Steps 2) and 3) to form a composite
nonlinear controller for the secondary actuator

s = urp, + uan = Foy +y(ye, y) H [?’1 " ”} (@)

With the primary actuator controller in (8) and the secondary
actuator controller as given by (22), we have the following
results regarding the step response of the DSA closed-loop
system.

Lemma 1: Consider the DSA system in (6) with the primary
actuator X1 under the PTOS control law (8) and the secondary
actuator Y, under the nonlinear control law (22) for any non-
negative function y(y,., y) locally Lipschitz in y. Then, the com-
posite control law will drive the total system output y to track
asymptotically any step command input of amplitude y,..

Proof: The primary actuator closed-loop system under the
PTOS control law can be represented as
T, = Ai1z1 + Blsat[kg(f(el) — yl)] 23)
where f(eq) is defined in (9). It has been proven in [18] that the
system (23) can track asymptotically any step command input
of amplitude y,, i.e.,

t—oo

Ay (f) =y, (24)

Next, we define a Lyapunov function V' = 2l Pz, with P
given in (17). Evaluating the derivative of V' along the trajecto-
ries of the system in (15) yields

V =i} Poy + a3 Pis
=23 (A3 P+ PAs) x5 + 2B; Passat(Fs)
= —:rng — 2Fzosat(Fxq)
< _$;Q$2

< 0. (25)

Hence, the secondary actuator closed-loop system with linear
feedback control only (15) is GAS. Furthermore, the secondary
actuator closed-loop system with the composite nonlinear con-
trol law (22) can be expressed as

11.32 = AQLEQ + Bgsat(FxQ + ’ngN). (26)

It is obvious that the system (26) satisfies the converging-input
bounded-state (CIBS) property (see the Appendix for the defi-
nition) since Ay is Hurwitz, [sat(-)| < g, and the nonlinear
control input us has

tli)n;o uan(t) =0 27
which can be easily deduced from (20) and (24).

The proof finishes by observing that the DSA closed-loop
system formed by (23) and (26) has a cascaded structure and
it satisfies the conditions of Theorem 1 in the Appendix. This
result will guarantee that the secondary actuator closed-loop
system (26) is GAS at the origin. Thus, for any initial state 22 (0)
and nonlinear control input that satisfies (27) we have

tlim x2(t) =0 (28)
and, therefore
tlirrolo y(t) = tlirglo[Clxl(t) + Caza(t)] = yr- (29)

Remark 1: Lemma 1 shows that the value of v(y,,y) does
not affect the ability of the overall DSA closed-loop system
to track asymptotically any step command input. However, a
proper choice of v(y,,y) can be utilized to improve the tran-
sient performance of the overall closed-loop system. This is the
key property of the proposed control design.

D. Selecting y(yy,y) for Improved Performance

The function v(y,,y) is used to tune the control law to
achieve our objective. More specifically, we design the primary
actuator control loop with a small damping ratio for a quick
rise time and employ the secondary actuator control loop
that is designed to be highly damped to reduce the overshoot
caused by the primary actuator as the total position output y
approaches the setpoint. This control strategy implies that the
dynamics of the DSA closed-loop system should be dominated
by the primary actuator control loop when the position output
is far away from the setpoint, but dominated by the secondary
actuator control loop when the position output approaches the
setpoint. The purpose of the function ¥(y,,y) is to provide a
smooth transition from the primary control loop to the sec-
ondary control loop.

Consider the dual-stage system (6) with the control laws in (8)
and (22), and assume that the tracking error (y, — y) is small
such that the control inputs do not exceed the limits and the
control law (8) works within its linear region. Thus, the DSA
closed-loop system can be expressed as

| 2= Az + By,
¥ {y — Cx (30)
where

_ [ Ay — B1K 0 }
" | 7(yr,y)BoH Az + BoF

- [—v(y?,lngH] ' [H

C = [C4 Ca).
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Since the nonlinear term (., y) makes the system dynamics
difficult to analyze, we assume that y(y,., y) varies slowly with
respect to y and thus we can reasonably approximate (.., y) as
a constant in a local region for easy analysis of the DSA system
dynamics. Thus, the DSA closed-loop system dynamics can be
represented by the following transfer function from vy, to y:

G(s) = C(sI — A)7'B = (1 —v)G1(s) +vGa(s) (1)
where
B bik1
Gl(S) o 82 + bleS + blkl (32)
Gal(s) = —(a1 +baf1) (33)

52 — (ag + b2 f2)s — (a1 + b2 f1)

indicate the closed-loop transfer function of the primary and
secondary actuator control loop, respectively.

In (31), when ~ monotonically increases from 0 to 1, it is
clear that G(s) changes from G4 (s) to Ga(s). This desired fea-
ture is due to the proper selection of H in (21). From the per-
spective of zero placement, when 7y changes from O to 1 the
zeros of (31) are moved from the pole locations of the sec-
ondary control loop (32) to those of the primary control loop
(33). Since the zeros near the poles reduce the effects of the
poles on the total response, we can use vy to tune the system dy-
namics for desired performance. A similar control technique for
single-input-single-output (SISO) linear systems can be found
in [20], which however uses the nonlinear feedback law to in-
crease the damping ratio of the closed-loop system poles to re-
duce the overshoot.

Based on the preceding analysis, we may choose y as a func-
tion of the tracking error (i.e., ¥, — ¥) such that (., ¥) mono-
tonically increases from O to 1 as y — ... The following shows
one choice of ~:

Yy, y) = e Blyr—yl (34)
where # > 0 is a tuning parameter, which can be adjusted with
respect to the amplitude of y,. relative to the secondary actuator
travel limit .

1) If y. < 9o, B should be sufficiently small such that v con-
verges to 1 quickly, which implies that the secondary con-
trol loop dominates the DSA closed-loop system dynamics
over the whole control stage. In this case, the total settling
time can be minimized because the secondary control loop
has a much faster bandwidth than that of the primary con-
trol loop.

2) If y,. > %2, should be large so as to divide the control
stages into two parts. At the initial stage when the position
output y is far away from the final setpoint, -y closes to 0,
which implies that the primary control loop dominates the
DSA closed-loop system dynamics to achieve a fast rise
time while the secondary actuator is switched off because
of its limited travel range. When the position output y ap-
proaches the setpoint, = is close to 1, which implies that
the DSA closed-loop system dynamics is dominated by the
secondary control loop that is highly damped. This high

0.4 . . ‘ . .
3
S
02t ' ]
< / Viscous friction
= Coulomb friction level
S o1 » i
k3]
€
@
g
5 01} 1
(o
w
-02} «

03 M ~ ]
ki —— Real friction model

. —©— Friction after compensation
-200 0 200 400 600
Velocity [mm/s]

-0.4 i
2600 -400

Fig. 3. Experimental friction model of the LM driven stage. (The vertical axis
denotes the steady-state control input «; in Fig. 2 that compensates for the fric-
tion force to make the LM move at the corresponding constant velocity.)

damping property can in turn imply that the secondary ac-
tuator is enabled to reduce the overshoot caused by the pri-
mary actuator.

III. EXPERIMENTAL RESULTS

This section presents the experimental results of the proposed
nonlinear control method applied to the actual DSA positioning
system as shown in Fig. 1(b).

A. System Modeling

The LM in Fig. 1(b) has a 0.5-m travel range, a 1-pm reso-
lution glass scale encoder, and a power amplifier. The PA has a
maximum travel range of 15 im, a piezoelectric amplifier, and
an integrated capacitive position feedback sensor with 0.2-nm
resolution to measure the relative displacement between the PA
stage and the LM stage. The resonance of the PA stage flexure is
actively damped by its integrated control electronics. Moreover,
we observe that the coupling effects between the two actuator
stages on the position output is much less than 1 ym. Hence,
we assume that there is no coupling between the LM and PA
system.

The nonlinear friction model in the LM is measured using
the experimental method in [21] and shown in Fig. 3. The fric-
tion compensator in Fig. 2 is obtained by using 7 = 0.0008
and M = 6.7 x 1078, It can be seen from Fig. 3 that the non-
linear friction is almost compensated by the friction compen-
sator. Thus, the DSA positioning system can be expressed by
(6), the parameters of which are then identified from experi-
mental frequency response data. A dynamic signal analyzer (HP
35670A, Hewlett Packard Company, WA) is used to generate the
swept-sinusoidal excitation signals and collect the frequency re-
sponse data from the excitation signals to the output. The dashed
lines in Figs. 4 and 5 show the measured frequency responses of
the LM and PA stage. The LM dynamics are dominated by the
rigid body mode and thus close to a double integrator. The PA
dynamics is of high stiffness that exhibits a flat gain in the low
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Fig. 4. Frequency responses of the LM model from «; to y; in Fig. 2 with the
friction compensator.
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Fig. 5. Frequency responses of the PA stage, the PA gain is 3 pm/V.

frequency range. By using the least-squares estimation method
[22], we obtain the DSA model parameters in (6) as follows:

a; = —10°

Uy =5 V.

by = 1.5 x 107
by = 3 x 108

as = —1810  (35)

(36)

The solid lines in Figs. 4 and 5 show that the identified models
match the measured models well in the frequency range of
interest.

B. Results and Discussion

We follow the proposed control design procedure to obtain
the controller for the DSA positioning system. The PTOS con-
troller in (8) for the LM is obtained by choosing #; =1 V,w; =
30 Hz, and thus y; = 422 pm. We find that (; can be adjusted as

0.5,
2.7—1In(y,)

/72 +[2.7—In(y,)]?’

Yyr < 15 pm

yr>15um 37

Cl (yr) =

20 T T T T T

Position [um]

VN - —

fvo v == = —

L N AL
EVAY VARVt

_5 i i i i i i i
0 10 20 30 40 50 60 70 80
Time [ms]
(@)
20 . . : : . -

Position [um]

_5 i i i i i i i
0 10 20 30 40 50 60 70 80

Time [ms]
(b)
Fig. 6. Dual-stage tracking control for y, = 15 pm. The settling times in both
control are similarly 4 ms. The proposed control has little improvement over
the conventional control because within the PA travel limit the PA control loop

dominates the DSA closed-loop system dynamics whatever the LM control loop
is tuned. (a) Proposed control. (b) Conventional control.

such that the resultant overshoot caused by the LM approxi-
mately equals to the PA travel limit, i.e., 15 ym, when y,. >

15 pm. Hence, the linear gain K is given by
K=10"3%x[24 0.025¢(y)]. (38)

For the PA control design, we choose qg; = 0.56 and g3 =
7 x 1078, and thus the linear feedback gain F is given by

F = —[0.8385 0.0005] (39)

which results in wy = 300 Hz and {5 = 0.9. The nonlinear
feedback gain is given by

H = —[1.1602 0.0011 — 0.00012¢;(y,)]  (40)
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Fig. 7. Dual-stage tracking control for ¥, = 100 gm. The settling time in
the conventional control is 16.5 ms, which is reduced to 11 ms in the proposed
control. (a) Proposed control. (b) Conventional control.

with (3 (y,) in (37). The nonlinear function (34) is chosen as

e—0-001|y—y,| ,

<15 pum
'Y(yray) = {6—0.01|y—yr o~ )
b

41
Yy > 15 pm. 1)

In order to compare the proposed control with the conven-
tional control where the LM control loop is generally tuned to
have no overshoot, we choose (1 = 0.9 for any y,. and retain the
other tuning parameters, then following the same design proce-
dure yields a conventional controller that is used for comparison
with our proposed controller. Moreover, we define the settling
time to be the time that it takes for the total position output y to
enter and remain within +1 pm relative to the setpoint.

The controllers are implemented by a real-time DSP
system (dSPACE-DS1103) with the sampling frequency of
5 kHz. The velocities of the LM and PA stage are estimated
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(@)
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Fig. 8. Dual-stage tracking control for y,. = 500 pgm. The settling time in
the conventional control is 20 ms, which is reduced to 15.5 ms in the proposed
control. (a) Proposed control. (b) Conventional control.

using backward differentiating their position signals, respec-
tively. The experimental results for various travel distance
(y- = 15,100, 500 pm) are shown in Figs. 6-8, respectively.
In Fig. 6, where the travel distance is within the PA travel
range, the settling times under the proposed control and the
conventional control are almost the same. However, when
the travel distance is beyond the PA travel range as shown in
Figs. 7 and 8, the settling time under the proposed control is
significantly reduced compared with the conventional control.
The experiments with 50, 300, and 1000 pm travel distance are
also implemented. All the implementation results in terms of
settling time are summarized in Table I for easy comparison.
It is shown that the proposed control can further reduce the
settling time by more than 20% when the travel distances are
beyond 15 pm.
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TABLE 1
COMPARISON OF THE SETTLING TIME IMPROVEMENT
Travel distance Settling Time (ms) Improvement

(pm) Conventional | Proposed (%)

15 4 4 0

50 12.5 10 20

100 16.5 11 33

300 20 14 30

500 21 15.5 26
1000 26 20 23
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Fig. 9. Steady-state position error under disturbance input. When PA control
is switched off, the position error under the LM control loop is within £8 xm,
while with PA control on, the position error is retained within £1 g¢m.

Finally, we test the performance of the proposed dual-stage
control system under disturbance input. The disturbance signal
as shown in the top plot of Fig. 9 consists of three sinusoidal
components with frequencies at 5, 15, and 50 Hz. The signals
are artificially generated in DSP and directly added onto the
LM control input, which can be reasonably assumed as force
disturbance acting on the LM stage. In Fig. 9, the middle plot
shows that the LM control loop can only maintain the steady-
state position error within 8 pm, while the bottom plot shows
that the position error is reduced to within £1 pgm when the
PA control loop is switched on. Thus, the results indicate that
the proposed control can achieve improved positioning accuracy
over the single-stage control.

IV. CONCLUSION

In this brief, we have proposed a nonlinear control method for
DSA systems. Distinct from the conventional control, the pri-
mary actuator control loop is designed to have a small damping
ratio for a fast rise time. The secondary actuator control loop
is then enabled by a nonlinear control law to reduce the over-
shoot caused by the primary actuator as the system output ap-
proaches the setpoint. We have also verified the proposed con-
trol on an actual DSA positioning system. Experimental results
demonstrate that it can further reduce the settling time by more
than 20% compared with the conventional control. Moreover,
it is shown that the DSA positioning system with the proposed
control can achieve more accurate position accuracy under ex-
ternal disturbance than that of the single-stage servo with LM
only. Our future work will extend the nonlinear control design
to higher order systems and the case of output feedback.

APPENDIX

Consider a cascade system as follows:

i = f(z,y)
y=9(y)

(42)
(43)

where f and g are smooth, z and y evolve in R™ and R™, re-
spectively. Define the zero-input system of (42) as

= f(z,0) (44)
and the converging input bounded state (CIBS) property as
follows.

CIBS: For each control y(-) on [0,400) such that
lim; o y(t) = 0 and for each initial state z, the solu-
tion of (42) with 2:(0) = x¢ exists for all ¢ > 0 and is bounded.

Theorem 1 [23]: Assume that both (43) and (44) have the
origin as a globally asymptotically stable state and the CIBS
property holds for (42). Then the cascade system of (42) and
(43) has the origin as a globally asymptotically stable state.
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