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Abstract

This paper studies the problem of estimating a parameter vector from measurements having
a multivariate chi-squared distribution. Maximum likelihood estimation in this setting is un-
feasible because the multivariate chi-squared distribution has no closed form expression. The
typical approach to go around this consists in considering a sub-optimal solution by replacing
the chi-squared distribution with a normal one. We investigate the theoretical properties of this
approximation as the number of measurements approach infinity. More precisely, we show that
this approximation is strongly consistency, asymptotically normal and asymptotically efficient.
We consider a source localization problem as a case study.

Keywords: Asymptotic statistical properties, multivariate chi-squared distribution, parameter
estimation, maximum likelihood estimation, Cramér-Rao lower bound.

1. Introduction

Statistical estimation [1] finds abundant applications in signal processing, communications
and control [2, 3]. It consists in providing an estimate of a given set of parameters, based on
a set of measurements whose probability distribution depends on those parameters. In this
work, we are concerned with estimation problems where measurements have a multivariate chi-
square distribution. This is the distribution of the vector of component-wise square sums of
i.i.d. normal random vectors with zero means and arbitrary covariance matrix. A number of
estimation problem in engineering meet this assumption. Generally speaking, these are problems
where measurements are in the form of a vector of received powers. Examples of this are source
localization [4, 5, 6, 7, 8, 9], network localization [10, 11, 12], target tracking [13, 14, 15], etc.

A preferred statistical estimation method is called maximum likelihood (ML). This is be-
cause ML estimates enjoy a number of asymptotic statistical properties. More precisely, if
certain regularity conditions are satisfied, as the number of available samples used to build the
measurements tends to infinity, the sequence of ML estimates is: strongly consistent, i.e., it con-
verges with probability one (w.p.1) to the true value, asymptotically normal, i.e., the distribution
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of the estimation error converges to a normal one, and asymptotically efficient, i.e., the asymp-
totic covariance of the estimation error equals the inverse of the asymptotic Fisher information
matrix (AFIM), and therefore it attains the Cramér-Rao lower bound (CRLB) [16, 17].

For estimation problems with measurements having a multivariate chi-square distribution, we
face the problem that the probability density function (PDF) has no closed-form expression [18].
To go around this difficulty, practical estimation methods typically use the central limit theorem
to approximate the multivariate chi-square distribution by a multivariate normal one [5, 8, 6, 9,
7]. This leads to a computationally feasible but sub-optimal estimate which we call quasi-ML.
The goal of this work is to provide a mathematical backing for quasi-ML estimation. More
precisely, we give conditions under which quasi-ML estimates enjoy the same aforementioned
asymptotic properties enjoyed by ML estimates. A consequence of our result is that, if many
measurements are available, the computational advantages of the quasi-ML estimate come with
negligible performance loss.

The rest of the paper is organized as follows: In Section 2 we describe the research problem.
In Section 3 we state our main results, namely the conditions required for strong consistency,
asymptotic normality and asymptotic efficiency of the quasi-ML estimate. After presenting
some preliminary results in Section 4.1, we provide the proofs of the three main theorems in
Sections 4.2, 4.3 and 4.4, respectively. Finally, in Section 5 we show how our results permit
asserting the asymptotic properties of the quasi-ML estimator in a case study, namely, a source
localization problem.

Notation 1. For a vector x we use [x]i or xi to denote its i-th entry, ‖x‖ to denote its 2-norm,
and diag (x) to denote the diagonal matrix whose diagonal entries equal the entries of x. For a
matrix X, we use [X]i,j or Xi,j to denote its (i, j)-th entry, ‖X‖ to denote its operator norm,
diag (X) to denote the vector whose entries equal the diagonal entries of X, Tr {X} to denote
its trace, and

−→
X to denote the vector obtained by stacking the columns of X. The superscript

·> denotes transposition. We use I to denote the identity matrix and PI (R) ⊂ RI×I to denote
the set of real positive definite I × I matrices. For a random vector x we use E {x} to denote
its expected value, and C {x} to denote its covariance matrix. We use N (µ,Σ) to denote the
multivariate normal distribution with mean µ and covariance Σ, and N (x;µ,Σ) to denote the
PDF of that distribution evaluated at x.

2. Problem description

2.1. Estimation problem
We start by introducing the multivariate chi-square distribution [18].

Definition 1. An I-dimensional, real, random vector s is said to have a multivariate chi-
squared distribution, with N ∈ N degrees of freedom and parameter matrix Σ ∈ PI (R), denoted
χ2 (N,Σ), if its PDF p is given by

p (s) =
1

(2π)I

∫
exp

(
−it>s

)
φ(t)dt, (1)

where φ(t) = det (I − 2iΣT )
−N/2 denotes the characteristic function of p, with t = [t1, . . . , tI ]

>

and T = diag (t).

We assume that we have a sequence of random vector samples xn = [xn,1, · · · , xn,I ]> ∈ RI ,
n = 1, · · · , N , independently drawn from the distribution

xn ∼ N (0,Σ (θ?)) , (2)
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where Σ : D → PI (R)1, D ⊆ RD and θ? ∈ D is the unknown true value of the parameter
θ = [θ1, · · · , θD]

> ∈ D. We use these samples to obtain an estimate of the variance of each entry
of xn. To this end, we build the vector measurement sN , whose i-th entry sN,i is given by

sN,i =
1

N

N∑
n=1

x2n,i. (3)

As it is known, sN ∼ χ2
(
N, 1

NΣ (θ?)
)
[19]. The estimation problem is to estimate the unknown

θ? using sN .

2.2. Motivation
The estimation problem described in Section 2.1 appears in a number of applications where

certain parameter θ? (e.g., the position of a target) needs to be estimated based on the knowl-
edge of a measurement of the strength (power) of signals received at a number of sensors.
More precisely, we assume that we have I sensors. At time N , Sensor i measures the signal
xN,i, and updates an estimate sN,i of its power computing (3). Let x>n = [xn,1, · · · , xn,I ] and
s>N = [sN,1, · · · , sN,I ]. We assume that, at a given sample time n, measurements from different
sensors are possibly statistically dependent, but measurements taken at different sample times
are independent. To model this, we assume that vector samples xn ∈ RI , n = 1, · · · , N , are
independently drawn from (2). Then, the sequence sN ∼ χ2

(
N, 1

NΣ (θ?)
)
, N ∈ N, satisfies the

conditions described in Section 2.1.

2.3. Maximum likelihood estimation
A preferred approach to solve the above consists in using the ML criterion, i.e.,

θ̂ML
N = arg max

θ∈D
LN (θ), (4)

where
LN (θ) =

1

N
log pθ (sN ) , (5)

and pθ (sN ) denotes the PDF of sN , parameterized by θ. This is because ML estimates typically
enjoy certain asymptotic statistical properties, namely, strong consistency, asymptotic normality
and asymptotic efficiency, which are properly defined below.

As mentioned in Section 2.1, the PDF pθ (sN ) follows a multivariate chi-squared law. A
stumbling block for solving (4) in practice is that (1) does not have a closed-form expression [18].
A popular approach [5, 8, 6, 9, 7] to go around this difficulty consists in replacing the ML
estimation criterion by an approximate one, which we call quasi-ML estimation criterion, and
describe below.

2.4. Quasi-maximum likelihood estimation
The essential idea is to make use of the central limit theorem [20, Th. 15.56] to approximate

the PDF pθ (sN ) using a multivariate normal distribution. We assume that the distribution of
sN is, instead of (1), given by the following one

sN ∼ N
(
µ (θ?) ,

1

N
C (θ?)

)
, (6)

1Notice that the definition of Σ guarantees that Σ(θ) is positive definite for all θ ∈ D.
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with

µ (θ) = Eθ {sN} and C (θ) = NCθ {sN} ,

where Eθ and Cθ denote expectation and covariance, respectively, with respect to pθ. Then,
following (4), the ML estimate (4) is replaced by the following one, which we call the quasi-ML
estimate

θ̂N = arg max
θ∈D

L̃N (θ), (7)

where
L̃N (θ) =

1

N
log p̃θ (sN ) , (8)

with
p̃θ (sN ) = N

(
sN ;µ (θ) ,

1

N
C (θ)

)
. (9)

The quasi-ML estimate (7)-(9) can be interpreted as an approximation to the ML estimate.
This is because the former is derived under the simplifying assumption that the measurements
sN have the multivariate normal distribution p̃θ, while the actual distribution pθ follows a
multivariate chi-squared law. The advantage of the quasi-ML estimate, over the ML one, is that
p̃θ has a closed-form. This permits computing the quasi-ML estimate using standard numerical
optimization techniques.

Before concluding this section we derive the expressions of the parameters µ (θ) and C(θ) of
the normal approximation (6). To this end we use the following lemma.

Lemma 1. If [x, y]> ∼ N (0,Σ), then

E
{
x2y2

}
= 2E {xy}2 + E

{
x2
}
E
{
y2
}
.

Proof. Let [u, v]> = Σ−1/2[x, y]>, and Σ1/2 =

[
ax,u ax,v
ay,u ay,v

]
. We can then write x = ax,uu +

ax,vv and y = ay,uu+ ay,vv, with [u, v]> ∼ N (0, I). The result then follows since

E
{
x2
}

= a2x,u + a2x,v, E
{
y2
}

= a2y,u + a2y,v, E {xy} = ax,uay,u + ax,vay,v,

E
{
x2y2

}
= 2 (ax,uay,u + ax,vay,v)

2
+
(
a2x,u + a2x,v

) (
a2y,u + a2y,v

)
.

The desired expressions are then stated in the following proposition.

Proposition 1. For all i, j = 1, · · · , I,

µi(θ) = Σi,i (θ) and Ci,j(θ) = 2Σ2
i,j (θ) . (10)

Moreover, C(θ) ∈ PI (R), for all θ ∈ D, i.e., Σ : D → PI (R).

Proof. We have
µi(θ) = [E {sN}]i = E

{
x2n,i

}
= Σi,i (θ?) .

Also

[C {sN}]i,j =
1

N2

N∑
n,m=1

[
E
{
x2n,ix

2
m,j

}
− Σi,i (θ?) Σj,j (θ?)

]
=

1

N2

N∑
n=1

[
E
{
x2n,ix

2
n,j

}
− Σi,i (θ?) Σj,j (θ?)

]
=

1

N

[
E
{
x21,ix

2
1,j

}
− Σi,i (θ?) Σj,j (θ?)

]
. (11)
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Now, from Lemma 1 E
{
x21,ix

2
1,j

}
= 2Σ2

i,j (θ?) + Σi,i (θ?) Σj,j (θ?), and (10) follows by putting
this in (11). The last part follows from the Schur product theorem since Σ(θ) ∈ PI (R), for all
θ ∈ D.

2.5. Research problem
In view of the above, the question arises as to whether the practically feasible quasi-ML

estimate enjoys the following asymptotic statistical properties, which are often enjoyed by ML
estimates.

Strong consistency: whether the estimate θ̂N converges with probability one (w.p.1) to
the true value θ?, i.e.,

lim
N→∞

θ̂N
w.p.1
= θ?.

Asymptotic normality: whether the normalized estimation error
√
N
(
θ̂N − θ?

)
converges

in distribution to a normal law, i.e.,

lim
N→∞

√
N
(
θ̂N − θ?

)
in dist.

= N (0,Ψ) ,

for some matrix Ψ > 0 called the asymptotic covariance.
Asymptotic efficiency: whether the asymptotic covariance Ψ equals the CRLB, i.e.,

Ψ = I−1,

where
I = lim

N→∞
NE

{
∇LN (θ?)∇>LN (θ?)

}
,

denotes the AFIM and ∇ denotes the gradient operator.
Remark 1. The three asymptotic properties described above are of particular interest in practice.
A number of theoretical results are available giving conditions for these properties to hold [21,
Section 24], [22, Sections 3 and 5]. Strong consistency means that the sequence of estimations θ̂N
always converges to the true value θ?, as the number N of samples tends to infinity. Asymptotic
normality means that, for large N , the estimation error θ̂N − θ? can be approximated by a
multivariate normal vector. This facilitates the analysis of systems involving this error. Finally,
asymptotic efficiency asserts that, for large N , no unbiased estimator can be better, in the sense
of having a smaller covariance.

Our goal is to provide conditions to guarantee that the quasi-ML estimate θ̂N satisfies the
three asymptotic statistical properties described above.

3. Main results

In this section we state our main results. Before doing so, we introduce an example to
illustrate the fact that conditions are indeed needed for the quasi-ML estimate to enjoy the
desired properties. To this end, we introduce an example in which the quasi-ML fails to be
strongly consistent.

Example 1. Let xn ∼ N (0,Σ (θ?)), n ∈ N, be a sequence of real, scalar variables, with
Σ : (0, 2)→ (0, 2) being a discontinuous function of θ given by

Σ (θ) =

{
θ, 0 < θ ≤ 1,

3− θ, 1 < θ < 2,
(12)
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Figure 1: Convergence of the PDF of KNsN and the map Σ−1 : KNsN 7→ θ̂N .

and θ? = 1. Let sN be defined as in (3). We will show that the estimate θ̂N produced by the
quasi-ML estimation method fails to converge to θ?, with probability one, as N → ∞. To this
end we will first show that

θ̂N = Σ−1 (KNsN ) , (13)

for some constant KN . We will then show that the PDF of the random variable KNsN converges
in a way that half its probability mass falls below 1, and the other half sits above. This is depicted
in Figure 1. Since Σ is discontinuous at 1, this leads to

lim
N→∞

pθ?

(
θ̂N < 1

)
=

1

2
and lim

N→∞
pθ?

(
3

2
< θ̂N < 2

)
=

1

2
. (14)

Then, for every 0 < ε < 3
2 ,

lim
N→∞

pθ?

(∣∣∣θ̂N − θ?∣∣∣ < ε
)

= 1− lim
N→∞

pθ?

(∣∣∣θ̂N − θ?∣∣∣ ≥ ε)
≤ 1− lim

N→∞
pθ?

(
3

2
< θ̂N < 2

)
=

1

2
.

Hence, θ̂N does not converge to θ? in probability. It then follows from [23, Theorem 4.1.2] that
θ̂N cannot converge to θ? with probability 1.

We have that

E {sN} = Σ (θ?) and C {sN} =
2Σ (θ?)

2

N
.

Hence, from (6) we obtain

p̃θ (sN ) = N
(
sN ; Σ (θ?) ,

2

N
Σ (θ?)

2

)
.

The quasi-ML estimate is then given by

θ̂N = arg max
θ∈D

L̃N (θ) = arg max
θ∈D

1

N

[
−1

2
log

4π

N
− log Σ (θ)− N

4

(
sN

Σ (θ)
− 1

)2
]
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Tanking the derivative with respect to Σ(θ), we obtain

∂L̃N

(
θ̂N

)
∂Σ (θ)

= −
[

2

N
Σ2 (θ) + sNΣ (θ)− s2N

]
1

2Σ (θ)
3 = 0.

The above is solved when

Σ
(
θ̂N

)
= KNsN with KN =

N

4

(√
1 +

8

N
− 1

)
. (15)

Since the map Σ is invertible, equation (13) follows.
Let rN = NsN . Clearly, rN ∼ χ2 (N). Let

FN (x) = pθ? (rN < x) =
1

Γ
(
N
2

)γ (N
2
,
x

2

)
denote the CDF of rN , with Γ being the gamma function and γ being the lower incomplete
gamma function. Equation (14) then follows from (13) since

pθ?

(
θ̂N < 1

)
= pθ? (KNsN < 1) = pθ?

(
rN <

N

KN

)
= FN

(
N

KN

)
→ 1

2
,

pθ?

(
3

2
< θ̂N < 2

)
= pθ?

(
1 < KNsN <

3

2

)
= FN

(
3

2

N

KN

)
− FN

(
N

KN

)
→ 1

2
.

We now state our main results. Their proofs are delayed to later sections. Our first result
states conditions under which the quasi-ML estimate θ̂N enjoys strong consistency. Its proof
appears in Section 4.2.

Theorem 1 (Strong consistency). If:

1. The set D is compact;
2. The map Σ : D → PI (R) is continuous;
3. For all θ ∈ D, diag (Σ (θ)) = diag (Σ (θ?)) if and only if θ = θ?;

then

lim
N→∞

θ̂N
w.p.1
= θ?. (16)

Our next result states conditions to guarantee the asymptotic normality of the quasi-ML esti-
mate. Its proof appears in Section 4.3.

Theorem 2 (Asymptotic normality). If, in addition to the conditions of Theorem 1:

1. The true vector of parameters lies in the interior int(D) of D, i.e., θ? ∈ int(D);
2. The map Σ : D → PI (R) is twice continuously differentiable on int(D);
3. The Jacobian Jµ (θ?) of the map µ : θ 7→ diag (Σ (θ)) evaluated at θ? has full column rank;

then

lim
N→∞

√
N
(
θ̂N − θ?

)
in dist.

= N
(

0, Ĩ−1
)
, (17)

where

Ĩ = lim
N→∞

1

N
E
{
∇θ log p̃θ (sN )|θ=θ? ∇

>
θ log p̃θ (sN )

∣∣
θ=θ?

}
. (18)
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The above results assert the asymptotic consistency and normality of the quasi-ML estimate.
In particular, Theorem 2 states that the asymptotic covariance Ĩ−1 of this estimate is given
by (18). The next theorem states that Ĩ equals the AFIM I, from where it follows that the
quasi-ML estimate is asymptotically efficient. The proof of this result appears in Section 4.4.

Theorem 3 (Asymptotic efficiency). If the conditions of Theorem 2 hold, Ĩ = I.

We finish by giving the expression of the AFIM.

Proposition 2. If the conditions of Theorem 2 hold,

I = Jµ (θ?)
>
C−1 (θ?)Jµ (θ?) ,

where Jµ (θ) denotes the Jacobian of µ(θ), i.e.,

[Jµ (θ)]i,d =
∂µi (θ)

∂θd
.

The quasi-ML estimate θ̂N introduced in Example 1 is not strongly consistent. Notice that
Assumptions 1 and 2 of Theorem 1 are not satisfied in that example. In particular, Assumption 2
fails. In Example 2 below, we modify Example 1 to satisfy the assumptions of Theorem 1, and
show how this leads to a strongly consistent quasi-ML estimate.

Example 2. Suppose that the definition of Σ in (12) is replaced by any invertible map Σ :
[0, 2] → [0,∞) with continuous inverse. From (15) we have limN→∞KN = 1. Also, from the
Kolmogorov’s strong law of large numbers [23, Th. 5.4.2], limN→∞ sN

w.p.1
= 1. It then follows

from (13) and the continuity of Σ−1, that

lim
N→∞

θ̂N = lim
N→∞

Σ−1 (KNsN )
w.p.1
= Σ−1 (1) ,

or equivalently, that θ̂N is strongly consistent.

4. Proofs of the main results

4.1. Preliminary results
4.1.1. Log-likelihood function of the normal approximation and its derivatives

We start by giving the expressions of L̃N (θ), its gradient and its Hessian.

Lemma 2. Let θd, d = 1, · · · , D, denote the D-th entry of θ. Then

L̃N (θ) =− 1

2

[
1

N
log

∣∣∣∣2πN C(θ)

∣∣∣∣+ Tr
{
C(θ)−1∆N (θ)

}]
, (19)

[
∇L̃N (θ)

]
d

=
∂µ (θ)

>

∂θd
C−1 (θ) δN (θ)

+
1

2
Tr

{
C−1 (θ)

∂C (θ)

∂θd

(
C(θ)−1∆N (θ)− 1

N
I

)}
, (20)

[
∇2L̃N (θ)

]
d,e

=− ∂µ (θ)
>

∂θd
C−1 (θ)

∂µ (θ)

∂θe

− 1

2
Tr

{
C−1 (θ)

∂C (θ)

∂θd
C−1 (θ)

∂C (θ)

∂θe

[
2C−1 (θ) ∆N (θ)− 1

N
I

]}
+

1

2
Tr

{
C−1 (θ) δN (θ)

(
∂µ (θ)

>

∂θd
C−1 (θ)

∂C (θ)

∂θe
+
∂2µ (θ)

>

∂θd∂θe

)}
. (21)

8



where

δN (θ) = sN − µ (θ) , (22)

∆N (θ) = δN (θ) δN (θ)
>
. (23)

Proof. Equation (19) follows straightforwardly from the definition. For (20) and (21), we use
the following two identities

∂X(α)−1

∂α
= −X(α)−1

∂X(α)

∂α
X(α)−1, (24)

∂ log |X(α)|
∂α

= Tr

{
X(α)−1

∂X(α)

∂α

}
. (25)

The result then follows after some routine algebraic steps.

4.1.2. Strong convergence

Definition 2. A sequence xn, n ∈ N, of random variables is said to be strongly convergent
(SC) if limn→∞ E {xn} exists and

lim
n→∞

xn
w.p.1
= lim

n→∞
E {xn} . (26)

Lemma 3. The sequences δN (θ) and ∆N (θ), N ∈ N, are SC, for all θ ∈ D.

Proof. Recall the definition of δN from (22). We have

δN (θ) =
1

N

N−1∑
n=0

ξn(θ), (27)

where ξn(θ) = [ξn,1(θ), . . . , ξn,I(θ)]
>, with ξi(θ) = x2n,i − µi (θ). It is easy to see that, for all

θ ∈ D, supn E
{
ξ2n,i(θ)

}
< ∞. Then, since, ξn(θ) and ξm(θ) are independent, whenever n 6= m,

from Rajchman’s strong law of large numbers [23, Th. 5.1.2], we have

lim
N→∞

δN (θ)− E {δN (θ)} w.p.1
= 0. (28)

Now
lim
N→∞

E {δN (θ)} = µ (θ?)− µ(θ).

Hence, from (28),

lim
N→∞

δN (θ)δN (θ)>
w.p.1
= (µ (θ?)− µ(θ)) (µ (θ?)− µ(θ))

>
. (29)

We also have
E
{
sNs

>
N

}
=

1

N
C (θ?) + µ (θ?)µ (θ?)

>
.

9



Then,

E
{
δN (θ)δN (θ)>

}
=E
{

(sN − µ(θ)) (sN − µ(θ))
>
}

=E
{
sNs

>
N

}
− µ (θ?)µ (θ)

> − µ (θ)µ (θ?)
>

+ µ(θ)µ(θ)>

=
1

N
C (θ?) + (µ (θ?)− µ(θ)) (µ (θ?)− µ(θ))

>
. (30)

From (30) and (29), we obtain

lim
N→∞

δN (θ)δN (θ)> − E
{
δN (θ)δN (θ)>

} w.p.1
= 0, (31)

and the result follows from (28) and (31).

Lemma 4. Under Assumption 2 of Theorem 2, the sequences L̃N (θ) and ∇L̃N (θ) are SC, for
all θ ∈ D.

Proof. The result follows immediately by using Lemma 3 in (19) and (20).

4.1.3. Strong uniform convergence

Definition 3. Let D ⊆ Rd. A sequence of stochastic functions fN : D → Rq, N ∈ N, is said
to be continuous and strongly uniformly convergent (CSUC) in D if f(x) = limN→∞ E {fN (x)}
exists and, w.p.1, every fN is a continuous function on D, and

lim
N→∞

sup
x∈D
‖fN (x)− f(x)‖ w.p.1

= 0.

Lemma 5. Under Assumptions 1 of Theorem 1 and 2 of Theorem 2, ∇2L̃N (θ) is CSUC on D.

Proof. We have

‖δN (θ)− E {δN (θ)}‖ = ‖sN − E {sN}‖ (32)

and∥∥δN (θ)δN (θ)> − E
{
δN (θ)δN (θ)>

}∥∥
=
∥∥∥sNs>N − E {sNs>N}− (sN − E {sN})µ(θ)> − µ(θ) (sN − E {sN})>

∥∥∥
≤
∥∥sNs>N − E {sNs>N}∥∥+ 2 ‖µ(θ)‖2 ‖(sN − E {sN})‖ . (33)

The compactness of D and continuity of Σ(θ) imply that there exists k1 > 0 such that ‖µ(θ)‖2 ≤
k1, for all θ ∈ D. Hence, from Lemma 3, the convergences of (32) and (33) are strong and uniform
in θ.

Since Σ(θ) is twice continuously differentiable, there exists k2 > 0 such that

‖C(θ)‖ ,
∥∥∥∥∂C∂θi (θ)

∥∥∥∥ ,∥∥∥∥ ∂2C

∂θi∂θj
(θ)

∥∥∥∥ ≤ k2, for all θ ∈ D. (34)

Also, from the same assumption, there exists ε > 0 such that∥∥C(θ)−1
∥∥−1 ≥ ε, for all θ ∈ D. (35)

Now, in view of (21), equations (34) and (35) imply that, w.p.1, ∇2LN (θ) is continuous.
Also, (32) and (33) imply that, w.p.1, ∇2LN (θ) converges uniformly to limN→∞ E

{
∇2LN (θ)

}
.

The result then follows.
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4.2. Proof of Theorem 1

Lemma 6. Let ¯̃L(θ) = limN→∞ E
{
L̃N (θ)

}
. Under Assumption 3 of theorem 1

arg max
θ∈D

¯̃L (θ) = {θ?} , (36)

i.e., θ? is the unique maximizer for ¯̃L (θ).

Proof. From (19), we have

−2 ¯̃L(θ) = Tr
{
C(θ)−1 lim

N→∞
E
{
δN (θ) δN (θ)

>
}}

.

Then, from (30)

−2 ¯̃L(θ) = Tr
{
C(θ)−1 (µ (θ?)− µ (θ)) (µ (θ?)− µ (θ))

>
}

= (µ (θ?)− µ (θ))
>
C(θ)−1 (µ (θ?)− µ (θ)) .

Also, from (35), there exists ε > 0 such that C(θ)−1 > εI, for all θ ∈ D. Hence, ¯̃L (θ) is
maximized if and only if µ (θ?) = µ (θ). The result then follows from Assumption 3 of Theorem 1.

Proof of Theorem 1. From Lemmas 4 and 5, two applications of [24, Lemma 8] give that L̃N (θ)
is CSUC on D. This, together with Assumption 1 and Lemma 6, assert that the conditions
of [21, Property 24.2] are satisfied, and the result follows.

4.3. Proof of Theorem 2

Lemma 7. Let ∇2L̃ (θ) = limN→∞ E
{
∇2L̃N (θ)

}
. Then

∇2L̃ (θ?) = −Jµ (θ?)
>
C−1 (θ?)Jµ (θ?) .

Proof. From (21),

[
∇2L̃ (θ)

]
d,e

= lim
N→∞

E
{[
∇2L̃N (θ?)

]
d,e

}
= −∂µ

> (θ?)

∂θd
C−1 (θ)

∂µ (θ?)

∂θe
− lim
N→∞

1

2N
Tr

{
C−1 (θ?)

∂C (θ?)

∂θd
C−1 (θ?)

∂C (θ?)

∂θe

}
= −∂µ

> (θ?)

∂θd
C−1 (θ)

∂µ (θ?)

∂θe
,

and the result then follows.

Lemma 8. Under Assumptions 1 and 2 of Theorem 2,
√
N∇L̃N (θ?)

in dist.→ N
(

0, Ĩ
)
.

Proof. We proceed in steps:

11



Step 1: Using (27), we obtain

√
N∆N (θ?) =

1

N3/2

N−1∑
n,m=0

Ξn,m,

with Ξn,m = ξn (θ?) ξ
>
m (θ?). Since E {ξn (θ?)} = 0, it follows that E {Ξn,mΞp,q} 6= 0 only if

either (n,m) = (p, q) or (n,m) = (q, p) or (n, p) = (m, q). Then

E
{
N [∆N (θ?)]k,l

}
=

1

N3

(N−1,N−1)∑
(n,m),(p,q)=(0,0)

E
{

[Ξn,m]k,l [Ξp,q]k.l

}

=
2

N3

(N−1,N−1)∑
(n,m)=(0,0)

E {[ξn (θ?)]k [ξn (θ?)]l [ξm (θ?)]k [ξm (θ?)]l}

≤ 2

N
max
k,n
E
{

[ξn (θ?)]
4
k

}
<∞.

Hence, from [23, Th. 4.1.4],
√
N∆N (θ?)→ 0 in probability, and from [23, Th. 4.4.5],

√
N∆N (θ?)

in dist.→ 0. (37)

Step 2: Recall (27). Since ξn (θ?) and ξm (θ?) are independent, whenever n 6= m, and
E {ξn (θ?)} = 0, from the central limit theorem [23, Th. 6.4.4],

√
NδN (θ?)

in dist.→ N (0, U), (38)

for some matrix U ≥ 0.
Step 3: From (20) (37), (38) and [23, Th. 4.4.6], we have that

√
N∇L̃N (θ?)

in dist.→ N (µ,Σ),

for some vector µ and positive matrix Σ. Now, E
{√

N∇L̃N (θ?)
}

= 0 and

C
{√

N∇L̃N (θ?)
}

= NE
{
∇L̃N (θ?)∇>L̃N (θ?)

}
, ĨN .

Hence,
Ĩ−1/2N

√
N∇L̃N (θ?)

in dist.→ N (0, I),

and the result follows from [20, Th. 13.25].

Lemma 9. The following holds true

Ĩ = ∇2L̃ (θ?) .

Proof. From (21), the entries of ∇2L̃N (θ) are formed by a deterministic term, plus a linear
combination of the elements δN,i and δN,iδN,j , for all i, j = 1, · · · , I. Since the first and second
moments of sN are equivalent under the distributions pθ and p̃θ, it follows that

∇2L̃ (θ?) = lim
N→∞

Ẽ
{
∇2L̃N (θ?)

}
. (39)
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We also have

N
[
∇L̃N (θ)

]
d

[
∇L̃N (θ)

]
e

= N
∂µ (θ)

>

∂θd
C−1 (θ) δN (θ)

∂µ (θ)
>

∂θe
C−1 (θ) δN (θ)

+
N

2

∂µ (θ)
>

∂θd
C−1 (θ) δN (θ) Tr

{
C−1 (θ)

∂C (θ)

∂θe

(
C(θ)−1∆N (θ)− 1

N
I

)}
+
N

2

∂µ (θ)
>

∂θe
C−1 (θ) δN (θ) Tr

{
C−1 (θ)

∂C (θ)

∂θd

(
C(θ)−1∆N (θ)− 1

N
I

)}
+
N

4
Tr

{
C−1 (θ)

∂C (θ)

∂θd

(
C(θ)−1∆N (θ)− 1

N
I

)}
× Tr

{
C−1 (θ)

∂C (θ)

∂θe

(
C(θ)−1∆N (θ)− 1

N
I

)}
.

The above expression is the sum of a deterministic term, plus a linear combination of the
elements δN,i, δN,iδN,j , δN,iδN,jδN,k and δN,iδN,jδN,kδN,l, for all i, j, k, l = 1, · · · , I. Now,

lim
N→∞

E {δN,iδN,jδN,k} = lim
N→∞

1

N3

N∑
n,m,o=1

E {δn,iδm,jδo,k}

= lim
N→∞

1

N3

N∑
n=1

E {δn,iδn,jδn,k} = 0,

and

lim
N→∞

E {δN,iδN,jδN,kδN,l} = lim
N→∞

1

N4

N∑
n,m,o,p=1

E {δn,iδm,jδo,kδp,l}

= lim
N→∞

1

N4

N∑
n=1

E {δn,iδn,jδn,kδn,l}+ lim
N→∞

1

N4

N∑
n,o=1

E {δn,iδn,jδo,kδo,l}

+ lim
N→∞

1

N4

N∑
n,m=1

E {δn,iδm,jδn,kδm,l}+ lim
N→∞

1

N4

N∑
n,m=1

E {δn,iδm,jδm,kδn,l} = 0.

The same conclusion can be drawn if we replace E by Ẽ . Then, in view of the aforementioned
equivalence of the first and second moments of sN under pθ and p̃θ, we conclude that

Ĩ = lim
N→∞

N Ẽ
{
∇L̃N (θ?)∇>L̃N (θ?)

}
. (40)

Finally, from [16, Property 3.8], we have

lim
N→∞

N Ẽ
{
∇L̃N (θ?)∇>L̃N (θ?)

}
= lim
N→∞

Ẽ
{
∇2L̃N (θ)

}
. (41)

The result then follows from (39), (40) and (41).

Proof of Theorem 2. In view of (21), Assumptions 2 implies that ∇2L̃N (θ) is continuous. Also,
in view of Lemma 7 and Assumption 3, ∇2L̃ (θ?) < 0. This, together with Assumption 1, and
Lemmas 5 and 8, give the conditions for [21, Property 24.16], from where the result follows.

13



4.4. Proof of Theorem 3
Let

RN =
1

N

N∑
n=1

xnx
>
n .

We know that, for a given θ ∈ D, the random matrix NRN has a Wishart distribution
WI (NRN ; Σ(θ), N) [25, §7.2]. Hence

pθ (RN ) = NWI (NRN ; Σ(θ), N)

=
N |NRN |(N−I−1)

2
NI
2 |Σ (θ)|

N
2 ΓI

(
N
2

) exp

(
−N

2
Tr
{

Σ (θ)
−1
RN

})
. (42)

Let J be the AFIM associated to the measurement RN , i.e.,

J = lim
N→∞

1

N
E
{
∇ log pθ? (RN )∇T log pθ? (RN )

}
.

The following lemma gives an expression for J .

Lemma 10. The (d, e)-th entry Jd,e of matrix J is given by

Jd,e =
1

2
Tr

{
Σ (θ?)

−1 ∂Σ (θ?)

∂θd
Σ (θ?)

−1 ∂Σ (θ?)

∂θe

}
.

Proof. From (42), we have

log pθ (RN ) = log
N |NRN |(N−I−1)

2
NI
2 ΓI

(
N
2

) − N

2

[
log |Σ (θ)|+ Tr

{
Σ (θ)

−1
RN

}]
,

Then
[∇ log pθ (RN )]d = −N

2
Tr

{
Σ (θ)

−1 ∂Σ (θ)

∂θi

(
I − Σ (θ)

−1
RN

)}
,

and [
∇2 log pθ (RN )

]
d,e

=− N

2
Tr

{
Σ (θ)

−1
[
∂2Σ (θ)

∂θdθe
− ∂Σ (θ)

∂θe
Σ (θ)

−1 ∂Σ (θ)

∂θd

](
I − Σ (θ)

−1
RN

)
+Σ (θ)

−1 ∂Σ (θ)

∂θd
Σ (θ)

−1 ∂Σ (θ)

∂θe
Σ (θ)

−1
RN

}
It then follows from [16, Property 3.8] that

Jd,e = − lim
N→∞

1

N
E
{[
∇2 log pθ? (RN )

]
d,e

}
=

1

2
Tr

{
Σ (θ?)

−1 ∂Σ (θ?)

∂θd
Σ (θ?)

−1 ∂Σ (θ?)

∂θe

}
.

As defined in (9), p̃θ is a distribution of the diagonal entries sN of RN . Our next goal is to
extend p̃θ to the whole random matrix RN .
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Lemma 11. The following holds true

E
{−→
RN

}
=
−−−→
Σ (θ?), (43)

C
{−→
RN

}
=

1

N

(
Σ1/2 (θ?)⊗ Σ1/2 (θ?)

)
Γ
(

Σ1/2 (θ?)⊗ Σ1/2 (θ?)
)
, (44)

where Γ = M + I and M is the symmetric permutation matrix described in [26, §1.2].

Proof. Equation (43) follows straightforwardly. For (44), let X = [x(1), · · · , x(N)] and

E = Σ−1/2 (θ?)X.

Then
RN =

1

N
Σ−1/2 (θ?)EE

>Σ−1/2 (θ?) ,

and therefore
−→
RN =

1

N

(
Σ1/2 (θ?)⊗ Σ1/2 (θ?)

)−−−→
EE>.

We then have

C
{−→
RN

}
= C

{
1

N

(
Σ1/2 (θ?)⊗ Σ1/2 (θ?)

)−−−→
EE>

}
=

1

N2

(
Σ1/2 (θ?)⊗ Σ1/2 (θ?)

)
C
{−−−→
EE>

}(
Σ1/2 (θ?)⊗ Σ1/2 (θ?)

)
,

and the result follows since, in view of [26, §1.2], C
{−−−→
EE>

}
= Γ.

Since RN ∈ PI (R), it has I(I+ 1)/2 degrees of freedom. Hence, M (θ?) has rank I(I+ 1)/2.
It can be readily verified from [26, §1.2], that Γ has two eigenvalues, namely, 0 with multiplicity
I(I − 1)/2, and 2 with multiplicity I(I + 1)/2. It then follows that, for all RN ∈ PI (R), matrix
Γ can be replaced by 2I, i.e.,

−→
RN
>
[(

Σ1/2 (θ?)⊗ Σ1/2 (θ?)
)

Γ
(

Σ1/2 (θ?)⊗ Σ1/2 (θ?)
)]−1−→

RN

=
1

2

−→
RN
>M−1 (θ?)

−→
RN ,

with
M (θ?) = 2

(
Σ1/2 (θ?)⊗ Σ1/2 (θ?)

)(
Σ1/2 (θ?)⊗ Σ1/2 (θ?)

)
.

We then define, for RN ∈ PI (R),

p̃θ (RN ) = N
(
−→
RN ;
−−−→
Σ (θ),

1

N
M (θ)

)
.

Let
J̃ = lim

N→∞

1

N
E
{
∇ log p̃θ? (RN )∇T log p̃θ? (RN )

}
.

Our next goal is to provide an expression for J̃ . To this end, we use the following lemma.

Lemma 12 ([27, Eq. (23)]). Let x ∼ N (µ (θ?) ,Σ (θ?)) and I denote its associated AFIM.
Then

[I]d,e =
∂µ (θ?)

>

∂θd
Σ−1 (θ?)

∂µ (θ?)

∂θe
+

1

2
Tr

{
Σ−1 (θ?)

∂Σ (θ?)

∂θd
Σ−1 (θ?)

∂Σ (θ?)

∂θe

}
.
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Using the above lemma, we obtain:

Lemma 13. The following holds true J̃ = J .

Proof. We can readily apply Lemma 9 to obtain

J̃ = − lim
N→∞

1

N
Ẽ
{
∇2 log p̃θ? (RN )

}
.

Now, from Lemma 12 we have

−
[
Ẽ
{
∇2 log p̃θ? (RN )

}]
d,e

=N
∂
−−−→
Σ (θ?)

>

∂θd
M−1 (θ?)

∂
−−−→
Σ (θ?)

∂θe

+
1

2
Tr

{
M−1 (θ?)

∂M (θ?)

∂θd
M−1 (θ?)

∂M (θ?)

∂θe

}
,

hence [
J̃
]
d,e

=
∂
−−−→
Σ (θ?)

>

∂θd
M−1 (θ?)

∂
−−−→
Σ (θ?)

∂θe
.

Now

M−1 (θ?) =
1

2

(
Σ−1 (θ?)⊗ Σ−1 (θ?)

)
=

1

2

(
Σ−1/2 (θ?)⊗ Σ−1/2 (θ?)

)(
Σ−1/2 (θ?)⊗ Σ−1/2 (θ?)

)
.

Then [
J̃
]
d,e

=
1

2

∂
−−−→
Σ (θ?)

>

∂θd

(
Σ−1/2 (θ?)⊗ Σ−1/2 (θ?)

)(
Σ−1/2 (θ?)⊗ Σ−1/2 (θ?)

) ∂−−−→Σ (θ?)

∂θe

=
1

2

−−−−−−−−−−−−−−−−−−−−−→
Σ−1/2 (θ?)

∂Σ (θ?)

∂θd
Σ−1/2 (θ?)

>
−−−−−−−−−−−−−−−−−−−−−→
Σ−1/2 (θ?)

∂Σ (θ?)

∂θe
Σ−1/2 (θ?)

=
1

2
Tr

{[
Σ−1/2 (θ?)

∂Σ (θ?)

∂θd
Σ−1/2 (θ?)

]> [
Σ−1/2 (θ?)

∂Σ (θ?)

∂θe
Σ−1/2 (θ?)

]}

=
1

2
Tr

{
Σ−1 (θ?)

∂Σ (θ?)

∂θd
Σ−1 (θ?)

∂Σ (θ?)

∂θe

}
,

and the result follows from Lemma 10.

We can now show the main result of the section.

Proof of Theorem 3. Let qN denote the off-diagonal terms of RN . Since pθ (RN ) =
pθ (qN |sN ) pθ (sN ) , it follows from [16, Property 3.8] that

J = − lim
N→∞

1

N
E
{
∇2 log pθ? (RN )

}
= lim
N→∞

E {K (sN )} − lim
N→∞

1

N
E
{
∇2 log pθ? (sN )

}
= lim
N→∞

E {K (sN )}+ I,

with

K (sN ) = − 1

N

∫
∇2 log pθ? (qN |sN ) pθ? (qN |sN ) dqN

= − 1

N
E
{
∇2 log pθ? (qN |sN ) |sN

}
= NE

{
∇ log pθ? (qN |sN )∇> log pθ? (qN |sN ) |sN

}
.
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Following a the same steps, but using Lemma 9 in place of [16, Property 3.8], we obtain

J̃ = lim
N→∞

E
{
K̃ (sN )

}
+ Ĩ,

K̃ (sN ) = NE
{
∇ log p̃θ? (qN |sN )∇> log p̃θ? (qN |sN ) |sN

}
.

From Lemma 13,

I = Ĩ + lim
N→∞

E
{
K̃ (sN )

}
− lim
N→∞

E {K (sN )} .

Now, K (sN ) denotes the AFIM associated to the estimation of θ, based on the knowledge of qN ,
for a given know sN . Also, K̃ (sN )

−1 denotes the asymptotic covariance of the same estimate
when obtained by maximizing p̃θ(RN ). Hence, from the CRLB

K (sN ) ≥ K̃ (sN ) .

Then
Ĩ ≥ I,

and the result follows from the CRLB [16, Th. 6.1].

4.5. Proof of Proposition 2
It follows from Lemma 9 and Theorem 3 that

I = ∇2L̃ (θ?) .

The result then follows from Lemma 7.

5. Case study: source localization problem

5.1. Problem formulation
We assume that there are I sensors deployed in a two dimensional surveillance area, with

known positions at (ai, bi), i = 1, . . . , I. Suppose that a signal source, located at some unknown
position (a?, b?), transmits, at sample time n, a white signal un ∼ N (0, z?) with an unknown
intensity z?. I.e., the vector θ? = [a?, b?, z?]

T represents the true position and transmitting
power of the source. According to the log-distance path loss model [28, S 4.9.1], [15], the signal
xn,i, received at Sensor i, and at sample time n is given by

xn,i =
√
γ
un
dυ?,i

+ wn,i,

where γ > 0 is the receiver gain,

d?,i =

√
(a? − ai)2 + (b? − bi)2,

represents the signal attenuation due to the path loss, and wn,i ∼ N
(
0, σ2

)
is white, and

independent of un and wn,j , whenever i 6= j. The power term υ denotes the path loss factor,
describing the intensity decay as the wave propagates. Empirical measurements of υ for different
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environments are given in [28, Table 4.2]. To simplify the presentation, we assume that σ, γ
and υ are the same for all sensors.

At time N , Sensor i computes an estimate sN,i of the power of xn,i, by averaging N samples,
i.e.,

sN,i =
1

N

N−1∑
n=0

x2n,i. (45)

The target localization problem consists in using the measurements

sN = [sN,1, . . . , sN,I ]
T
, (46)

from all the sensors, to estimate the unknown target coordinates (a?, b?). However, since this
requires knowledge of the unknown transmission power z?, the problem turns into that of jointly
estimating θ? = [a?, b?, z?]

T .
Clearly, sN is of the form (3). Hence, the ML estimate (4) cannot be computed, and we

have to replace it by the quasi-ML estimate (7). Our goal is to show that, using the results
in Theorems 1, 2 and 3, we can guarantee that the quasi-ML estimate is strongly consistent,
asymptotically normal and asymptotically efficient.

5.2. Conditions for quasi-ML estimation
Let

Σ (θ) = Cθ {xi (n)} = h(θ) + σ21, (47)

with h(θ) = [h1(θ), . . . , hI ]
T , hi(θ) = γzd−2υi , i = 1, · · · , I, and 1 being a column vector of

ones.We introduce the following assumption:

Assumption 1. The set D ∈ R3 is compact, θ? ∈ int (D), and does not include the points
[ai, bi, z

′]
>, for all i = 1, . . . , I and any z′ ∈ R, and the points [x′, y′, z′]

>, for all z′ < 0 and any
x′, y′ ∈ R.

Assumption 1 asserts that Assumptions 1 and 2 of Theorem 1, as well as Assumptions 1
and 2 of Theorem 2 are satisfied. Hence, we need to show that Assumption 3 of Theorem 1 also
holds. To this end, we do the following further assumption:

Assumption 2. The sensors are not arranged on a circle or on a straight line, I ≥ 4 and
z? 6= 0.

Lemma 14. Suppose Assumptions 1 and 2 hold. Then, for all θ ∈ D,

Σ (θ) = Σ (θ?)⇒ θ = θ?.

Proof. For θ = [a, b, z]
>, let

di (θ) =

√
(a− ai)2 + (b− bi)2,

i.e., di (θ) is the distance from the point (a, b) to Sensor i. It follows from (47) that Σ (θ) = Σ (θ?)
implies that h (θ) = h (θ?). Then, for all i = 1, . . . , I,

z

di (θ)
2υ =

z?
d2υ?i

.
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Hence, since z?, for all i = 1, . . . , I,

c ,

(
z

z?

)1/υ

=
di (θ)

2

d2?,i
. (48)

The above in turn implies that,

(ai − α)
2

+ (bi − β)
2

= r2,

with

α =
a− ca?
1− c

, β =
b− cb?
1− c

and r2 =
c

(1− c)2
[
(a− a?)2 + (b− b?)2

]
.

Now, if z 6= z?, then c 6= 1, and therefore the points (ai, bi), i = 1, . . . , N , must lie on a circle.
But this contradicts Assumption 2. Hence we conclude that z = z?. Then, (48) implies that,
for all i = 1, . . . , I,

di (θ)
2

= d2?,i. (49)

However, (49) implies that, either the points (ai, bi), i = 1, . . . , N , lie on a straight line, or
that (a, b) = (a?, b?). But from Assumption 2, the points (ai, bi), i = 1, . . . , N , cannot lie on a
straight line. Hence we conclude that [a, b, z] = (a?, b?, z?) completing the proof.

In view of Lemma 14, Assumption 3 of Theorem 1 holds. Therefore, all the assumptions
from Theorems 1, 2 and 3 are satisfied. We then immediately obtain the following corollary:

Corollary 1. Under Assumptions 1 and 2, the quasi-ML estimate θ̂N is strongly consistent,
asymptotically normal, and asymptotically efficient.

5.3. Simulation
For a given N , we use ΨN to denote the estimation error covariance. In view of the CRLB,

ΨN ≥ I−1N , with IN denoting the Fisher information matrix, given by

IN = N2E
{
∇LN (θ?)∇>LN (θ?)

}
.

According to Theorems 2 and 3, we have

lim
N→∞

NΨN −NI−1N = 0,

i.e., as N increases, ΨN converges to its lower bound Ĩ−1N . We present a numerical experiment
confirming this claim. To this end, we regularly deploy 25 sensors, over a square region of
100 × 100 meters, and randomly place the source within the same region. The arrangement of
source and sensors is depicted in Figure 2.

For each value of the number N of samples, we estimate ΨN using M = 1000 Monte Carlo
runs. To this end, we solve the quasi-ML problem (7) using the implementation of the BFGS
quasi-Newton method available in the GSL C library. To obtain an initialization for this algo-
rithm, we use the one step least-squares method in [4]. We also use σ2 = 1, υ = 1 and γ = 3000.
The resulting dependence of the traces of ΨN and I−1N with N are shown in Figure 3, from where
we can see their asymptotic equality. Notice that the figure also shows that ΨN converges to
zero.
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Figure 3: Convergence of the trace of the estimation
error covariance Tr {ΨN} to its lower bound Tr

{
I−1
N

}
.

6. Conclusion

We studied statistical properties of the parameter estimation problem in which measurements
have multivariate chi-squared distribution, but a normal approximation to the measurement
statistics is used to find the estimate. The main technical challenge is given by the fact that the
PDF of measurements lacks a closed-form expression. We where able to show strong consistency,
asymptotic normality and asymptotic efficiency of the resulting estimate. We considered a source
localization problem as a case study, and used our theoretical results to provide conditions to
guarantee that the aforementioned three properties hold in this application.
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