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Abstract. It is known that static state feedback compensa-
tion is insufficient to decouple nonlinear systems which do not
have vector relative degree. Instead, a dynamic precompensa-
tion is first required to achieve vector relative degree. In such
cases, a non-diagonal dynamic precompensation can ordinarily
be used. However, a diagonal dynamic precompensator is usu-
ally preferred as an exact knowledge of system parameters is
then unnecessary. In this paper, we determine conditions un-
der which a diagonal dynamic precompensation is sufficient to
achieve vector relative degree for multivariable nonlinear sys-
tems, and describe a simple algorithm which determines such
compensation.

1 Introduction

There has been much effort applied in solving the problem of
decoupling of multivariable nonlinear systems [1}-[3]. Decou-
pling is usually achieved by applying a precompensator to the
plant, or equivalently, by applying a state feedback when the
full state of the system is available, see for example [1] and the
references therein.

It is known that the decoupling of a multivariable nonlinear
system is closely related to the so-called vector relative degree
of the system, which serves as the generalisation of relative de-
gree for single-input-single-output systems (see [1]). For sys-
tems with a vector relative degree, decoupling can be simply
realised by using static state feedback compensation. This case
has been studied by many authors, see for example [1]. For sys-
tems which do not have vector relative degree, dynamic state
feedback compensation is required. An excellent description of
the general approach to static and dynamic decoupling of non-
linear systems is found in [3], and the references therein.

An alternative approach to decoupling is to study the fol-
lowing decouplability problem: given a multivariable nonlinear
system which does not have vector relative degree, search for
a diagonal precompensator such that the resulting system will
achieve vector relative degree. Once this precompensation is
found, the resulting system can be decoupled by using static
state feedback compensation, as already mentioned. This ap-
proach has been used for linear systems 4], [5], [6] and for
nonlinear systems [1]. In [1] the so-called Dynamic Extension
Algorithm is applied for finding the diagonal precompensator.
Diagonal dynamic precompensators are usually preferred as an
exact knowledge of system parameters is then unnecessary for
achieving decouplability.

In this paper, we provide a necessary and sufficient condition
for the existence of diagonal precompensation which achieves
vector relative degree. Based on this, a simple algorithm for
finding the diagonal precompensator is given. The result is
an extension of the result developed by the authors [6] and is
similar to another by [7], for linear systems. We show that
the decouplability question is essentially associated with the
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nonsingularity or (non)generic singularity of a certain matrix
related to the system.

2 Problem Formulation and Preliminaries

Consider the following class of multivariable nonlinear systems:

T: i) F(=z(1)) + g(=(t))u(?)
y(t) h(z(t)) + k(z(t))u(?) (1)

where the state z(t) € M, with M being a submanifold of R",
the control u(t) € R™, the output y(t) € R™, and f(-),(-), h(:)
and k(-) are smooth functions of appropriate dimensions. The
matrix k(z) is called the direct transmission matrix. In the
sequel, we denote the system (1) by y = T(u) or simply T, the
row vectors of f,g,h and k by f;, g, hi and k;, the elements of
g and k by g;; and k;;, and the differential operator d/dt by p.
Definition 2.1 Given z, € M, the system T in (1) is called
bicausal at z, if there ezists a neighbourhood N of z, such that
k(z) is nonsingular for allz € N C M. The system T is called
bicausal if it is bicausal at every point z € M. :

For simplicity of exposition, we will implicitly assume that T
is restricted to a connected submanifold on which the properties
of interest, such as bicausality, hold.

We now give a definition which is a prerequisite to the results
established in Section 3. It concerns the concepts of generic and
nongeneric singularity of transfer matrices as discussed by Singh
and Narendra [7], however as we find the discussion and defini-
tion therein to be somewhat unclear, we outline these concepts
from a different and more precise viewpoint.

Definition 2.2 Given a set of m n—dimensional row veclors
{vi = (vi1 viz ..-via);i=1,...,m}, vy is said to be generically
linearly dependent on vz, . .., vy if for every possible veclor #) =
(D11 D12 -..vin) defined by

9y = 0 ifv; =0 2)
# 0 ifv;#0,j=1,...,n, 3)

the veclors ¥y, vs,...,Vm are linearly dependent, i.e., the linear
dependency is independent of the specific values of the nonzero
elements of vi. Olherwise, vy is said lo be nongenerically lin-
early dependent. By the same token, a set of linearly dependent
row veclors are said io be generically linear dependent if at least
one of them is generically linearly dependent on the others, oth-
erwise they are said to be nongenerically linearly dependent.
These definitions also apply to column vectors by consider-
ing their transposes, and to matrices by considering their
row/column vectors.

Remark 2.1: The definition 2.2 above indicates that the linear
dependence of a set of nongenerically linear dependent vectors
can be invalidated by varying the nonzero elements of the vec-
tors. The number of vectors must exceed one in order to have
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nongeneric linear dependence. Furthermore, a set of row (resp.
column) vectors are generically linearly dependent if and only
if either of the following cases happens:

(i) there is a zero row (resp. column);

(it) there exists a subset of vectors such that by forming them
as a matrix, the number of nonzero columns (resp. rows)
in the matrix is strictly less than the number of rows (resp.
columns) in the matrix, i.e., the nonzero columns (resp.
rows) form a “tall” (resp. “wide”) submatrix.

3 Main Result

Given the system 7" in (1) and M, we wish to define conditions
under which we can find a diagonal dynamic precompensator
of the form

D(p~') = diag{p=%}, d; 20, 1<j<m (4)

which ensures that the composite system T o D(p~!) has some
vector relative degree {ry,r,-++,7,} on M. i.e., the new sys-
tem K = R(p) o T'o D(p~!) is bicausal, where

R(p) = diag{s™,...,p"}. )

Defining z(t) = R(p)y(t) and u(t) = D(p~1)v(t), the system K
can be written as follows:

K: 3(1t) = fz®)+3@0)w)
At) = h(z) + k(z())u(t) (6)

where Z is the state of the new system which contains the state
of T and new internal state variables introduced by D(p~1).
Assumption 3.1 (well posedness): The nonlinear system (1)
is called well-posed if the following conditions are satisfied:

(i) For every 1 < i < m there exists some u € R"™ and integer
r; > 0 such that the direct transmission from u to p"iz; is
nonzero for all z € M.

(ii) For every u € R™, there exists 1 < i < m and # such that
the direct transmission from u to p’iz; is nonzero for all
zteM.

Remark 3.1: Condition (i) is equivalent to saying that there
exists {ri,...,rm},ri > 0, such that every row of the matrix
k in (6) is nonzero for all € M (but k is not necessarily
nonsingular). That is, each z; should be ”influenced”by some u
directly through p" z;, Condition (ii) implies that every u should
have “influence” in some z; directly through p™iz;. These two
conditions are satisfied by most nonlinear engineering systems
and all linear systems with nonsingular transfer matrices.
We now have the following result.

Theorem 3.1 Given the system y = T(u) in (1) satisfying
Assumption 3.1, one of the following two cases must occur and
they are mutually ezclusive:

(i) There ezists a pair D(p~') and R(p) in the form of (4)
and (5) such that the direct transmission mairiz k(z) of
the resulting system K in (6) is nonsingular on M. In this
case, ToD(p~!) has vector relative degree described by R(p)
and therefore is decouplable by, stalic state feedback.

(ii) There ezists D(p~*) and R(p) in the form of ({) and (5)
such that the direct transmission matriz k(z) is nongener-
ically singular for some z € M. In this case, there exisis
no other diagonal precompensator D(p~*) of the form (})
such that T o D(p—1) has vector relative degree.

The theorem above indicates that we only need to find R(p)
and D(p~*) which make k(Z) either nonsingular or nongener-
ically singular in order to determine whether a suitable prec-
ompensator exists or not. The means for finding such a prec-
ompensator is given in the following algorithm. The proof for
Theorem 3.1 and Algorithm 3.2 is given in [8].

Algorithm 3.2 Initially let D(p~!) = I.
Stepl. Find R(p) such that every row of k() is nonzero.
There are three possibilities:

1. k(Z) is nonsingular on M: D(p~') is a diagonal precom-
pensator for T and R(p) gives the associated vector relative
degree.

2. k(%) is nongenerically singular at some £ € M: No diagonal
compensator exists which will give a vector relative degree.

3. k(%) is generically singular on M: Proceed to Step 2.

Step 2. Extract the maximum number of rows of k(z), each
of which are generically linearly dependent of the others. Note
that the nonzero columns in these rows form a tall matrix. De-
note this set of rows by i, the set of nonzero columns by j,
and the set of remaining columns by j. Then for each column
index ! in j, increment d; by 1. Return to step 1.

The algorithm is complete when either of cases (i) or (ii) is
achieved.
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