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Abstract. In this chapter, we consider two problems associated with
time-delay systems: robust stability analysis and robust stabilization. We
first obtain two results for robust stability using the integral quadratic
constraint approach and the linear matrix inequality technique. Both re-
sults give an estimate of the maximum time-delay which preserves robust
stability. The first stability result is simpler to apply while the second
one gives a less conservative robust stability condition. We then apply
these stability results to solve the associated robust stabilization problem
using static state feedback. Our results provide new design procedures
involving linear matrix inequalities.

1 Introduction

Consider a time-delay system described by
z(t) = Aox(t) + Agz(t — 7) + Byu(t) (1)

where z(t) € R" is the state, u(t) € IR™ is the control input, 7 is an unknown
constant time delay, Ag, A4 and B, are constant matrices.

The system above has been analyzed by many researchers. Two types of
robust stability conditions have been reported in the literature: the so-called
delay independent conditions and delay-dependent conditions. In comparison,
the delay independent conditions are simpler to apply, but the delay-dependent
conditions are less conservative in general. With the recent advances in convex
optimization (see, e.g., [2]), the focus of the current research is towards finding
less conservative delay-dependent conditions by allowing more complex convex
optimization. See [13] for a review of robust stability results.

One of the goals in this chapter is to provide new conditions under which
the robust stability of the autonomous system of (1) is guaranteed. Our work is
based on two ingredients: 1) a sufficient condition for robust stability expressed
in the frequency domain; and 2) the integral quadratic constraint (IQC) ap-
proach to robustness analysis. Two stability results are presented. Both results



are expressed in terms of linear matrix inequalities (LMIs), and they give an
estimate of the maximum time-delay which preserves robust stability. The first
stability result is simpler to apply while the second one is less conservative. We
point out that the stability results in this chapter generalize those in [13].

After derived the two stability results, we then apply these results to solve the
associated robust stabilization problem for the system (1) using state feedback
control. We also provide explicit formula for controllers. Finally, we show several
examples which demonstrate the applications as well as the advantages of the
results obtained in this chapter.

2 Preliminaries

Several preliminary results are required for robust stability analysis of the au-
tonomous system of (1). Throughout this chapter, we denote A = Ay + Aq.

Lemmal. The autonomous system of (1) is asymptotically stable if A is asymp-
totically stable and that

A(jw, ) = jwl — A — 7p1 (JwT)Ag Ao — Tp2(JwT)AgAg (2)
is nonsingular for all w € IR, where

pr(jv) = —/% pa(jv) = pr(jv)e?. 3)

Proof. 1t is well-known that the autonomous system of (1) is asymptotically
stable if and only if

A(jw, ) = jwl — Ag — Age 97

is nonsingular for all w € IR.

Suppose A(jw, 7) is nonsingular, we need to show that fl(jw, 7) is nonsingu-
lar. Let « be such that A(jw, )z = 0. We need to show that z = 0. To see this,
we note

0= (jwl — Ag — Age™ Tz

(jwI — A — Ag(e 9“7 — 1))z

(JwI — A — 1p1(jwr)Agjw)x

(jwI — A — 7p1(jwr)Ag(Ag + Age ™))z

= A(jw, 1)z (4)

So x must be zero due to the nonsingularity of A(jw, 7). O
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Fig. 1. Interconnected Feedback System

Consider the interconnected system in Figure 1 which is also described by
the following equations:

z(t) = Az(t) + Bg(t)

y(t) = Ca(t) + Dg(t)

z(t) = §(t) + v(t)

g(t) =7(t) + w(t)

w(t) = Az(1)) ()

where A(-) € A which is a set of linear or nonlinear dynamic operators to be
specified later. Denote

G(s)=C(sI-A)'B+D (6)

and assume A to be asymptotically stable in the preliminaries and stability
analysis sections.

The feedback block A(-) is assumed to satisfy an IQC which is constructed
via a filter given as follows:

&y =Ajxy + Byuy, x5(0)=0
yr = Cras + Dyuy

“f:H (7)

w



where A; is asymptotically stable. Denote the transfer function of the filter by
Gy(s) = Cy(sl — Ay)™' By + Dy (8)
The IQC used in this chapter is then described by the following inequality:

T
/ y}éyfzo, asT — oo, VA€A, ze L:]0,00), (9)
0

where @ is a constant symmetric matrix.

Remark 1. The definition above does not require w € £5]0, c0). But if this is the
case, then the IQC (7)-(9) becomes, following the Parseval Theorem,

/+Oo[z*(jw) w* (jw)]B(jw) [Z(jw } dw>0 VAcA (10)
—o0 w(w)] T -
where z(jw), w(jw) are Fourier transforms of z(t), w(t), respectively, and

b(s) = G}(5)9Gs(s) (11)
The following results serve the foundation of the IQC approach.

Theorem 2. (The IQC Theorem) [19, 16, 15] Given a connected set of op-
erators A, containing the zero operator, for the feedback block of the system (5),
the system is absolutely stable if there exists some P(s) of the form (11) and a
constant € > 0 such that both (9) and the following condition are satisfied:

(G (jw) 116(jw) [G(}'“’)] el <0, Vwe (—o0,00) (12)

Further, for causal and asymptotically stable linear time-invariant (LTI) A(-),
(9) is equivalent to the following:

1 Al | 5

That is, the system (5) is absolutely stable if there exists $(s) of the form (11)
such that (12) and (13) hold.

]20, Vwée (—oo,x), A€ A (13)

Lemma3. (KYP Lemma) [1, 17] Given A € R™", B € R™* and sym-
metric 2 € ROTIXOFR) yhere exists a symmetric matrizc P € R™" such

that
[ATP +PA PB

BTP 0
if and only if there exists some constant € > 0 such that
jwl —A)~'B

1

}+9<0 (14)

[BY ((jwI — A)~YH)* 1102 [( } +el <0, V we (—oo,00) (15)

Further, if A is Hurwitz and the top-left n xn submatriz of 2 is positive semidef-
inite, then (14) implies P > 0.



We also recall the following two linear matrix inequality results:

Theorem 4. (Positive Real Parrot Theorem) [2, 11, 10, 7] Given a sym-
metric matriz @ € R™*™ and two matrices U, V of column dimension m. There
exists a matriz © of compatible dimensions such that

v+UTOTV +VTOU <0 (16)

if and only if
vlhwu, <o (17)
viev, <o (18)

where Uy (resp. V1) is any matriz whose columns form a basis of the null space
of U (resp. V).

Lemma5. [6] Given matrices A, By, B, C1,Co, X4,Q = QT, Wy = WL Wy =
WL of appropriate dimensions, suppose Wy > 0, Wa > 0. Then there ewists a
matriz K of appropriate dimension such that

QA" +4Q QCY| B, B, I
CiQ  -Wi| 0 |+ |Xa|K[I0|0]+ |0|K"[Bf XJ|0]<0
BT 0 [-Ws 0 0
(19)
holds if and only if the following LMI holds:

Viol” [@a™+ 4@ ect| B 10

ol ChQ —Wi| O i <0 (20)
BY 0 |-We

where N is any matriz whose columns form a basis of the null space of [BT X:{].
Denote Ky the solution of the following formula:

-

where © denote the pseudoinverse. Further let Ky be any solution of the LMI

+
B3

C1Q

0| x7
Xa|-W

; (21)

U (Ky) + Bo(I - X Xq)Ky + K3 (I — X Xq)BY <0, (22)
where
W(Ky) = QAT + AQ + K{ B + B2 K,

. [01Q+XdK1r [W;l 0 } [01Q+XdK1}‘

Bf 0wyt Bf (23)

Suppose (20) holds. Then a desired K for (19) is given by K = K; if (I —
XFXy)BT =0 o0r K=K+ (I —X]Xq)K> otherwise.



3 Stability Analysis

Consider the time-delay system (1). For stability analysis, we assume that u(t) =
0. Express

Aqg=HE, HeR"™, EeRY" (24)
where ¢ < n, and H and E are of full rank. Define
T
BT = [ET] c= [gﬂ - [gﬁz] C,=C, D=0,  (25)

and A being the set of LTI operators with Fourier transform given by

AQjw) = A diag{pr(jwr)1y; pa(jor) Iy} (26)

for some A € [0, 1], where p;1(-) and pa(-) are defined in (3).
Using Lemma 1, we know that the system (1) is robustly stable if the follow-
ing system is robustly stable:

z(t) = Az(t) + Bg(t)

§(t) = Cra(t) + Dg(2)

z(t) = g(t) + ()

g(t) =r(t) + w(t)

w(t) = A(z(t)) (27)

Following the IQC Theorem, we assert that the system (1) is robustly stable
if there exists some IQC, or equivalently, #(s) as in (11) such that (12) and
(13) hold. Note that the notion of absolute stability coincides with the notion
of robust stability for a linear uncertain block A. In the rest of this section, we
study two IQCs which give two robust stability conditions.

The first IQC is a simple constant D-scaling used in the analysis of structured
singular value. More precisely, we take

Gy(s) = diag{lzg, Ir4} (28)

and ~
@ = 7'_1 diag{Al,Ag,—Al,—Ag} (29)

for some ¢ x ¢ symmetric and positive-definite A;,7 = 1, 2, which are to be chosen.
Denote
A= diag{/ll, AQ} (30)

The resulting 1QC has
&(s) = 7! diag{A, —A} (31)

It is straightforward to verify that (13) holds because p;(-) are contractive. The
sufficient condition (12) for robust stability becomes

[BY((jwl — A)1)* Iy,] [TCTAC 0 } [(ij—A)—lB

<
0 14 b, } +el <0 (32)



for all w.
Using the KYP Lemma, the above is equivalent to the existence of P = PT >
0 such that the following LMI holds:

ATP+ PA+7CE AN Cy +7CTAC;  PH PH
HTP —7'71/11 0 <0
HTP 0 —7'71/12

Multiplying 7 to the second and third row and column blocks, which does not
alter the validity of the LMI, the above becomes

ATP—FPA-FTCiTAlCl-FTCETAng TPH TPH
II(r) = THTP —-74; 0 <0 (33)
THTP 0 —74,

Note that II(7) is affine in P, A; and A,.
We summarize the analysis above as follows:

Theorem 6. The autonomous time-delay system of (1) is robustly stable for all
0 < 7 < 7 if there exist n x n symmetric and positive definite matrices A, Ao
and P such that the LMI

II(7) <0 (34)
holds, where II(7) is defined in (33).
Proof. Suppose (34) holds. It follows from the analysis above that the system
(1) is robustly stable for 7. The conclusion that the above also implies the robust
stability for all 0 < 7 < 7 follows from the fact that the II(7) is convex in 7.

More precisely, II(7) < 0 when 7 is sufficiently small, due to (34) and A; > 0.
The rest follows from the convexity of IT(7). O

The second IQC we use to study the robust stability of the system (1) will
be more involved but give a less conservative condition. Let

f(s)=cs(sI —ap)~'by +dy (35)

be any asymptotically stable SISO filter with the following property:

G2 |2 e (36)
Denote the diagonal transfer matrix
F(s) = f(s)yy = Cy(sI — Ay) "' By + Dy (37)

We will discuss how to choose f(s) later.
Now define
Gy(s) = diag{F(s7), 2} (38)



and @ as in (29). This yields

o) = [ 2] (39)
P(s) = G}(S)@Gf (s) =771 diag{F*(s7)AF(s7),— A} (40)

Subsequently, condition (13) is automatically satisfied because

iy Ao |\ ]

= F* (jwn)AF (jor) — Ndiag{p} (jwr)p1 (jwr) A1, p3 (jwr) p2 (joT) A2}
= A2 (F* (jwr) F(jwr) — N diag{p} (jwr)p1 (jw), p3 (jwr)pa (jwr) A/
>0

Therefore, a sufficient condition for robust stability of system (1) is the condition
(12) which, in our case, becomes

Gr(jw)F* (jwr)T P AF (jur)Gr (jw) — T A+ elyy <0, YV w € (—00,00) (41)

for some (sufficiently small) € > 0, where G (s) = C, (s — A)~!B.

Our next step is to convert the frequency domain condition (41) into the state
space. To this end, we denote by C,(sI — A;)" !B, a state-space realization of
F(s7)G-(s). Then, it is straightforward to verify that

- 714 B:C _ 0 -
ATz[ 0 ! i ] B:[B], C.=[C; D;C,] (42)

Condition (41) can be rewritten as
jwl —A)'B

(BT ((jwl — A,)"1)* 1] diagl{r—'CTAC,, —+—1 A} [( ;

] +el <0
for all w € (—o0, ).
~ Applying the KYP Lemma, the above is equivalent to the existence of some
P = PT > 0 such that the following linear matrix inequality holds:
] ATP 4 PA, +r-1CTAC, PB
I(r) = <0

(1) BLP 1y (43)

The above analysis is summarized as follows:

Theorem 7. The autonomous time-delay system of (1) is robustly stable for
all T < 7 if there exist an asymptotically stable filter f(s), and symmetric and
positive-definite matrices Ay, Ay and P such that the following LMI holds:

I(7) <0 (44)
where I1(-) is defined in (43).

Proof. The proof is very similar to that of Theorem 6, so the details are omitted.
The ouly step worth of discussion is the fact that II(7) < 0 implies I1(7) < 0 for
all 0 < 7 < 7. This step is a bit tedious but not too difficult to verify too. O



4 Stabilization

Consider the time-delay system (1). Our objective is to design a static state
feedback controller such that the closed-loop system of (1) is uniformly asymp-
totically stable. The results derived in this section are based on Theorems 6 and
7.

Let a desired controller be given in the following form:

u(t) = Ka(t) (45)

where K is the gain matrix to be designed.
With the controller (45), the closed-loop system of (1) is as follows:

#(t) = (Ao + BuK)z(t) + Aga(t — 1) (46)

Applying Theorem 6 and Lemma 5 to the system (46), we obtain the follow-
ing result:

Theorem 8. There exists a state feedback controller (45) such that the closed-
loop time-delay system of (1) with this controller is robustly stable for all 0 <
7 < T if there exist n X n symmetric and positive definite matrices I, 1> and Q

such that the LMI .
lNB 0] ) lNB 0

017 017 <0 (47)

holds, where

QAT + AQ QCT | Q¢I HIT HIL

C1Q —rin 0 0 0
HC(T) = CoQ 0 —r 0 0 ,

nLH" 0 0 -0 0

FQHT 0 0 0 —T71F2

and N is any matriz whose columns form a basis of the null space of [BL BL ET].
Further, suppose (47) holds. Let K1 be the solution of the following formula:

K|
—| =
and Ko be any solution of the LMI
U(K:1) + Bu(I = (EB.)"EB.)Ky + K3 (I — (EB.)YEB.)By <0, (49)

+
T
Bu

C1Q

0 |BIET
EB,|-71I

; (48)

where
U(K,) = QA" + AQ + KI' B! + B,K,

C1Q+EB,K, 1 [ITY 0 0 07 [C1Q+ EBJK,
C2Q 0 I,'0 0 C2Q
HT 0 0 Iy 0 HT
HT 0 0 01 HT

(50)



Then, a desired controller gain matriz K is given by K = K,Q 1 if
(I - (EB,)YEB,)BL =0
or K = (K; + (I — (EB,)TEB,)K>2)Q™! otherwise.

Proof. Applying Theorem 6 to the closed-loop system (46), we find that this
system is robustly stable for all 0 < 7 < 7 if there exist n X n symmetric and
positive definite matrices Ay, Ay and P such that the matrix inequality
(A+ B,K)"P+ P(A+ B,K) + 7C¥ 1,05 | _ _
+7(Cy + EBK)TA(C, + EBK) | LA TPH
FHTP 747 0
FHTP ‘ 0 —7As

<0 (51)

holds. Using Schur complements, (51) can be rewritten as

(ATP +PA 7cf | 7C¥ 7PH 7PH
7C,  —TFATY 0 0 0
7Cs 0 |-74,1 0 0
TH'P 0 0 —74 0
L TH'P 0 0 0 —7A
PB, I
7EB, 0
+| 0 |K[I0|000]+ |0|KYBIP+BIEY |000]<0 (52)
0 0
L 0 0

Define Q =P~ !, I = A;l and I, = A;l, respectively. Multiplying

diag{Q,7 [, 7' [,7 ', 7 ' Iy}
to both sides, the inequality above is equivalent to

B,
EB,
@+ | 0 [(KQ)IMI0|000]+
0
0

(KEQ)T[BT BTET |000] <0 (53)

o o ocle~

Then, the results in the theorem are obtained by applying Lemma 5.

Corresponding to Theorem 7 for stability analysis, we can obtain the follow-
ing less conservative result for robust stabilization:



Theorem 9. There exists a state feedback controller (45) such that the closed-
loop time-delay system of (1) with this controller is robustly stable for all T < T
if there exist symmetric and positive definite matrices I', Q; and @ such that

the LMIs
T
Ny |0 — | Ny|O
0 I] II.(7) [ 0 I] <0 (54)
|:Afo+QfA3; ch}r] <0 (55)
CrQy -r
hold, where
QAT + AQ QCTBJ? QC’TDJ:f BI
-1 Ty —1 T
fry=| BrC9 T Qr e Qpdy) @Gy 0 (56)
foCQ T Cfo -7 I 0 _
rpt 0 0 |-r 1T

and Ny is any matriz whose columns form a basis of the null space of the matrix
(B XT] with

B;| |EB,
Xg= . 57
=[] "] o
Further, suppose (54)-(55) hold. Denote
By
X, =
[ DJ c (58)
and AT A ct
sz[Qf A fof], (59)
CrQs -r
Let K be the solution of the following formula:
+
* - Xd|7'_1Wf XCQ ’
and let Ko be any solution of the LMI
V(K1) + Bu(I - X X4)Ks + K3 (I - X Xq)B,, <0, (61)
where
¥(K,) = QA" + AQ + K] B + B,K,
[XQ+ XaE0 ]! Wit 0] [XeQ + Xaky
+7 T ~ T . (62)
B 0 r B

Then, a desired controller gain matriz K is given by K = K1Q ™1 if
(I - Xj'Xd)Bg =0
or K= (K1 + (I - X Xa)K2)Q ! otherwise.



Proof. The proof of this theorem follows the same line as that for Theorem 8.
Namely, we apply Theorem 7 and Lemma 5 to the closed-loop system (46). We
first use Schur complements to rewrite the robust stability condition in Theo-

rem 8, assuming K = 0. That is, I1(7) < 0 if and only if

ATP+PA, CT | PB
C, —7A7Y 0 <0
BTP 0 |-7714

Furthermore, we take P = diag{ Py, P} since there is no interaction between the
closed-loop system and the filter. Let ) = P! = diag{Qs,Q} and I' = A~1.
Multiplying diag{Q, 711, I'} to the both sides, the above inequality is converted
into
Tﬁl(Afo-i-QfA};) BsCQ TﬁleCJT 07
QCTB;;F QAT + AQ QC’TDJ? BI
Tﬁlcfo D_fCQ —r7ir 0 _
0 rp* 0 [-r'r

< 0.

Swapping the first two rows and columns, which does not affect the inequality,
we further convert the above into

II.(7) <0 (63)

where I1.(7) is defined in (56).
Now let static state feedback be used, i.e., Ag becomes Ay + B, K. Subse-
quently, A becomes A + B, K and C becomes

EB,K

o+ | B,
0

Hence, the robust stability condition (63) becomes the following robust stabi-

lization condition:

B,
I(7) + | Xa | (KQ)[10]|0] +
0

(KQ)" [BT XT| 0] <0

o|le ~

Then, it is tedious but straightforward to prove the characterization of K by
applying Theorem 7 and Lemma 5. a

Remark 2. If we take the filter f(s) = 1 and further constrain A to be A =
diag{Ay, A2}, then it is obvious that Theorem 9 reduces to Theorem 8. To see
this, we may select By = 0, Cy = 0 and Ay = —I, then clearly (54) reduces to
(47) while (55) is trivially satisfied.



5 Examples

Before providing illustrative examples, we address the problem of finding a suit-
able filter f(s). First, we note that f(s) is a SISO transfer function, and that the
constraint on f(s) (36) is independent of the system (1). This means that once
a “good” f(s) is found, it can be applied to various time-delay systems of the
form (1). The complexity of f(s) is mainly determined by the degree of f(s). A
second order example is given below:

2(s+0.9)

(5 +0.8)(s + 2.216) (64)

fls) =

with its Bode plot given in Figure 2. Also plotted in Figure 2 is |sin(w)/w| to
justify (36).

1.2

Fig. 2. Example of f(s). Solid line: |f(jv)|; Dotted line: |sin(v)/v|



Example 1: Consider the autonomous system of (1) with

—2 0 -1 0
Ao = [ 0 0.25] » Aa= [—0.1 —0.85] (65)

Using Theorem 7 and the f(s), the maximum 7 is obtained to be 7,,x = 0.9848.

Obviously, the conservatism of 7,,,x depends on the filter f(s). It is found
in simulation that second order filters usually outperform first order ones. Also,
higher order filters can be used to obtain slightly larger 7.x.

Using Theorem 6, the maximum 7 is obtained to be 7,,,x = 0.6417.

As comparisons, we notice that the maximum 7 using the results in [13, 12]
is Tmax = 0.58 while the optimal 7 for the system with the given parameters is
T, = 1.54[12].

Example 2: Consider the system (1) with

-2 0 -1 0 1
Ao = [ 0 0.35} ) Aa= [—0.1 —0.25] » Bu= [0.1] ‘ (66)

Since Ag + Ay is unstable, the system (1) with the above given parameters can’t
be stabilized independent of the time-delay using state feedback controller.
Using Theorem 9 and the f(s), the maximum 7 is obtained to be Tmax =
0.9726.
To avoid numerical difficulties, we synthesize the state feedback controller
using Tax = 0.92 instead. Following the explicit K formula in Theorem 9, we
obtain that a desired controller gain matrix is given by

K =[-24.8250 —62.2741]. (67)

6 Conclusion

We have obtained two new robust stability conditions for time-delay systems by
applying the IQC approach. These conditions are expressed in terms of LMIs and
therefore easily solvable. Although a single delay is considered in this chapter, we
stress that an extension to multiple delays can be simply derived. As applications
of these new robust stability results, robust stabilization problems using static
state feedback control have been tackled. Explicit controller formulas have also
been provided.

We have not explained how to determine the maximal time delay 7. Gener-
ally, 7 can be obtained by a gradient method. First we set 7 to be sufficiently
small, then gradually increase it until the corresponding robust stability or sta-
bilization conditions are no longer feasible. A fine gradient can be adopted in
the final critical region to obtain larger 7. Alternatively, we can use a bisection
method. That is, we start with any lower bound and and a upper bound for
7. Then, choose the initial 7 to be the average of the bounds and test for the
solvability of robust stability or stabilization conditions. The bounds will be im-
proved according to the outcome of the test. This procedure is repeated until
the gap between the bounds is sufficiently small.
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