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Abstract

It is shown that a feedback system is robustly stable with respect to small time delays if and only if it is stable for zero
time delay and a structured singular value is less than one. c© 1999 Elsevier Science B.V. All rights reserved.

Keywords: Stability; Well-posedness; Robustness; Time delays; Structured singular value

1. Introduction

Is the feedback loop of Fig. 1 stable if the loop
gain is a constant P(s)≡ 3? This loop gain passes
any standard stability test, but if P represents an I=O
system with the measured output y being fed back,
then the answer is no. The reason is that any active
measuring brings in a small time delay in the loop
and this may destroy stability no matter how small the
time delay is. 1 More generally, if P(s) is a constant
gain P(s)≡p and if there is a time delay of � seconds
in the loop somewhere, say right before y, then the
response y to a unit step r satis�es y(n�)=p−p2 +
p3 · · ·−(−p)n and so, only if |p|¡1 does y converge
to the expected y=p=(1 +p)r. The amount of delay
in the loop is irrelevant to stability, it only a�ects
the speed with which the signals converge or diverge.

∗ Corresponding author. E-mail: g.meinsma@math.utwente.nl.
1 For general (behavioral) interconnected systems the presence

of small time delays may not be justi�ed.

(Oddly enough, for |p|¿1, the smaller the time delay
the faster y blows up.)
In 1971, Willems ([10], pp. 90–97) showed that

for SISO systems a closed loop with small time de-
lays is in some sense “well-posed” and stable if it is
stable in the usual sense and in addition |P(∞)|¡1.
Recently, the problem of robustness of stability with
respect small time delays has been taken up again.
Logemann et al. [4] have analyzed the problem for a
class of regular in�nite-dimensional MIMO systems
P, and in [3] the results are taken further for ill-posed
systems, and neutral systems are considered in [5]. Re-
lated to this is the work by Georgiou and Smith [2] on
w-stability, which allows to deal with high-frequency
perturbations, of which small time delays are an ex-
ample.
One of the �ndings of [4] is that a stable feedback

system remains stable when perturbed with small time
delays if a certain structured singular value is less than
one ([4], Theorem 6.5). It seems to be a di�cult open
problem whether or not this is in fact a necessary and
su�cient condition (see [4], p. 589). We show that
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for the special case of rational loop gains and a more
natural de�nition of stability, the structured singular
value condition is indeed both necessary and su�cient.
A consequence of this result is that the robust stability
test is NP-hard, owing to a result by Toker [7] that
computation of complex structured singular values is
NP-hard.

2. Main result

We assume that the loop-gain P in Fig. 1 is a ra-
tional transfer function matrix, representing an LTI
system, that u and y are subject to perturbations and
that there is a small time delay in the loop in each of
the components of the signals. Such a system may be
represented by the block diagram in Fig. 2. Here v1
and v2 represent the perturbations of u and y, and the
block e−s� represents the time delays. The matrix � is
diagonal, �=diag (�1; : : : ; �n); with real, nonnegative
entries. In other words, the delays in the lower half of
the loop in Fig. 2 are such that ỹk(t)=yk(t − �k).

De�nition 2.1 (Robust stability with respect to small
time delays). The loop in Fig. 1 is robustly stable with
respect to small time delays if for the loop in Fig. 2
there is an �¿0 and an N¿0 such that the L2-induced
norm of the map from

[ v1
v2

]
to

[ u
y

]
is bounded by N

for any diagonal time delay � with ‖�‖¡�.

This de�nition combines input–output stability
and well-posedness, where well-posedness expresses

Fig. 1. The unity feedback loop.

Fig. 2. The unity feedback with time delays and injected distur-
bances.

that small changes of the description result in small
changes in the closed-loop signals over a given �nite
time. The reason to combine the two notions is math-
ematical convenience. The structured singular value
�(M) of M ∈Cn×n that we need is de�ned as

�(M) = inf
{
�¿0: |In +Mdiag (�1; : : : ; �n)| 6=0;

∀�k ∈C; |�k |6 1
�

}
:

Theorem 2.2. Let P be a rational transfer function
matrix. The feedback loop in Fig. 1 is robustly stable
with respect to small time delays, if and only if P is
proper, (I + P)−1 is stable and �(P(∞))¡1.

Proof. De�ne �∞= �(P(∞)) and let ‖ · ‖ denote the
spectral norm (the largest singular value) for matrices.
(If): This is the straightforward but technical part

of the proof. Suppose that P is proper, (I + P)−1

is stable and �∞¡1. Let P−1
d Pn =P be a coprime

factorization over the stable rational transfer function
matrices. With this coprime factorization, the transfer
function matrix from

[ v1
v2

]
to

[ u
y

]
can be expressed

as

[
I − e−·�(Pd + Pne−·�)−1Pn −e−·�(Pd + Pne−·�)−1Pd

(Pd + Pne
−·�)−1Pn (Pd + Pne

−·�)−1Pd

]
:

(1)

The H∞-norm of this transfer matrix equals the
L2-induced norm of the map from

[ v1
v2

]
to

[ u
y

]
(see

e.g. [9] or [1], Section A.6.3).
It su�ces to �nd an N1¿0 and �¿0 such that

sup
� diagonal; �¿0;‖�‖6�

‖(Pd + Pne−·�)−1‖H∞¡N1¡∞:

(2)

Indeed, this implies that the H∞-norm of Eq. (1) is
bounded by 1+ 2N1(‖Pn‖H∞ + ‖Pd‖H∞) for all such
�’s, which completes the proof of the if-part.
The complex structured singular value � is contin-

uous ([6], p. 73) hence, for any c∈ (0; 1 − �∞) we
can �nd a large enough radius R¿0 such that

sup
s∈
R

�(P(s))6�∞ + c¡1

where 
R := {s∈C: Re s¿0; |s|¿R }: (3)
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The radius R can be chosen such that 
R does not
contain a pole of P. On 
R we have that

sup
s∈
R

‖(Pd(s) + Pn(s)e−s�)−1‖

6 sup
s∈
R

‖P−1
d (s)‖ ‖(I + P(s)e−s�)−1‖

6 sup
s∈
R

‖P−1
d (s)‖ sup

s∈
R
‖(I + P(s)e−s�)−1‖

6 sup
s∈
R

‖P−1
d (s)‖

× sup
s∈
R; � diagonal; ‖�‖61

‖(I + P(s)�)−1‖

6N2 for some N2¿0:

The last inequality holds for some N2¿0 for the
following reason. Suppose such an N2 does not
exist, then, since ‖P−1

d (s)‖ is bounded on 
R,
there is a sequence sk ∈
R, �k with ‖�k‖61
such that limk→∞ ‖(I + P(sk)�k)−1‖=∞. Because
P(sk) and �k are bounded this would mean that
limk→∞ |I + P(sk)�k |=0. Let Pkj :=P(skj), �kj be a
converging subsequence and note that P(
R ∪∞) is
compact and, hence, that there is an s∗ ∈
R∪∞ such
that limj→∞ Pkj =P(s

∗). Then |I + P(s∗)�k∞ |=0
contradicting Eq. (3), and therefore such N2 exist.
Since (I + P)−1 is stable we have that Pd + Pn is

bistable. Therefore, on the half disc with radius R we
have that

sup
Re s¿0; |s|6R

‖(Pd(s) + Pn(s)e−s�)−1‖

6 sup
Re s¿0; |s|6R

‖((Pd(s) + Pn(s))

+Pn(s)(e−s� − I))−1‖
6‖(Pd + Pn)−1‖H∞

× sup
Re s¿0; |s|6R

‖(I + (Pd(s)

+Pn(s))−1Pn(s)(e−s� − I))−1‖
62‖(Pd + Pn)−1‖H∞

for some small enough �¿0 and all ‖�‖6�:
(4)

This shows that Eq. (2) holds for N1 := max(N2;
2‖(Pd + Pn)−1‖H∞) and with the � determined in
Eq. (4).
(Only if ): Suppose the loop is robustly stable with

respect to small time delays. This obviously implies
that P is proper and that (I + P)−1 is stable. Sup-

pose, to obtain a contradiction, that �∞¿1. Therefore
|I + P(∞)�|=0 for some diagonal �∈Cn×n with
‖�‖=1=�∞61. All entries �i of � can be chosen
to have the same absolute value, 1=�∞, ([6], Lemma
6.3), stated di�erently, without loss of generality, we
may assume that � is of the form

�=elog(1=�∞) In+jY with Y ∈Rn×n; Y diagonal:
With � expressed like this we can �nd a sequence
{sk} in the open right-half plane and a sequence of
delays {�k} such that

lim
k→∞

|sk |=∞;

lim
k→∞

‖�k‖=0;

lim
k→∞

e−sk�k =�:

This is achieved for sk and �k de�ned as

sk = k
(
− log

(
1
�∞

)
+
1
k
+ j2k�

)
;

�k =
1
k

(
I − 1

2k�Y
)
:

As a result we have that

lim
k→∞

|I + P(sk)e−sk�k |= |I + P(∞)�|=0:

It is important to note that ‖�k‖ goes to zero as k goes
to in�nity. This shows that for every �¿0 and every
N¿0 we can �nd a time delay �k smaller in norm
than � but such that the H∞-norm of (I+P(s)e−s�)−1

exceeds N . Hence, the loop is not robustly stable with
respect to small time delays, which is a contradiction.
Therefore �∞¡1.

Corollary 2.3. The problem of testing robust stability
with respect to small time delays is NP-hard.

Proof. This is a direct consequence of Theorem 2.2
and of a result by Toker ([7], Ch. 11, Remark 4) – see
also [8] – which states that testing whether �(M) is
less than 1, is NP-hard, even if there are no repeated
blocks.

3. Multiple time delays

For more complicated loops with time delays occur-
ring at various places in the loop, the way to test for
robust stability is to “pull out” the time-delay blocks
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Fig. 3. Plant and controller with delays in between.

Fig. 4. Time delays in the loop gain.

as is done in the robust stability literature. For ex-
ample, the delays e−s�1 and e−s�2 in the closed loop
shown in Fig. 3a can be pulled out and stacked diag-
onally as shown in part b of Fig. 3. Rearranging the
loop does not a�ect stability and, hence, for this loop
to be robustly stable with respect to small time delays
it is necessary and su�cient that it be stable for zero
time delay, that P and C are proper and that

�
([

0 −C(∞)
P(∞) 0

])
¡1: (5)

In probably all practical applications where time de-
lays may arise either due to the plant P or the con-
troller C is strictly proper. In such cases inequality (5)
is trivially satis�ed (because then �=0) and only the
well-known stability condition remains.
The method of pulling out the uncertain delay

blocks can also be used to show that the feedback
loop of Fig. 4 is not robustly stable with respect to
small time delays even though in open loop the gain
L is practically 1

2 for small time delays.
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