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Abstract

In this paper we consider the robust stability problem for a
class of uncertain delay systems where the characteristic equa-
tions involve a polytope P of quasipolynomials (i.e., polynomials
in one complex variable and exponential powers of the variable).
Given a sel ) in the complex plane our goal is to find a construc-
tive technique to verify whether all roots of every quasipolyno-
mial in 7 belong to D (that is, to verify the 7)-stability of P).
Our first result is that, under a mild assumption on the set D), a
polytope of quasipolynomials is D-statle if and only if the edges
of the polytope are D-stable. Hence, the D-stability problem
of a higher dimensional polytope of quasipolynomials is reduced
to the D-stability problem of a finite number of pairwise convex
combinations of vertic quasipolynomials of the polytope. This
extends the “Edge Theorem” developed by Bartlett, Hollot and
Lin [1] and Fu and Barmish [2] for the D-stability of a polytope of
polynomials and is of particular interest since we show by coun-
terexarnple that Kharitonov’s Theorem does not hold for general
delay systems. Our second result gives a constructive graphical
test for checking the D-stability of a polytope of quasipelyno-
mials which is especially simple when the set D) is the open left
half plane. The graphical test is based on the polar plots of semne
transfer functions associated with the vertic quasipolynommials of
the polytope. In the special case when the vertic quasipolynomi-
als are in a factored form, the graphical test is further simplified
via a special napping. An application exaple is used to demon-
strate the power of the results.

1 Introduction

Research into robust stability of uncertain systeis has become of
great interest in the last few years. The general problem can be
roughly formulated as follows: Given a family of linear systerns
§ and a set D in the complex plane, provide computationally
tractable techniques for determining the D--stability of §, i.e.,
checking whether the eigenvalues of the systems in § stay within
D. 'The first notable result regarding this problem was given by
Kharitenov [3]. He demonstrated that if a family of polynomials
P is a so—called “interval polynomial” with real coeflicients and
the set D) is the open left half plane, then P is D-stable if and
only if four special extreme polynomials are D-stable. If the
coellicients are complex, then it is shown in Karitonov [4] that
eight exireme polynomials are sufficient.

There are, however, two assumptions made by Kharitonov
which limit the applicability of the results: 1} independent coef-
ficient perturbations; this is often too restrictive in applications;
2) the set D must be the open left half plane, thus the result is
not applicable to general D-stability problerus such as stability
of discrete-time systerns where the stability set I is the open
unit disk. Recently a considerable research effort has gone into
altempts to remove these limitations (1,2}, [5]-[12]; see Barmish
and DeMarco [13] for a survey of related research and references
priori to 1987. The most pertinent results to the problem we are
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addressing here are those by Bartlett, llollot and Lin [1] and
t'n and Barmish [2]. In [1] it was shown that given a simply
connected set! D in the cornplex plane, a polytope of real poly-
nomials P is D)-stable il and only if the edges of P are I)-stable.
Therefore, the D-stability problem of a higher dimensional poly-
tope of polynomials reduces to that of a finite number of pairwise
convex combinations of vertic polynomials. 'Fhis “Edge Theo-
rem” is generalized in [2] Lo include discomnected D) sets and
complex polynomials. 'This is done by considering a set, D) with
its complement D° being continuously connected on the exiended
complex plane (the complex plane including the infinity point).
It is demonsirated that the D-stability of the edges of a poly-
tope of coroplex (including real) polynomials P is necessary and
sufficient for the D-stability of P. Thus the result of [1] becoines
a special case of the result of [2] since any simply connected set
D in the complex plane satisfies the requirement on D¢.

In this paper we consider the D-stability problem for a class
of uncertain delay systeins where the characleristic equations
involve ‘a polytope of quasipolynomials P. Given a set D in
the complex plane our goal is to find a constructive technique
to verify whether all roots of every quasipolynomial in P be-
long to ) (that is, to verify the D-stability of P). Our [irst
result is that, under a mild assumption on the set D, a poly-
tope of quasipolynomials is D-stable if and only if the edges of
the polytope are D-stable. Hence, the D-stability problem of
a higher dimensional polytope of quasipolynomials is reduced to
the D-stability problem of a finite number of pairwise convex
combinations of vertic quasipolynomials of the polytope. This
extends the “Edge Theorem” developed by Bartlett, Hollot and
Lin [1] and F'u and Barmish [2] for the D-stability of a polytope
of polynomials. One difficulty we have encountered in extend-
ing the results in [2] and[L] to delay systems is due to the fact
a yuasipolynomial usually has an infinite number of zeros. In
other words, the set of zeros of a polytope of quasipolynomials
is usually unbounded. As a consequence, for a given set D, as-
suming the simple connectedness of £ or D heing continuously
connected on the extended complex plane may not necessarily
lead to the “edge reduction.” For this reason, a mild assumption
is added ou D. Roughly speaking, we require that 1) is such that
for any point z € D° there exists a continuous path in D¢ con-
necting = to some point y with an arbitrarily large absolute value
and the real part larger than some prescribed nuinber. Examples
of such D sets are shown in Figure 1.

The second result of this paper deals with the D-stability
problem of a polytope of quasipolynomials when D is the open
left half plane. Namely, we provide a constructive graphical test
for checking the D-stability of a polytope of quasipolynomials.
The graphical test is based on the polar plots of some trans-
fer functions associated with the vertic quasipolynomials of the
polytope. It is also easily extendable to the /- stability problem
with a general open D sets (see Remark 4.2). We feel that the

. lx—;;t 'l-) is called simply counected if every closed curve in D can be
continuously shrunk to any point in D without leaving ) {14]. For exa\.mple,
the open left half plane and the unit disk are simply conuected, while an
annulus defined by {23 1 < |e} < 2} is not.
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Figure {: Kxamples of adinissible D sets

graphical test is especially attractive since no simple analytical
test exists for checking the stabilily of a quasipolynomial (This
contrasts with the polynomial case where we have, for example,
the Routh-Hurwitz criteria).

When the generating quasipolynomials of the polytope are in
a factored form (see Section 5 for definition), we further simplify
the graphical test via a special mapping which transforms the
stability problem of a quasipolynomial to that of a polynomial.

2 Problem Formulation and Notation

We consider a class of delay systems described by

[4
Fi(t) =Y Ajz(t- ) (1)
=0

where the trajectory vector z(t) € R", A; and I are real {or
complex) systemn matrices with F nonsingular, and 0 = 1y <
11 < 13 < +»+ < 1¢ represent the delays. Then the characteristic
equation of (1) is given using an n-th order quasipolynordial in
the form of

t
pls) = det(sF - Y e Ti*A) =0
i=0

where p(¢) can be writlen as

N

o) = auns® + 3 (Za.'ke' ’“f") T
i=1 \k=0

where

aip = air+ Bk ir Ak €ER
are constants, agp # 0, and 0 = hg < hy < hs < -
correspond to 7;.

< hy

Definition 2.1 Given a set 1) in the complex plane, the delay
system (1) is called D-stable if the zeros of the characteristic
quasipolynomial p(s) in (2) stay in D. If so, p(8) is called 1)
stable. In particular, p(s) is called stablc if p(s) is D-stable for
D being the open lefi half plane. (The latter case corresponds
to exponential stability of solutions to (1) with integrable initial
functions [16].) O

Suppose the coeflicients of p(e) in (2) involve uncertain pa-
rameters, then it is of interest to determine the D-stability of
the system for all adiissible parameter perturbations. Mathe-
matically, we consider a family of n-th order (real or cowplex)
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quasipolynomials

n N
"UD”" En 2: (X ll.‘ke— h,‘s) sn~|’ .
i=1 \k=:0

ago # 03 (300,910,811, * + 83Ny + , Gan) € FY3)

P={p(s)

for some F € C"V 1141 chapacterizing the parameter perturha-
tions. Given a set 1) in the complex plane, we wani to deter-
mine the 1)-stability of P, i.e., whether p(s) is D- stable for all
p(s) € P. ;

In this paper, we consider a special family of quasipolynomi-
als for which P is a polytope generated by the convex cotnbina-
tions of a number of n-th order quasipolynomials py(s), pa(s),
-+, pr(8) as in (2), ie.,

P=conv{pi(s),pa(s), -, pr{8)} €)]

and for which every member of P does not have vanishing leading
coefficient. We will call the p;(s) in (4) generators of P.

We denote by E[X] the set of all edges of a polytope X. Recall
that an edge of a polytepe is ils one-dimensional face 17}, i.e., 2
closed segment [z,y] = conv{z,y} in X such that for any open
segment (20, yo) = conv{zo,, % }\{%0, yo} in X intersecting [z, y),
we have [z, yo] C [2,y]. Note that any edge of the polytope (4)
is of the form conv{p;(s},7;(#)} but not all such closed seginents
are necessarily the edges (e.g., conv{ps(s),ps(e)} is not an edge
if 7o s) = (91 (5) + p2(5)) /2, 1(6) # £3(0))-

Remark 2.2 The requirement that the leading coelficient of
every member of P does not vanish is equivalent to the assuinp-
tion that the set of the leading coeflicients of the genevators p;(#)
are on one side of sore line through the origin in the complex
plane. For the real case, this requires that the leading coeflicients
of pi(s) are of the same sign. O

Remark 2.3 Given a finite nurnber of open loop iransfer
functions Gi(s) = ¢i(8)/pi(8),i = 1,2,--- ,» where g;(s) and p;{s)
are (uasipolynomials, and an uncertainiy model consisting of all
convex combinations

r ’
G(s) =Z/\;G;(B), Ai 20, ZA,‘=],
i=1 =1

the D-stability of the closed loop system with a unity fecdback
can be reduced to the D-stability of a polytope of quasipolyno-
mials

P = conv{(G1(6) + 1)p(s), (Gae) + 1)pls)y =+ (¢ o) + 1))}

where p(8) is a least conunon denominator of G (s},

i=1,2,r. 0

For an n-th order complex quasipolynomial p(s) given by (2),
we denote its coeflicient vector by
" {5)
P = |ooo Boo oxe Fro---cun B -+ N Ban] 5
Then, it is straightforward to show that s is a zero of p(e) if and
only if
IK{s)p=0



where

[ Re (s") In (s") '
- Im (s") Re (s)
Re (c- hgﬁgn—-ll hn (e- ho&sn-—l)
~lm (& hus'n-rl) Re (e h,oa‘n-»l)

K(s)= Re (e IzNasywl) Im (e hNﬂsn-»l) (6)

- Im (6— thBn—l) Re (e— ’LNBsn‘—»l)
Re (e~ hNB) Im (&~ hN”)

| - Im (e” hy ) Re (e~ by 8)

is a 2 x (nN + n + 1) real matrix. For a family of n-th order
quasipolynomials P given by (3) and £ in the complex plane, we
define

QP ={K(&)p :p(s) € P}. (7
Note that for a polytope of quasipolynomials P and each fixed ¢,
QG (P, &) is a polytope in the complex plane. With the defivition
above, a given polytope of quasipolynomials P as in (1) is 1
stable if and only if Q(7, £) does not contain 0 for all ¢ € D°.

3 D- Stability Criteria for a Polytope of Delay
Systems

In this section we prove an Edge Theoremn for delay systeins

and also give a counterexample showing that Kharitonov’s The-
orem does not extend to interval quasipolynornials.
Theorem 3.1 Consider a polytope of n-th order (real or com-
plez) quasipolynomials P as in {4) and a set D in the comples
plane satisfying the following condition: There ezsists some real
number « such that, for any point z € D° (ihe complement of 13}
and any M > 0, we can find a continuous path in D° connecling
z and some point y with [y| = M and Re y = «. Then, P is
D~stable if and only if all the edges of P are D-siable.

The following lemmna is essential in the proof of Theorem 3.1.
" Lemma 3.2 Consider a polytope of quasipolynomials P as in

{4) and Q(-,") defined in (7). Then, Vor any ¢ in the comples
plane,

ElQ(P, 8] C Q(E]P),¢) (8)

where E1P] (resp. E[Q]) denotes the set of the edges of P (resp. Q)

Proof: Denote m = dim P = dim alf(P), where afl(P) is the
affine extension of P. Since the case m < 1 is trivial, we assume
m 2 2 in the proof. Tor any a € E[Q(P,€)], we need to show
that a € Q(£[P], €). We proceed by defining

Pa = {p(s) : p(s) € all(P), K (¢)p = a}.

Note that P, is an afline subspace in aff(P) with dim P, > m - ¢
and that, by assumption, P, N P contains at least one point, say
Pa(8). We claim that there must exist a 2-dimensional face ¥y of
P such thai P, N Fy # 0. This is obvious when m = 2. When
m 2> 3, Py is at least one-dimensional and must interseci an
(m ~ 1)-dimensional face, say Fy,—y1, of P. Indeed, cither pq(s)
lies on the relative houndary of P and we are done or it helongs
to the relative interior of P and P, contains a line through p,(s)
which intersects Fip—y. If 1 = 3, this face is 2-dimensional and
our claim holds. If m > 3, we replace P by Fy,_; which is also
a polytope [17] aud repeal the argument above until we ohtain
a 2-dimensional face of P intersecting P;. The remaining part of
the proof is divided into two cases:

Case 1: The linear mapping p(s)lpe: aff(Fz) — C is one
to one. Then there exisis a unique point p,(8) € F3 such that
pa(€) = 6. Since the points from the relative interior of F3 are
mapped into interior points of Q(P, €), pa(s) is on the boundary
of I'; and therefore on an edge of I3 (also an edge of P}. Thus,
a € Q(E[P], ).

Case 2: The kernel of the image of the linear mapping p(s)larez
alf(F3) — C is at least one-dimensional. In this case, we have
dim P, N Fy > 1. Therefore, Py must intersect an edge of F (also
an edge of P). Again, a € Q(E[P],§)- D

P’roof of Theorem 3.1: The necessity is obvious because
E[P] ¢ P. Now we proceed with the sufficiency by assuming,
on the contrary, that there exists some 8 € D¢ such that 0 €
Q(P,80). We need to show that there exists some 8y € I)° such
that 0 € Q(E[P),&1). Indeed, becanse of the boundedness of P,
there exists some M > 0 such that 0 & Q(P,s) for all s with
[s) 2 M and Re & > «. This follows from the fact that

() 1‘

6008”

3 (i ae” hkx) ,

i=1 \k=0

sup
pls) € PsRes2

-0

sup
p(8) € PsRes 2

as || = oo. Now let I' C D° be any continuous path connecting
8o and some point 83 with s3] 2 M and Re s3 > a. For every
§el, we define

min{|g¢| : ¢ € E[Q(P,€)}}
- min{gel : ¢ € E[Q(P, )]} i 0EQ(P,E)

By the continuity of I', the winimun function, and the vertices
with respect to €, we know that, d(-) is continuous on I'. Since
d(s3) > 0 and d(sg) < 0, there must cxisi some ; € I' such that
d(s1) = 0, i.e., 0 € E[Q(P,5,)]. Using Lemma 3.2, we conclude
that 0 € Q(E[P],s). O

if 0¢Q(P,¢)
d(g) =

Remark 3.8 It can be scen that the “Iidge Theorem” is ex-
tendable to a polyhedron of polynomials as well as a pulyhedron
of quasipolynomials using the same proof above. A polyhedron
can be defined as the union of finitely many polytopes. "This
geometric object describes a more general class of linear per-
turbations or can be used (o approximate nonlinear (including
multilinear) perturbations. 0O

Remark 3.4 1i is well known [3]-[4] that for the polynoemial
case where the polytope reduces to a hyper-rectangular region
generated by varying the coeflicients in some given intervals it
is suflicient to check the Hurwitz stability of eight {or four for
real coefficients) specially chosen vertic polynomials in order to
determine the Hurwitz stability of the entire family of polynomi-
als. In [18] a counterexaruple was given which demonstrates that,
checking the vertices of an interval polynomial is not sufficient
for discrete time systemns. Since delay systems fall somewhere
between the continuous and discrete cases, it is of interest to
know whether checking vertices may also be sufficient for con-
tinuous systems with time delays. Unfortunately, the following
counterexample shows that this is not possible in general (This
contradicts Theorems 3 and 5 of of Mori and Kokame [19], al-
though the exiension may stand in somne special cases; see, for
example, Theorem 2 of [19]). O
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A counterexample showing that Kharitonov’s theo
rem does not extend to delay systems Consider a closed
loop system as in Figure 2. The characteristic equation of the
system is given by

(s+e )24+ K =0.
The stability of the systemn is preserved for I close (o zero since
the equation
s+e =0
has all its roots in the open left half plane; see, for example,
Bellinan and Cooke [16]. The Nyquist plot of K/(s + ¢ )% cor-
responding to K = K;=(37/2 + 1)? is presented in I'igure 3, it

crosses (- 1+ j0) at w = wy=37 /2. It can be easily verificd that
for

. 3
K =K.,= (E +nr- (- l)")
and the corresponding [requencies
. T
w= u),.=§ + nw,

n = 0,1,2,--, the Nyquist plot crosses (- 1 + j0). Since the
phase is oscillating around - 7 for w > 7/2 (see Figure 3), we
have infinitely many switches from stability to instability and
again stability when K grows to +oco. Thus, for instance, the
system is stable for K € [0, Ky) and K € (K1, K3) but unstable
for K € (Ko,K). This shows that it is not possible to extend
the Kharitonov’s results to interval quasipolynomials.

Mindol ! teal ! 0]
¥ - s z s J —
N i _l‘;a—],,,

% L
| I

IMigure 2: Block diagram of the counterexamiple

4 A Graphical Approach for Checking
D- Stability of Delay Systems

In this seclion, we present an approach to checking the 1)~
stability of delay systemns which is based on polar plots. Although

it can be argued that a closed form expression for testing the -
stability (or stability) of a quasipolynoinial would be more desir-
able than a graphical test, this is not necessarily true. For exam-
ple, for pelynomials an alternative method (see Bialas [6] and F'u
and Barmish [7]) would be to check the eigenvalues of 1l 1 ,};,l
(or, equivalently, 11;0111“, or A} H, or HMIII;‘I‘), where 1y
and Hy, are the Hurwilz matrices of pyo(s) and py(s), respec-
tively. That is, stability of a polytope of polynomials P requires
that, for every edge Ly, the eigenvalues of Hklll,;},l need to he
either complex or posilive. However, this involves calculating
HnH ,R,l and its eigenvalues while for the graphical test to be
proposed it is only necessary to evaluate the values of rational
functions pgi{jw)/pro(jw). Furthermore, every control engineer
is familiar with polar plots. With readily available graphics work-
stations and polar plot software, we feel that graphical tests are
as good or better than analytic tests which often involve comnpli-
cated numerical calculations for realistic systems.

Theorem 4.1 Consider a polytope of n-th order (real or com-
plez) quasipolynomsals P as in (4). We use Ey,Eq,--- k¢ to
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Figure 3: Nyquist plot of the counterexatnple

denote the cdges of P and pro(s) and pra(8) to denote the ver-
tic quasipolynomials of Iy. Then, P is stable if and only if the
Jollowsng two conditions hold for every Ex, 1 < k < t:

i) The polar plot of pro(fw)/(jw + 1)® does not encirele the
origing

i1) The polar plot of pr1(jw)/pro(jw) does not cross (- 00,0]
(the nonpositive part of the real azis).

condition on D in Theorem 3.1 is easily satisfied (by choosing
a = 0). According to Theorem 3.1, P is stable if and only if
I, Eq,- -+ Ey are stable. Hence, we need to show that conditions
i) and ii) are necessary and sufficient for the stability of every
Eg,1 < k <t. For this purpose, we write I as

Ly = {pale) = (1= Npgo(s) + Appa(s) : X €[0, 1]}

and need to show that condition i) is necessary and suflicient for
the stability of pgo(s) and condition ii) is necessary and sufficient
for the stability of pgy (s) for all X € (0, 1] when condition i) holds.
Indeed, using the argument principle, the number of zeros of
pro(8) in the closed right half plane is equal to the encirclernents
of pro(jw)/(jw + 1) around the origin since (¢ - 1)" is stable;
see, for example, El'sgol’ts and Norkin [15]. Therefore, pro(#) is
stable if and only if condition i) holds.

Assuming pyo(#) is stable, we now need to show that condi-
tion ii) is necessary and suflicient for the stability of all pia(s), X €
{0,1]. Lo see the necessiiy, note that, for 0 < A < 1, pga(s) being
stable implies that

pia(jw) = (1 - N)proliw) + Apra (jw) # 0 {9)

for all w € R. Since ppo(jw) #.0 and X # 0, equation (9) is
equivalent to

1- A pliw)
A proliw)
Noticing that (L - A}/X takes values in [0,00) when A varies in
(0, 1], we conclude that condition ii) is necessary for the stability
of all pgy (), ) € (0, 1].

To show the sufficiency of condition ii) we proceed by con-
tradiction. Suppose there exists some o € (0, 1] such that py, ()
is not stable, then we need to find some g € (0,1] and wy € R
such that pxg(jwo) = 0. For this purpose, we let e (A), 82(N),- -

#0.



be the set of zeros of Pa(8). Note that the #;()) continuously
depend on A (by Rouche’s Theorem). Since pyq(#) is unsta-
ble, there must exist some 7 with sj(a) having non-negative real
part. Since 8;(0) has negative real part (because pro(s) is sta-

ble), there must exisi some 8 & (0, o] and some wy € R.such that
Re (3;(8)) =0, i.e.,

praliw) = (1 - B)po(w) + Brg{jw) = 0. (10)

Hence, condition ii) is suflicient for the stability of pgy (s) for all
re(0,1. o

Remark 4.2 1 can be seen from the proof thai the number
of tests in i} for stability of vertices can be reduced fo checking
Jjust one arbitrarily chosen vertex py (s). Then we can check the
stability of those edges which contain pio(s) using the tests of
forio ji). In the nexi step we test the stability of those edges
which have a commen vertex with one of the previous edges, etc.
Since the set of edges of a polytope is connected, we can verify
in this way the stability of all edges in a finite number of steps.
[n]

Remark 4.3 It should be noted that the graphical test given
in Theorern 4.1 can be generalized to sets other than the open
left half plane by using the argument principle. Ior exarnple,
in the case when D is the open unit disk, then we only need
to replace jw : w € (- co,00) by cos0 + jsinf : 0 € |- 7,7]
and pro(jw)/(jw + 1)" by (pro(cos8 + j sin8) /(cos 8 + j sin )",
When the quasipolynomials are reduced to polynornials, this case
corresponds to the stability of discrete-time systems. In general,
if the set D) is an open set and the boundary of D is a continuous
path (or a finite collection of such paths in the case when D
is disconnected), then the graphical test can be carried over by
substituting jw by a point on the boundary and (g -+ 1)" by
(s + p)" for some arbitrary pe D.

r

5 Polytope of Quasipolynomials with Generators

in a Factored Form

In this section, we consider the stability problem of a special poly-
tope of quasipolynomials when the generating quasipolynomials
are in a factored form. Let p(s) be an n-th order quasipolynomial
given by
. - hs ~ hsy ... - hs
D) = (et a1e” (st aye” ) (o 4 a0 B (1)
where a; are complex (or real) numbers and £ > 0 represents
the delay. When n = 2, the quasipolynomial has the following
expansion:

hs 2hs

p(6) = 6 -+ ay8e” 8 - qge”
where o) = 4y + a3 and o3 = aja;. A simple example of such a
quasipolynommial corresponds to the characteristic equation of the
closed loop systein shown in Iigure 4, where each integrator has
delay time &. I can be verified that the characteristic equation
of the system is given by

A(s) = 6 + kyae™ 8 4 kgem 2RO — g,
Note that a given complex number s is a zero of p(s) in (L1)
if and only if h"¢™p(s) = 0. On the other hand,

h"c"‘hp(c) = (hse’w + hal)(hsel” +hag) -+ (hs’” +han). (12)

‘ Lheorem 5.1 Consider o
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u(y

I'igure 4: A system with characteristic quasipolynornial in the
factored forin

We define a mapping

¢ = heehs, {13)

Then, (12) becomes
p6) = G+ b +ha) (s +hay). (14

"The analysis above indicates that the mapping (13) transforins
a quasipelynomial in the factored formn to a polynomial. It can
be shown that every wember of a polytope of quasipolynomials
can be expressed in the factored form if its generators are in the
factored form.

I can be shown that the mapping (13) maps the closed right
hail plane onto the complement of the bounded st I). in the
¢ - plane with its boundary described by

=-vsinv +jrcosv; ve€l-7/27/2); (15)

see Figure 5. Thus, the necessary and suflicient condition for

stability of the quasipolynornial (11} is that the roots of (14) are
in D_. Hence, we obtain 'I'heorem 5.1.

polytope of quasipolynomsals P as in

(4) with each generator pi(8) having the Jollowing factored form

pi(8) = (s + d,']e' h‘)(s + ajse” ’”) (84 ajze” h'). (16)

Let B, Eyq,-- By denote the edges of P and Pro(8) and Pr1(8)
deniote the vertic quasipolynomials of Ey. Without lose of gener-
ality, we assume that all generating quasipolynomsals are stable
(i.e., ha;; € D_ for all pi(8) and §). Then, P 53 siable fi.e.,
D-stable for D being the open left half plane) if and only if the

jw

¢-plane

-f2

Figure 5: The set D.. in the ¢-plane



Jollowing condition holds for every Ex,1 < k < ¢:

o 5)
srols) g = vsinv + jv cosv

docs not cross (- 00,0] (the nonpositive part of the real azis) for
allv el- n/2,x/2].

Proof: This result is a direct consequence of Theorem 4.1
by noting that 1) Condition i) in Theorem 4.1 is guaranteed by
the stability of all vertic quasipolynomials of Ej and, 2) The
imaginary axis of the s-plane is mapped to the curve described
by (15) in the ¢-plane. O

Remark 5.2 Although few real systems can be modeled by
the factored form in (11), this is not surprising since 'Iheoremn 5.1
is a very strong result which reduces the D-stability problem of
a polytope of quasipolynomials to the D,-stability of a poly-
tope of polynomials. Also, Remark 4.2 applies here too; i.c.,
the graphical test in Theorem 4.1 can be generalized to the I)--
stability problem of a polytope of quasipolynomials in the fac-
tored form. O

6 An Application Example

In this section, we provide an example of real life control system
involving a time delay and uncertain parameters for which the
problem of robust stability is crucial. This is a wind tunnel con-
trol problemn addressed in [20,21] where the main objective of the
feedback control is to provide a fast Mach number response so as
to reduce the cost of liguid nitrogen losses during the transient
regimes. Using the methods developed in this paper we shall
examine the asymptotic stability and the exponential stability
of a given decay rate of the closed loop system for the whole
range of uncertain parameters. The latter case’ corresponds 1o
a shifted left hall plane. Moreover, the graphical tests we use
provide additional information on the frequency domain nature
of unmodelled uncertainties which may endanger the robust sta-
bility.
Let us start with the systein equations [20]

&1(t) = - azy(t) + akza(t - k)
#3(t) = =s(t)

da(t) = -wiza(t) - Awes(t) +wiul(t) (17)

where ¢ and w are fixed at 0.8 and 6.0, respectively, the dclay
h varies slightly but can, for all practical purposes, he assumed
equal to a nominal value b = €.33. The parameters a = /7
and k, however, depend on the operating point, varying within
a range approximated by

7 €[0.739,2.58), k €[- 0.0144,- 0.0029). (18)

A feedback controller of the forin
0
'u(t) =~ kl.’ﬂl(t) - lﬁgom)(t) - ku-/h e“'z,(t + H)da - I:a;l?a(t)
was proposed in [20]. The nain goal there was, for the nominal

parameters k =k = - 0.0117 and 7 = 7 = 1/a = 1.964, thai the
characteristic polynomial of the feedback system be

(8 4 2.5)(s® + 45 + 6.25).
It turned out that the control parameters were chosen to be

kl =- 1305; kgo =- 22.75; kn = 9.0; kg = - 3.6.
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Furthermore, to simplify the realization of the integral in the
control law, the following 3-point Simpson approximation was
used in [20]:

o
kay / ey (t -+ 0)do
-k
ro 0.5(za(t) -+ 3.68z4(t - 0.165) + 0.85z4(1 - 0.33)).

Assuming this approximation and the the mismatch between the
model parameters k and 7 and their nominal values k and 7 which
were used to design the controller, we arrive at the following
characteristic equation for the closed loop system:

p(“vk’T)

8% 4 (67 4+ 1)9?
(18.757 + 6 + 1.827¢~ 01698 g 49,,-0.338),

+
+ 1875+ 1.82¢7 01858 (0,49 1305k)e 0939 g

and the associated polylope of quasipolynornials
P ={pls,k,7): k€ [fmnins kmeac)s 7 € [Tmins Toax]}

where [Tmin, Tmax] and [Eiin, #max| are the assumed ranges for 7
and %, respectively. Using the methods proposed in this paper,
we checked and found that the closed loop system is asymptoti-
cally stable for all k and 7 even exceeding the range given in (18).
"f'o save space, we do not present the corresponding numerical re-
sults. Then we asked the question whether for all £ and r within
the assumed range of uncertainly the system eigenvalues remain
in the half plane D = {Res < - 1}. Recall that the nominal
systemn eigenvalues are - 2.5 and - 2+ j2.5 and they change only
a little, after introducing the Simpson approximation, moving to

- 2.674 and - 1.97 + j1.503, respectively. In order to check the
D-stability, we proceeded by denoting

polo) = plo- 1, Tmax Kmin)s
mie) = plo- 1, Tmaxs Bmax),
pa(o) = p(o- 1, 7min, k),
nfo) = plo- 1, Tmins Brain)-

We have translated the problem to a form tractable by Theo-
rein 4.1, namely the stability of the polytope gencrated by the
pi{e),i = 0,1,2,3. For several choices of ranges for &£ and
we obtained a series of negative and positive results including a
negative answer for the ranges given by (18). The latier means
that the iransient response of the closed loop 'system may de-
cay slower that e~* if the uncertain parameters differ from their
nominal values. We present a set of computer generated fig-
ures for the case [ Tunx] = [1.671,2.357) and [kynins Fynex] =
[- 0.0144, - 0.0088] which corresponds to £20% variation in 7 and
26% variation in k. This is a critical case as seen from the fig-
ures. Figure 6 shows the polar plot of po(jw)/(jw + 1)* which
proves the stability of py(¢). The polar plots of p;(jw)/po{jw),
ps(iw)/po(iw), pa(jw)/pi(iw) and pa(jw)/ps(jw) are given in
Figures 7-10, respectively. It can be seen that these plots do not
intersect (- 0o, 0], thus by Theorem 4.1, the closed loop system
is D-stable.

We want o point out that the presented figures not only
prove the robust stability but also provide additional information
on the nature of unmodelled uncertainties which could change
stability into instability or vice versa. For instance, Figures 7-
8 show that relatively small perturbations of p(s,7,k) in high
frequencies may lead to the loss of D-stability on the edges



cowv{pg(a),p1(e)} and conv{po(o),pa(c)}, respectively. Siri-
larly, Figures 9-10 show that somewhat larger perturhations for
the mid-frequency range may destroy D--stability on the remain-
ing two edges.

7 QConclusion

In this paper we have considered the D-stability problern for
a class of uncertain delay systems where the characteristic equa-
tions involve a polytope P of quasipolynomials. Our first result
shows that, under a mild assumption on the set D, a polytope
of quasipolynomials is D--stable if and only if the edges of the
polylope are D-stable. This extends the “Edge Theorem” de-
veloped by Bartlett, Hollot and Lin [1] and Fu and Barmish [2]
for the D-stability of a polytope of polynomials. QOur second
result. provides a polar-plot-based graphical test for checking the
D-stability of a polytope of quasipolynomials. In a special case
when the vertic quasipolynomials are in a factored form, the
graphical test is further simplified via a special 1oapping. As
shown in the example, the graphical tests we provided are quile
useful in applications, allowing us to easily handle examples with
many uncertain pararneters.
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