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Abstract

Given a time-delay system, we are interested in �nding
new robust stability conditions for the system. We apply
the integral quadratic constraint approach to obtain two
results which allow us to test the robust stability using
the linear matrix inequality technique. Both results give
an estimate of the maximum time-delay which preserves
robust stability. The �rst result is simpler to apply while
the second one gives a less conservative robust stability
condition.

1 Introduction

Consider a time-delay system with parametric uncertainty
described by

_x(t) = A0x(t) +Adx(t� �) (1)

where x(t) 2 Rn is the state, � is a constant time delay,
A0 and Ad are constant matrices.

The system above has been analyzed by many re-
searchers in the past. Two types of robust stability con-
ditions have been reported in the literature: the so-called
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delay independent conditions and delay-dependent condi-
tions. In comparison, the delay independent conditions
are simpler to apply, but the delay-dependent conditions
are less conservative. With the recent advancement in
convex optimization (see, e.g., [2]), the focus of the cur-
rent research is towards �nding less conservative delay-
dependent conditions by allowing more complex convex
optimization. See [10] for a review of robust stability re-
sults.

The goal of this paper is to provide new conditions un-
der which the robust stability of the system (1) is guar-
anteed. Our work is based on two ingredients: 1) a suf-
�cient condition for robust stability expressed in the fre-
quency domain; and 2) the integral quadratic constraint
(IQC) approach to robustness analysis. Two results are
presented. Both results are expressed in terms of linear
matrix inequalities (LMI), and they give an estimate of
the maximum time-delay which preserves robust stability.
The �rst result is simpler to apply while the second one
gives a less conservative robust stability condition. We
point out that the results in this paper generalize those in
[10].

2 Preliminaries

Several preliminary results are required for robust stability
analysis of (1).
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Lemma 1. The system (1) is asymptotically stable if A

is asymptotically stable and

A(j!; �) := j!I �A� ��1(j!�)AdA0 � ��2(j!�)AdAd

(2)
is nonsingular for all ! 2 R, where

�1(jv) = �e�jv=2
sin(v=2)

(v=2)
; �2(jv) = �1(jv)e

�jv : (3)

Proof. It is well-known that (1) is asymptotically stable
if and only if

Â(j!; �) = j!I �A0 �Ade
�j!�

is nonsingular for all ! 2 R.
Suppose A(j!; �) is nonsingular, we need to show that

Â(j!; �) is nonsingular. Let x be such that Â(j!; �)x = 0.
We need to show that x = 0. To see this, we note

0 = (j!I �A0 �Ade
�j!� )x

= (j!I �A�Ad(e
�j!� � 1))x

= (j!I �A� ��1(j!�)Adj!)x

= (j!I �A� ��1(j!�)Ad(A+Ade
�j!� ))x

= A(j!; �)x (4)

So x must be zero due to the nonsingularity of A(j!; �).
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Figure 1: Interconnected Feedback System

Consider the interconnected system in Figure 1 which
is also described by the following equations:

_x(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

z(t) = y(t) + v(t)

u(t) = r(t) + w(t)

w(t) = �(z(t)) (5)

where �(�) 2 � which is a set of linear or nonlinear dy-
namic operators to be speci�ed later. Denote

G(s) = C(sI �A)�1B +D (6)

and assume A to be asymptotically stable in the sequel.
The feedback block �(�) is assumed to satisfy an IQC

which is constructed via a �lter given as follows:

_xf (t) = Afxf (t) +Bfuf (t); xf (0) = 0

yf (t) = Cfxf (t) +Dfuf (t)

uf (t) =

�
z(t)
w(t)

�
(7)

where Af is asymptotically stable. Denote the transfer
function of the �lter by

Gf (s) = Cf (sI � Af )
�1Bf +Df (8)

The IQC used in this paper is then described by the fol-
lowing inequality:

Z T

0

y
0

f (t)
~�yf (t)dt � 0; as T !1; 8 � 2 � (9)

where ~� is a constant symmetric matrix.

Remark 1. The de�nition above does not require w 2

L2[0;1). But if this is the case, then the IQC (7)-(9)
becomes, following the Parseval Theorem,

R +1
�1

[z�(j!) w�(j!)]�(j!)

�
z(j!)
w(j!)

�
d! � 0;

8 � 2 � (10)

where z(j!); w(j!) are Fourier transforms of z(t); w(t),
respectively, and

�(s) = G�f (s)
~�Gf (s) (11)

The following result serves the foundation of the IQC
approach.

Theorem 1. (The IQC Theorem) [15, 12, 11] Given

a connected set of operators �, containing the zero opera-

tor, for the feedback block of the system (5), the system is

absolutely stable if there exists some �(s) of the form (11)

and a constant � > 0 such that both (9) and the following

condition are satis�ed:

[G�(j!) I ]�(j!)

�
G(j!)
I

�
+ �I � 0;

8 ! 2 (�1;1) (12)

Further, for causal and asymptotically stable linear time-

invariant (LTI) �(�), (9) is equivalent to to the following:

[I ��(j!)]�(j!)

�
I

�(j!)

�
� 0;

8 ! 2 (�1;1); � 2 � (13)

That is, the system (5) is absolutely stable if there exists

�(s) of the form (11) such that (12) and (13) hold.
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Lemma 2. (KYP Lemma) [1, 13] Given A 2 Rn�n,

B 2 Rn�k and symmetric 
 2 R(n+k)�(n+k), there exists

a symmetric matrix P 2 Rn�n such that

�
ATP + PA PB

BTP 0

�
+
 < 0 (14)

if and only if there exists some constant � > 0 such that

[BT ((j!I �A)�1)� I ]


�
(j!I �A)�1B

I

�
+ �I � 0;

8 ! 2 (�1;1) (15)

Further, if A is Hurwitz and the top-left n� n submatrix

of 
 is positive semide�nite, then (14) implies P > 0.

3 Main Results

Consider the time-delay system in (1). Express

Ad = HE; H 2 Rn�q ; E 2 Rq�n (16)

where q � n, and E is full rank. De�ne

BT =

�
HT

HT

�
; C =

�
C1

C2

�
=

�
EA0

EAd

�
;

C� = �C; D = 0; (17)

and � being the set of LTI operators with Fourier trans-
form given by

�(j!) = � diagf�1(j!�)Iq ; �(j!�)Iqg (18)

for some � 2 [0; 1], where �1(�) and �2(�) are de�ned in
(3).
Using Lemma 1, we know that the system (1) is robustly

stable if the following system is robustly stable:

_x(t) = Ax(t) +Bu(t)

y(t) = C�x(t) +Du(t)

z(t) = y(t) + v(t)

u(t) = r(t) + w(t)

w(t) = �(z(t)) (19)

Following the IQC Theorem, we assert that system (1)
is robustly stable if there exists some IQC, or equivalently,
�(s) as in (11) such that (12) and (13) hold. Note that
the notion of absolute stability coincides with the notion
of robust stability for linear uncertain blocks �. In the
rest of this section, we study two IQCs which give two
robust stability conditions.
The �rst IQC is a simple constant D-scaling used in the

analysis of structured singular value. More precisely, we
take

Gf (s) = diagfI2q ; I2qg (20)

and
~� = ��1 diagf�1;�2;��1;�2g (21)

for some q�q symmetric and positive-de�nite �i; i = 1; 2,
which are to be chosen. Denote

� = diagf�1;�2g (22)

The resulting IQC has

�(s) = ��1 diagf�;��g (23)

It is straightforward to verify that (13) holds because �i(�)
are contractive. The su�cient condition (12) for robust
stability becomes

�
BT ((j!I �A)�1)� I2q

� � �CT�C 0
0 ���1�

�

�

�
(j!I �A)�1B

I2q

�
+ �I � 0 (24)

for all !.
Using the KYP Lemma, the above is equivalent to the

existence of P = P T > 0 such that the following LMI
holds: 2

4 P PH PH

HTP ���1�1 0
HTP 0 ���1�2

3
5 < 0

where

P = ATP + PA+ �CT
1
�1C1 + �CT

2
�2C2:

Multiplying � to the second and third row and column
blocks, which does not alter the validity of the LMI, the
above becomes

�(�) =

2
4 P �PH �PH

�HTP ���1 0
�HTP 0 ���2

3
5 < 0 (25)

Note that �(�) is a�ne in P;�1 and �2.
We summarize the analysis above as follows:

Theorem 2. The time-delay system (1) is robustly sta-

ble for all 0 � � � �� if there exist n � n symmetric and

positive de�nite matrices �1;�2 and P such that the LMI

�(�� ) < 0 (26)

holds, where �(�) is de�ned in (25).

Proof. Suppose (26) holds. It follows from the analysis
above that the system (1) is robustly stable for �� . The
conclusion that the above also implies the robust stability
for all 0 � � � �� follows from the fact that the �(�) is
convex in � . More precisely, �(�) < 0 when � is su�-
ciently small, due to (26) and �i > 0. The rest follows
from the convexity of �(�).

The second IQC we use to study the robust stability
of (1) will be more involved but give a less conservative
condition. Let

f(s) = cf (sI � af )
�1bf + df (27)
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be any asymptotically stable SISO �lter with the following
property:

jf(jv)j �

���� sin(v)v

���� ; 8 v 2 R (28)

Denote the diagonal transfer matrix

F (s) = f(s)I2q = Cf (sI �Af )
�1Bf +Df (29)

We will discuss how to choose f(s) later.
Now de�ne

Gf (s) = diagfF (s�); I2qg (30)

and ~� as in (21). This yields

yf (s) =

�
F (s�)z(s)

w(s)

�
(31)

�(s) = G�f (s)
~�Gf (s) = ��1 diagfF �(s�)�F (s�);��g

(32)
Subsequently, condition (13) is automatically satis�ed be-
cause

� [I2q ��(j!)]�(j!)

�
I2q

�(j!)

�

=F �(j!�)�F (j!�)

��2diagf��1(j!�)�1(j!�)�1; �
�

2(j!�)�2(j!�)�2g

=�1=2(F �(j!�)F (j!�)

��2diagf��
1
(j!�)�1(j!�); �

�

2
(j!�)�2(j!�)g)�

1=2

�0

Therefore, a su�cient condition for robust stability of sys-
tem (1) is the condition (12) which, in our case, becomes

G�� (j!)F
�(j!�)��1�F (j!�)G� (j!)� ��1�+ �I2q � 0;

8 ! 2 (�1;1) (33)

for some (su�ciently small) � > 0, where

G� (s) = C� (sI �A)�1B:

Our next step is to convert the frequency domain con-
dition (33) into the state space. To this end, we denote by
�C� (sI� �A� )

�1 �B� a state-space realization of F (s�)G� (s).
Then, it is straightforward to verify that

�A� =

�
��1Af BfC

0 A

�
; �B =

�
0
B

�
;

�C� =
�
Cf DfC�

�
(34)

Condition (33) can be rewritten as

[ �BT ((j!I � �A� )
�1)� I ] diagf��1 �CT

� �
�C� ;��

�1�g

�

�
(j!I � �A� )

�1 �B
I

�
+ �I � 0

for all ! 2 (�1;1).

Applying the KYP Lemma, the above is equivalent to
the existence of some �P = �P T > 0 such that the following
linear matrix inequality holds:

��(�) =

�
�AT
�
�P + �P �A� + ��1 �CT

� �
�C�

�P �B
�BT �P ���1�

�
< 0

(35)

The above analysis is summarized as follows:

Theorem 3. The time-delay system (1) is robustly sta-

ble for all � � �� if there exist an asymptotically stable

�lter f(s), and symmetric and positive-de�nite matrices

� and �P such that the following LMI holds:

��(�� ) < 0 (36)

where ��(�) is de�ned in (35).

Proof. The proof is very similar to that of Theorem 2, so
the details are omitted. The only step worth of discussion
is the fact that ��(�� ) < 0 implies ��(�) < 0 for all 0 < � �

�� . This step is a bit tedious but not too di�cult to verify
too.

4 An Example

Before providing an example, we address the problem of
�nding a suitable �lter f(s). First, we note that f(s) is
a SISO transfer function, and that the constraint on f(s)
(28) is independent of the system (1). This means that
once a \good" f(s) is found, it can be applied to various
time-delay systems of the form (1). The complexity of
f(s) is mainly determined by the degree of f(s). A second
order example is given below:

f(s) =
2(s+ 0:9)

(s+ 0:8)(s+ 2:216)
(37)

with its Bode plot given in Figure 2.

Also plotted in Figure 2 is j sin(!)=!j to justify (28).

Example: Consider the system (1) with

A0 =

�
�2 0
0 �0:25

�
; Ad =

�
�1 0
�0:1 �0:85

�
(38)

Using Theorem 3 and the f(s), the maximum � is obtained
to be �max = 0:9848.

Obviously, the conservatism of �max depends on the �l-
ter f(s). It is found in simulation that second order �lters
usually outperform �rst order ones. Also, higher order
�lters can be used to obtain slightly larger �max.

Using Theorem 2, the maximum � is obtained to be
�max = 0:6417.

As comparisons, we notice that the maximum � using
the results in [10, 9] is �max = 0:58 while the optimal � for
the system with the given parameters is �o = 1:54[9].

3646



0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

v

Figure 2: Example of f(s). Solid line: jf(jv)j; Dotted
line: j sin(v)=vj

5 Conclusion

We have obtained two new robust stability conditions for
time-delay systems by applying the IQC approach. These
conditions are expressed in terms of LMIs and therefore
easily solvable. Although a single delay is considered in
this paper, we stress that an extension to multiple delays
can be simply derived. Further, we point out that it is
possible to interpret our robust stability conditions in the
time-domain. Subsequently, these conditions can be used
to treat systems with time-varying time-delays.
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