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摘要:针对两个节点集合,提出了一组可定位性条件.可定位性条件包含两部分: 两个集合之间需要的连接边的
数目,以及如何布置这些连接边. 本文将每组节点和它们的内部连接边刻画成一个距离图. 两个节点集合之间的可
定位性判定等同于两个融合图的全局刚性测试.针对两个融合图的可定位性,给出了一系列的充要条件.
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Abstract: We propose a group of localizable conditions for two sets of nodes. The localizable conditions need to answer
two questions: how many edges and where these edges are placed between two sets of nodes. Here, each set of nodes and
their internal connections are modeled as a distance graph. The localizability exploration between two sets of nodes is
characterized by the global rigidity test of two merging graphs. A series of necessary and sufficient conditions on the
localizability of two merging graphs is given.
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1 Introduction
Localization problem is a fundamental and impor-

tant issue among the abundant expected applications of
sensor network[1–2], which include but not limited to
the area of wildlife tracking[3], ocean monitoring[4], in-
telligent factory[5–6], information encryption[7] and the
newly appeared carbon sink[8].

Generally, there are two kinds of methods for ob-
taining the location information: distance-based or
distance-free localization scheme. In this paper, we
will discuss the first category. Note that the localiza-
tion scheme here is a different definition from the range
detection technique. The distance detection or rang-
ing technique usually refers to the technique used for
obtaining the distance measurement. The distance be-
tween the signal source and the target can be measured
by detecting the flight time of radio or ultrasonic sig-
nals[9]. A localization scheme is a strategy to use the
detected distance information to get location informa-
tion.

Localization scheme can be divided into two cases:
sequential scheme and concurrent scheme[10]. For a tra-

ditional sequential scheme, there are at least three an-
chor nodes in a 2D plane and every location unknown
node is required to check if it has three direct distance
measurements with anchor nodes. If so, its location
will be computed by its distance measurements with the
three location known nodes and it will be added into the
set of anchor nodes. If not, it will be treated as unlo-
calizable and its location could not be computed. The
scheme will check all the nodes one by one. For a con-
current scheme, every node will compute its location by
using distance measurement within its neighborhood.
Each node can compute its location synchronously and
they will iterate to the correct location value finally.

For a randomly deployed sensor network, it is prob-
able that not all the sensor nodes are localizable since
the existence of so-called flex and flip ambiguity in the
localization problem[11].

The existing work on localizability are mostly fo-
cused on the localizable conditions of either a whole
network[12] or one single node[13]. The localizability in
both cases are checked from the perspective of the con-
nectivity and rigidity of the graph. The drawback for
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analyzing from the view of a whole network is that they
can only judge whether the whole network is localiz-
able but cannot point out the localizable nodes from a
given network. In practice, a randomly deployed sensor
network is hard to be entirely localizable[13]. The draw-
back from the view of one single node is that it can test
only one node at a time and the condition is not neces-
sary and sufficient. Moreover, connectivity and rigidity
test for both cases need global information.

Neither for a whole network nor for one single
node, our thread is to explore the localizability condi-
tion for a set of nodes. Assume that there is one set of
location known nodes in the whole network. Previous
researchers would analyze the connectivity and rigidity
of every location unknown node one by one. In this
paper, we will collect each single node with its several
neighbors together to build a test set. The set of nodes
and their connected edges form a graph, named a free
graph, whereas the location known nodes form another
graph named the anchor graph. Then, we explore the lo-
calizable conditions between the two graphs. The local-
izable conditions here are try to answer two questions:
how many connections between these two graphs are
required and where should they be drawn. Our prelim-
inary work on this topic also appeared as a conference
proceeding[14].

In this paper, we only consider two cases of the set
of nodes to be localized, in which the number of nodes
to be localized is no more than three. As pointed out
in both [15] and [16], the gap between sufficient condi-
tions of localizability and the commonly used necessary
conditions can be significantly reduced after consider-
ing the jointly localizability of two or three nodes to be
localized. In other way, through introduce an operation
of Henneberger sequence, our sufficient conditions be-
tween two set of nodes can be extended to the cases of
more nodes to be localized in a sequential way.

2 Problem statement and related work
In the localizability exploration, the sensor network

is usually treated as a corresponding distance graph
G(V, E), where V and E stand for the vertex set and
edge set of the graph, respectively. The localizability of
a network can be modeled as the global rigidity of its
distance graph.

A graph is rigid if it could not be continuously de-
formed. One graph may correspond to several kinds of
network realization in practice. If every realization of
the graph with the same distance constraints is identi-
cal, then the graph is globally rigid. A graph is globally
rigid if and only if it is 3-connected and redundantly
rigid. Here, 3-connected means the graph is still con-
nected after removal of any two nodes. Redundantly
rigid means the graph is still rigid after removal of any
edge. If a globally rigid graph could not be globally
rigid after removing any one edge from the graph, it is a

minimally globally rigid graph. We describe these con-
cepts in Fig.1.

Fig. 1 Several concepts of graph rigidity

In this paper, we want to explore the localizable
condition between two sets of nodes. This can be
characterized as the global rigidity test of two merging
graphs, one of which is location-all-known. It can be
mathematically described as below. Given two graphs
G1(V1, E1) containing N1 nodes and G2(V2, E2) con-
taining N2 nodes, we want to draw fixed number of
edges between these two graphs to merge them together
and obtain a merged minimally globally rigid graph
G(V, E) containing all N1 + N2 nodes and edges be-
tween them. Without loss of generality, we assume all
N1 nodes in G1 are location known. Then, we turn
to our question that, when merging G2 onto G1, how
many edges are required and how to draw these edges
between graphs G1 and G2. For simplicity of analysis,
we assume that G1 has only three nodes here and dis-
cuss the several cases of G2 with different number of
nodes and variable edges.

A natural question is why we choose to explore con-
ditions for several specified cases of G1 and G2.

First, two merging graphs G1(V1, E1) and
G2(V2, E2) have variables (V1, E1) and (V2, E2) and
numerous possible combinations, if either of them if
not globally rigid. It is hard to give a generalized con-
dition for merging G1 and G2 and we choose to give
a necessary and sufficient condition for two merging
graphs with specified number of nodes and edges and
also give a necessary condition for two merging graphs
with a variable number of nodes and edges.

Second, we believe the condition for two merging
graphs could be much tighter than the condition for one
node merging with a graph[13] since the interconnection
between nodes in the test graph might eliminate some
degrees of freedom.

Third, for a localization scheme, the main object
is to localize nodes as many as possible even if not all
nodes of the network are localizable. In other words, we
can tolerate an algorithm that cannot find all possible
combinations. There are kinds of ‘easily localizable’
network topology, such as trilateration case in [11] and
‘wheel’ case in [15]. Both cases can find parts of the lo-
calizable nodes through the whole network even if the
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network is not whole localizable. The condition, such as
the one of trilateration, is only a sufficient but not nec-
essary condition. In other words, there are still some
localizable nodes that are not included in that case.

We show an example of graph in Fig.1, which does
not fit trilateration condition but is still localizable. As
mentioned in [15], this kind of deployment is common
for a practical sensor network, especially when nodes
are deployed at the boundary of the sensor network. Its
localizability can be analyzed through the localizable
condition of one single node in [13]. We will explore
the jointly localizability by combining two location un-
known nodes together, which are indicated by solid cir-
cles in Fig.1. We will prove the connections shown as
dotted line in Fig.2 is the unique way for merging this
set onto the location known set by introducing minimal
connections.

Fig. 2 A counter example of 3-connected condition

The algorithm in [17], based on the 3-connected and
redundantly rigid condition, could be used for check-
ing the global rigidity of the network. This condition
is explored in view of the whole network. Using this
condition on a given network graph G, we could de-
termine whether the whole network is localizable but
cannot find out which nodes of the network are not lo-
calizable. The work of [13] analyzed the localizability
of each single node. They give a pair of mutual inde-
pendent sufficient condition and necessary condition for
one single node’s localizability. So far as we know, this
is the closest pair of localizable conditions.

Similar to our set based thread, there are also some
other works focused on the localizable conditions for
the merging of two globally rigid subnetwork[18–19].
Both works are concerned with localizable conditions
between two globally rigid graphs. In this paper, we
also give conditions for the global rigidity of the merged
graph, but only one of the graph is required to be glob-
ally rigid and the other graph’s structure is not con-
strained, which is named as a free graph here. The graph
without promise of global rigidity is also contained in
the range of free graph. This is also our main difference
from the existing work such as [18] and [19].

3 Conditions for localizability of two merg-
ing graphs
In this paper, we propose localizable conditions for

several specialized cases of G1 and G2. Without loss

of generality, we assume G1 has three location known
nodes inside and G2 is the free graph.
3.1 A necessary condition for localizability of two

merging graphs
In a 2D plane, if a graph is fixed on the uniquely

position, it has zero degree of freedom. But if a graph is
globally rigid, it has still 3 degrees of freedom since the
lack of three anchors[12]. These 3 degrees of freedom
correspond to the rotation, translation and reflection of
the graph in 2D plane[20]. Global rigidity is only a nec-
essary condition for uniquely localizable.

Actually, each free node’s movement in a 2D plane
has 2 degrees of freedom and thus there are 2n degrees
of freedom for n nodes. One pair-wise connection be-
tween two nodes could eliminate 1 degree of freedom.
First, we need to figure out how many connections are
required at least to guarantee the global rigidity of a
graph. Then, how many connections are required in
several cases of G1 and G2 with specified number of
vertex and edges.

We first give a lemma about the general case.

Lemma 1 If a graph G with n nodes is globally
rigid, it has at least 2n− 2 edges in the graph.

Proof For a globally rigid graph G containing n
nodes, although relative position between each pair of
node is fixed, it still has 2 degrees of freedom in a 2D
plane as a whole. Since each node in a 2D plane has 2
degrees of freedom, there should be 2n degrees of free-
dom for n nodes if all connections in G are eliminated.
In other words, all the edges in a globally rigid graph
G eliminate at least 2n − 2 degrees of freedom. There
should be at least 2n − 2 edges to guarantee the elimi-
nation of the 2n− 2 degrees of freedom.

3.2 Two nodes cases
As shown in Fig.3, graph G1 contains three anchor

nodes and graph G2 contains two nodes. There is an
interconnected node in graph G2 between edges from
node 4 and node 5. The example shown in Fig.3 is al-
most the same with the counter example shown in Fig.2.
Difference is in the treatment that we package node 4
and node 5 into a set. Though either node 4 or node 5
does not fit the trilateration condition, the merged graph
G is still globally rigid. This is caused by the fact that,
compared with the global rigidity condition for each
single node, the condition for two merging graphs will
be weaken through introducing the interconnections in-
side one of the graphs.

We first answer the question that how many edges
between two graphs are required at least. Through
Lemma 1, there should be at least 4 connections to
merge two graph G1 and G2 together to be a globally
rigid graph.
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Then, we should explore how to draw these 4 con-
nections between two graphs to make the merging graph
globally rigid. Since each node in both graph is iden-
tical, if the link number is limited to 4, it is easy to
exhaust that there are only two possible cases for two
graphs as shown in Fig.3.

(a) (b)
Fig. 3 Two nodes case

Here, we introduce a previous conclusion about
globally rigidity as a lemma:

Lemma 2 [21] A distance graph is globally rigid
if and only if the graph is 3-connected and redundantly
rigid.

Then, we give our condition about the above case:

Theorem 1 Given two graphs, one is globally
rigid G1, containing only three anchors inside, and the
other one G2 is free, having two connected nodes in-
side. The merged graph of G1 and G2 is globally rigid
if and only if there is one node in G1 connected to two
nodes in G2, while the other two nodes in G1 connect
to two different nodes in G2.

Proof (Sufficiency): There are two nodes in G2

and each of them have two connecting edges added.
They have at least one different connected node in G1.
To show the 3-connectedness of the merged graph, we
note that if both nodes in G2 are removed, the remain-
ing graph, which is G1, is connected. If one node in G2

and one node in G1 are removed, the remaining node
in G2 is still connected to G1. To see redundant rigid-
ity, if one connecting edge is removed, the node in G2

not connected to this edge is rigid and once this node is
rigid, the other node is also rigid because of its connec-
tion to the first node and to G1.

(Necessity): There are four edges needed to draw
on three nodes at each side, and every node in corre-
sponding graph is identical. There are only two possi-
ble connected cases if the number of links is fixed at
4, one is shown in Fig.3(a) and the other in Fig.3(b).
From Lemma 2, we could determine the merged graph
shown in Fig.3(b) is not globally rigid since the graph
would not be connected if node 1 and node 5 were re-
moved. Then, only one possible connected case is glob-
ally rigid.

Remark 1 For the case with more than 3 nodes in G1,
the merged graph G is globally rigid if there are 4 anchor nodes
having connections with the free graph, any three of the anchor

nodes is not collinear, and one of the link from the intersected
node in G1 is replaced by a new edge from the 4th node. This
remark could be proved through adding a new node into the
graph in Theorem 1 to build a newly minimally globally rigid
graph.

Remark 2 For the case with more than 4 links be-
tween two graphs, it could be recognized as adding redundant
links after building the minimally globally rigid graph. The
condition we given here is a tight bound for the setup of a
merged globally rigid graph. Without the requirement of mini-
mal links, the sufficient condition still works.

3.3 Three-node cases
As shown in Fig.4, both graph G1 and graph G2

contain 3 nodes. The difference is that there are still 3
degrees of freedom for G2. In other words, the coor-
dination of nodes in G1 is fixed but nodes in G2 could
move in 2D plane ignoring links between two graphs.
Here, the nodes in G2 are pairwise connected and form
a triangle.

(a) (b)
Fig. 4 Three-node case

First, we analyzed possible connected way between
two graphs as shown in Fig.4. For a graph G contain-
ing 6 nodes, according to Lemma 1, there should be at
least 10 edges to make sure the global rigidity. Besides,
6 edges forming two triangles, there still should be 4
more edges between two graphs. An extra constraint
about these 4 edges is that they should be directly con-
nected with 3 anchors in graph G1.

Since there are 4 edges directly connected with 3
anchor nodes, one of three anchors in G1 should have
two direct connections with G2. Without loss of gen-
erality, we assume that node 1 is the one that has two
direct connections with two nodes in graph G2, nodes 4
and 6 as shown in Fig.4. Then, there are only two kinds
of choice for the left two nodes in graph G1. They are
connected to either two different nodes in G2, as shown
in Fig.4(a), or the same node left in G2, as shown in
Fig.4(b).

Now, we prove the previous one is the right choice
to make the formed graph globally rigid. We describe
this result as a theorem as follows:

Theorem 2 Given a graph G1 containing 3 an-
chor nodes, the free graph G2 could be added on G1 to
construct a minimally globally rigid graph G if and only
if the two conditions below satisfied simultaneously.
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1) There are four edges between G1 and G2.
2) One node in G1 has direct connections with two

different anchor nodes in G1, while the other two nodes
in G1 has single connection with two different anchor
nodes in G1.

Proof (Sufficiency): Without loss of generality,
we can construct a merging graph and connecting edges
as shown in Fig.4(a), according to the requirement of
the theorem. As required in Lemma 1, there needs at
least four edges between two graphs G1 and G2. Thus,
it is necessary that each node in G2 has a connecting
edge and one node has an extra connecting edge. There
are either 3 or 4 connecting nodes in G1. There are
two ways to draw these connecting edges between two
graphs. Each of them is shown in Fig.4(a) and Fig.4(b),
respectively. Since our proposed condition also require
two nodes having single connecting edge not to inter-
connect with the same node in G1. Fig.4(b) is except
and only Fig.4(a) fits the requirement. In this case, the
3-connected condition can be visually inspected. To see
the redundant rigidity, we note that if the fourth con-
necting edge is removed, the three nodes in G2 are rigid
because they have 6 edges constraining them. If a differ-
ent edge (connecting or internal) is removed, the node
in G2 with two connecting edges is rigid, which in turn
implies that the remaining nodes in G2 are rigid.

(Necessity): As the analysis before, there are only
two kinds of connections if the number of edges be-
tween two graphs is limited to four. By contradictory,
suppose that there exist a globally rigid graph, in which
connecting edges are the same as shown in Fig. 4(b).
According to Lemma 2, the globally rigid graph G
should be 3-connected and redundantly rigid. If we
remove node 1 and node 5, the merged graph formed
by all 6 nodes will not be connected and therefore, the
merged graph is not 3-connected. The graph shown in
Fig. 4 (b) is not globally rigid and the merged graph
shown as Fig. 4 (a) is the only choice.

4 Extension to more general cases
4.1 Henneberg sequence and vertex splitting

We have shown the localizable conditions when the
number of nodes in the free graph is no more than three.
When the number of nodes in the free graph increases,
we can use a series of Henneberg sequence to extend
our localizable conditions to be suitable for more gen-
eral cases.

BERG and JORDAN[22] have given a constructive
condition on how to build a globally rigid graph begin-
ning with a so-called K4 graph. They pointed out that
every globally rigid graph can be obtained from a K4

graph through Henneberg operations and edge inser-
tions. Jordan and Szabadka[23] show that a vertex split-
ting process can also construct a globally rigid graph.

A basic concept is the K4 graph as shown in Fig.5.

In Fig.5, the left part indicates an realization of a
original K4 graph. One important property of K4 is its
global rigidity. It is easy to check that it is also mini-
mally globally rigid. The other two graphs indicate two
operations of Henneberg sequences, named 0-extension
and 1-extension. The 0-extension, shown in the mid-
dle of Fig.5, adds a new vertex u and edges uv and uw
to two vertex v and w. The 1-extension, shown on the
right, adds a new vertex u and edges uv, uw and ut.
Besides, the edge vw is also deleted. Actually, delet-
ing vt or wt is identical. As defined in [23], a series of
0-extension and 1-extension are named as a Henneberg
sequence.

Fig. 5 The left one is original K4 and the other shows
the process of Henneberg extension

There is an important result in [21] and [1], which
is expressed as a lemma here.

Lemma 3 If a graph G is 3-connected and re-
dundantly rigid, then G can be obtained from K4 by a
sequence of Henneberg operations and edge insertions.

There is also an conclusion in [23] introducing a
newly appeared vertex splitting operation, which can
preserve global rigidity of the graph. Fig.6 indicate the
operation of vertex splitting. For a globally rigid graph
G = (V, E), vertex splitting operation choose any one
vertex, u, and an edge, uv, and then divide u′s neigh-
bors into two parts, V1 and V2. Without loss of gener-
ality, choose the square vertex in Fig.6 as V1 and the
circle vertex as V2. Then, split u into two vertex u1 and
u2. Add edges between u1 and u2. Connect u1, u2 with
V1, V2. The connecting edges between V1 and V2 do
not change. Also connect u1, u2 with v. Then, we can
obtain a new graph G′.

Fig. 6 Vertex splitting operation (square and circle vertex
indicate V1 and V2, respectively)

The result of Theorem 4.5 in [23] can be expressed
as a lemma below.

Lemma 4 If a graph G is 3-connected and re-
dundantly rigid, and then G′, which is obtained from
G by a nontrivial vertex splitting operation, is also 3-
connected and redundantly rigid.
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4.2 Remark on sequential localization scheme
The traditional sequential localization scheme is

based on 3-connected condition. Every node’s coor-
dination is computed by its three neighbors if those
neighbors’ coordination was known. The nodes fit 3-
connected condition is computed one by one. This pro-
cess can be finished in polynomial steps. As we pointed
before, only small part of the network is localizable
according to this way. The case shown in Fig.2 is a
counter example.

We choose a sequential way, and however, we con-
sider a set of nodes rather than one single node at each
step. This will improve the efficiency of the sequential
way and reduce the chance of missing localizable nodes
in the network.

When the number of nodes in the free graph larger
than three, the extended localizable condition still based
on a set of nodes, and therefore, the nodes can also be
localized sequentially.

5 Performance evaluation
In this section, we give a 100-round Monte-Carlo

simulation to evaluate the improvement on detecting lo-
calizable nodes of our proposed conditions compared
with the commonly-used trilateration method. In each
round, we create a randomly-deployed network and use
the trilateration and our proposed conditions to detect
localizable nodes respectively. The network is deployed
in a 100× 100 unit area and the average degree of con-
nectivity in all these rounds are 8.27. The number of
these methods are recorded and shown in Fig.7. To
show the result in a more compact way, we average the
result of every 5 rounds, and thus, there are 20 data in
the horizontal axis. As shown in Fig.7, the solid line
with solid circle mark indicate the detected localizable
ratio by our proposed conditions. The dashed line with
square mark indicate the ratio of localizable nodes de-
tected by the trilateration method. We can note that our
proposed conditions can significantly improve the local-
izability of the network. According to our simulation,
the average localizable ratio of our proposed conditions
and trilateration method are 63.63% and 45.88%. The
improvement of our proposed conditions in localizabil-
ity is about 38.69%.

Fig. 7 Comparison of localizable ratio

6 Conclusions
In this paper, we discuss the localizability of two

merging graphs of nodes. The mathematical tool is
graph rigidity theory. Different from other works, the
analysis object is neither the whole network nor one sin-
gle node, but a set of nodes. We give localizable con-
ditions for several specified cases of the graph. Com-
pared with the commonly-used trilateration method,
ours could reduce the risk of missing localizable nodes.
The proposed conditions can also be extended to more
general cases sequentially when the volume of the set
increases. The analysis of these conditions between
graphs can guide the localization algorithm in future
work. For example, if there are some nodes lying
outside the communication range of anchor graph, we
could amplify the communication power of specified
nodes according to the conditions given in this paper.
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