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Abstract 

This paper deals with t,he problem of regional stabil- 
ity and performance analysis for a class of nonlinear 
discrete-time systems with uncertain parameters. We 
use polynomial Lyapunov funct,ions to derive stability 
conditions and performance criteria in terms of linear 
matrix inequalities (LhlIs). Although the use of poly- 
nomial Lyapunov functions is common for continuous- 
time systems as a way to reduce the conservatism in 
analysis, we point out that direct generalizatioii of 
such an approach to discrete-time systems leads to in- 
tractable solutions because it results in a large number 
of LMIs. We introduce a novel approach to reduce the 
computational complexity by generalizing a result of 
Olireira et. al. on robust stability analysis for discrete 
time systems with paraniet,er uncertaint.ies. We point 
out, that t,he proposed method can lead to less conserva- 
tive results when compared with results using quadrat,ic 
Lyapunov functions. 

1 In t roduc t ion  

The last decade or so has witnessed active research 
work in the area of robust control of continuous-time 
nonlinear systems in the framework of linear matrix in- 
equalit,ies (LhfIs). Design approaches range from using 
quadratic Lyapunov functions ([l, 21) to those based 
on polynomial Lyapunov functions (13, 41). In general, 
non-quadratic Lyapunov functions are less conservative 
for dealing with uncertain and nonlinear systems than 
quadratic Lyapunov functions at  t,he expense of extra 
computation [ 5 ] .  However, most of the robust control 
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results using non-quadratic Lyapunov functions are for 
continuous-time systems. 

The fundamental difficult,?, wit,h non-quadratic Ll-a- 
punov functions for discrete-time systems lies in t,he 
fact t,hat the difference between t,he Lyapunov func- 
tions a t  time k + 1 and k is highly nonlinear. To make 
this point clear, me consider t,he following system: 

x(k+ 1) = A ( x ( k ) : 6 ) z ( k )  (1) 

and the Lyapunov function V ( x , 6 )  = z'P(x:6)1,  
where d represents (constant) uncertain parameters. 
and t.he matrices A ( x , 6 )  and P(z:  6) depend on s and 
6. The Lyapunov function difference is given by t,he fol- 
lowing inequality (which we will refer t o  as a Lyapunov 
inequality): 

V ( z ( k  + 1),6) - V(z (k ) ,6 )  = z ' ( k ) A ' ( x ( k ) : 6 )  

P(A(z (k ) ,  6)x(k), 6 ) A ( s ( k ) ;  6)x(k) ( 2 )  
-z ' (k )P(x (k ) ,  +(k)  

which is typically a highly nonlinear function of s ( k )  
and 6. In  contrast. if we considered a similar 
continuous-time system 

i ( t )  = A(x(t) ,6)z( t )  (3) 

and a similar Lyapunov function, we would have t,he 
derivative of t.he Lyapunov function given by the fol- 
loniog Lyapunov inequality: 

V ( x ( t ) , 6 ( 6 ) )  = (A'(z ,6)P(z ,6)  +P(z16)A(z,6) 

where x, is the i th element of x and e, is the i th  col- 
unui  of an identity matrix. It is obvious from the above 
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that the continuous-time case involves much less cou- 
pled nonlinear terms, especially when P(z ,  6) is chosen 
to be in a simple form (e.g., affine in z and 6). 

The approach used in this paper is motivated by the 
work of Oliveira et .  al. [G] which proposed a new test 
of stability using LhlIs for linear discretetime systems 
vi th  parameter uncertainties. This approach was ex- 
tended to performance analysis (71. In this approach, 
the system matrix and the Lyapunov matrix are as- 
sumed to be affine in uncertain parameters, i.e., A(6) 
and P(6) are used and they are affine in 6. The Lya- 
punov iiiequality is modified by introducing an auxii- 
iary matrix [GI. The key feature of this auxiliary matrix 
is that it separates t,he system matrix A(6) from the 
Lyapunov matrix P(6),  thus significantly reducing the 
nonlinearity. Further, the resulting inequality can be 
expressed as a linear inat.rix inequality which is &ne 
in 6. This allows easy verification of robust stability 
and performance. Althnugli one can think of many 
possible auxiliary matrices with the above feature, the 
pardicular one int,roduced in [GI appears to be excellent 
in ternis of the conservatism it brings. In particular, 
if one resorts to a quadratic Lyapunov function, i.e., a 
constant, P mat,rix, t.his auxiliary matrix does not bring 
an? conservatism. 

\\e point out that there are other approaches to ro- 
bust stability and performance analysis for discrete- 
time s>-stems. For example, the work of Iwasaki in 
IS] uses non-quadratic Lj-apunov fuiict,ions for analyz- 
ing the global and regional stability of a class of LTI 
systems ~ i t h  a nonlinear (or uncertain) feedback con- 
nection (Lur'e like systems) satisfying a sector bound 
conditioii: and Tuan et. al. 191 considers parameter- 
ized Lyapunov functions for nonlinear discret,e H, con- 
trol of quasi-LPV systems, i.e. systems described by 
s(k t 1) = .4(8(z(k))z(k) \\-liere the state-dependent 
parameter B ( z ( k ) )  E 0 with 0 being a given poly- 
tope. Note ihat t.liese works consider different mod- 
elling tecliniques in order to use t,he LAII tools devel- 
oped for linear systems (or LPV systems). In spite of 
tlie fact that both ox-ercome the problem caused by the 
rerm A(z(k) ,6 )  P(A(z(k),6).4(x(I;),6), dhey still have 
some shortconiings. Namely, [8] treats a restricted class 
of nonlinear syst,eins; and tlie approach in (91 is compu- 
tationall>- feasible only for systems ~vit.11 a small number 
of nonlinear terms. 

The purpose of this paper is to devise a technique to 
analyze regional stabilit,y and performance for a class 
of nonlinear discrete-time systems with uilcertain pa- 
rameters. We employ polynomial Lyapunov funct,ions 
and give stability and performance conditions in terms 
of linear matrix inequalities. But suitable Lyapunnv 
inequalities will be used to simplify numerical conipu- 
tat.ions, wbich is done by generalizing the work of [GI.  
We will consider the regional stability analysis problem 

first. This will be followed by output performance anal- 
ysis, where the system has zero input hut with a nnn- 
zero initial condition, and input-output performance 
analysis, where the system has zero initial condition 
but with a non-zero input. In this paper, n e  omitted 
proofs and numerical examples because of space limi- 
tation and they are available in the full version of this 
paper [lo]. 

2 Problem Sta tement  

Consider the following class of discrete-time nonlinear 
systems: 

z+ = A(z ,  b)z ,  z+ = z(k + l), z = z(k)  ( 5 )  

where z E W"= is the state vector, 6 E A C denotes 
the vector of (constant) uncertain parameters, and the 
system matrix A(z ,  6) is allowed to depend on 3: and 
6. It is assumed in the sequel that A is a polyt.ope and 
that A(x ,  6) is a cniit.inunus function in Wn* x A. 

The problem of concern in this paper is to determine a 
region in the st,ate space in which robust stability and 
performance of system ( 5 )  is guaranteed. To this end, 
we first introduce the notion of domain of attraction. 

Given a region R c E%"=, we say R a domain of attmc- 
tion for system ( 5 )  if for every z(0) E R and 6 E A, the 
trajectory z remains in R for all I; > 0 and approaches 
the origin as I; - CO. 
We have the following basic result: 

Lemma 1 Consider system (5). Let V ( z ; S )  = 

z 'P(x ,6)z  be a given Lyapunov function candidate, 
where P(z :6)  is a matriz function of (z,6). Define 
a region in the stale space as follows: 

X P {z E E%"' : z'P(z,6)z 5 1, V 6 E A} 

Suppose there exist positive scalars €1, €2:  €3 such that 

(G) 

€lZ'Z 5 z'P(x,  6)z 5 t2z'z (7) 
z' (A"P(x+,,6).4 - P(z ,6) )  z 5 --t3z'x ( 8 )  

f o r a l l ( z , 6 ) E X x A ,  w i t h 2 4 = A ( z , 6 ) .  Then, V(z16) 
is  a Lyapvnov function in X and X is a domain of 
attraction for  system (5). 

A possible approach to simplifying the product term 
A(z, 6)P(z+. 6)A(z ,  6) is to use the idea of Schur com- 
plement, which converts (8) to the following condition: 
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for all ( x , 6 , y )  E X x A x R"=, with A = A(x,6) ,P = 
P(x,6) ,P+ = P(x+,6).  The stability conditions (8) 
and (9) can be seen as equivalents by noticing t.hat the 
maximizing y for the left hand side of (9) is given by 
y = A ( x ,  6)x. With this choice of y, the two inequalities 
are the same. 

The conditions (7) and (9) are still very complicated to 
check because of two problems: 1) Coupling of A ( x ,  6) 
and P(x+,6)  still gives high nonlinearity: 2) Checking 
the conditions over X x A is highly nontrivial. These 
are the problems we will address in the next section. 

3 Pre l iminary  Resul t s  

We give two results in this section. The first one, 
Lemma 2, is a nonlinear version of a result. in 161 which 
aims to remove the coupling between the system and 
Lyapunov matrices. The second result, Lemma 3, gives 
a way to remove the nonlinear dependence on x in the 
conditions (7) and (9) by a relaxation technique. 

Lemma 2 Consider system (5) and V ( x , 6 )  and X 
as defined in Lemma 1 .  Suppose (7) and the follow- 
ing inequality holds JOT some auxiliary matrix function 
G(x,6):  

for all ( x ;  6, y) E X x A x R"=, with G = G ( x :  6 ) .  Then, 
V ( x , 6 )  is a Lyapunov function in X and X is a domain 
of attraction for system (5). 

The conservativeness of Lemma 2 lies in the choice of 
t.he auxiliary matrix function G(x:6) .  Observe that 
we can recover Lemma 1 by considering G ( x , 6 )  = 
P(x+,  6). But this choice of G(s: 6) leads to a compli- 
cated condition. Consequently, we will have a compro- 
mise between the conservatism and complexity when 
choosing G(s ,  6). 

We note that when .4(2,6),P(z,6) and 5(x ,6 )  do not 
depend on x ,  the result above reduces to a result in 161. 

Next, we aim t,o remove the dependence on x in condi- 
tions (7) and (10). To this end, ne use a version of the 
well-known Fiosler's lemma (see, e.g.: Ill]): 

Lemma 3 Consader the following nonlznear m a t m  in- 
equalzty: 

7 ~ )  > 0,  7 ~ )  = m', v E E 2, (11) 

where E E R", denotes a generzc parameter (that can 
represent the state or  uneertazntzes), the m a t m  T ( ( )  t 

R""""" is a nonlinear function o f F  and 'D c R"C is a 
polytopic region with known vertices. Suppose T(5) can 
be decomposed LIS follows: 

7(5) = M ( E ) ' T M ( O  (12) 

where T E Rm"xm" is a constant matrix, M ( < )  E 
Rm"X"" is a nonlinear matrix function o f t  with the 
property that 

for some E(<) E RmCxm~ which is an afine m a t e  
function of E .  Then, (11) is satisfied if there exists a 
constant matrix L such that 

E(E)M(E) = 0 (13) 

T + E(<) + E(<)%' > 0 (14) 

at all vertices of'D. 

We point out t.hat the decoi~~positioo conditions (12)- 
(13) are very general and can be satisfied for many 
nonlinear systems. 

4 Stabi l i ty  Analysis 

\Ve are OOUV ready to derive the main results of t,his 
paper. This section deals xi th  the regional stability 
analysis problem, mliere~az the next tn-o sections study 
performances. 

In order to apply t.he results in the pre\-ious sect,ion, 
we need to re-parameterize the system model ( 6 )  and 
choose Lyapunov matrix function and the auxiliary ma- 
trix funct,ion accordingly. These are detailed below. 

System Model  Representat ion 
We furt,her assume that system ( 5 )  can be decomposed 
as follows: 

(15) 
x+ = A(x ;6 ) z  = dII (x ,b)x  

0 = n ( x , 6 ) I I ( x , 6 ) , Q n ( x , 6 )  = I,,= 

where d E R n r X " ~  and Q E RnrX"- are consaant ma- 
trices, n ( ~ ,  6) is an affine matrix function of (x? 6), and 
I I (x ,6)  is a nonlinear matrix function in ( x , 6 ) .  

\ire again point, out that many noiilinear systems can 
be decomposed as above, see 1101 for an illustrative 
example. However, the representation (15) of ( 5 )  is not 
unique and this fact may be a source of conservatism 
(See, e.g., 1121). 

Lyapunov Funct ion Candidate 
ti'it,h the decomposition of the system as in (15), we 
may choose the Lyapunov mat,rix function in t,he fol- 
lowing form: 

2677 



where P(6)  = P(6)' is an affine matrix function of 6, 
and O(z) E RneX"= is an affine matrix function of x ,  
both to be determined. 

Observe from lemma 2 that we need to compute the 
following matrix: 

To this end, we require the following constraints on 
Q(z) and Q(z+): 

[ ] = FII(z ,6)  = [ 
= H I I ( s , 6 )  = [ 

] II(x,6) (17) 

] II(z,6) (18) 

where F1. H1 t RnB""" are constant matrices 

Auxiliary Matrix Function O(x,6) 
\\'e choose the auxiliary matrix function G(x,6) to be 
of the following form: 

G(z, 6 )  = n'(s, 6)G(6) (19) 

where G(6) E Rn-xn= is an affine matrix function of 6 
to be determined. 

Estimating the Domain of Attraction 
IVith the decomposition of the system model and con- 
straints on Lyapunov matrix function and the auxiliary 
matrix function, we can rewrite inequality (10) as fol- 
lows: 

for all ( x , 6 , y )  E X x A x R"*, where P = P(6),G = 
G(6), ua = II(x,6)a:  and U* = I I (x ,6)y .  

In order t,o apply Lemma 3, we also need a polytopic 
bounding set X for X. tVe will require (20) to hold for 
all x t X instead of X .  Hence, we want to choose 2 
to he reasonably close to X to reduce conservatism but 
having a small number of vertices so the resulting con- 
ditions are easy to check. A possible way t.o achieve a 
good compromise is to define the shape of the hound- 
ing set and use a parameter t o  control its size. This 
parameter can then be adjusted through iterations t.o 
obtain an optimal size. But for the discussion in the 
sequel, we iLSsume that the bounding set X is given. 

Without loss of generality, we assume that the bound- 
ing set is represented in terms of the following con- 
straints: 

R = { z : a ; s < l , j = l  , . . . )  n e }  (21) 

where a3 E Rn* are given vectors associated with the 
ne edges of 2. 
Using the S-procedure (See, e.g. [ll, Sections 2.6 and 
5.2]), the condition X C X is satisfied if the following 
inequality is satisfied for all j :  

2 (1 - a i x )  + z ' ~ ( x , 6 ) a :  - 1 2 o (22) 

Taking into account the structure of P ( z ,  6) in ( l @ ,  we 
can rewrite (22) ns follows: 

for j = 1 , .  ..,ne, where 0 = O(x).  In order to ensure 
that the Lyapunov matrix function P ( x , 6 )  in (16) is 
positive definite for all x E X ,  we apply lemma 3 and 
obtain the following condition: 

where L is a free matrix to be determined and 

In order to maximize the volume of X ,  rve normally ap- 
proximate it by minimizing the trace of the Lyapunov 
matrix. However, P ( x , 6 )  is a nonlinear function of 
(z,6) that leads to a non-convex condition. To over- 
come this problem, we will approximate the volume 
maximization by 

min may trace (P(6) + L P l ( x )  + L'Pi(x)) (26)  
rEX,6EA 

Now, with above analysis we can state the following 
theorem which gives a convex solution t o  the regional 
stability problem for system (5) in terms of LMIs. 

Theorem 1 Consider the system (5) as decomposed 
in (15). Let O(x )  be a given afine matrix function 
of x satisfying (17) and the Lyapunpv matrix function 
P ( x , 6 )  be in the form of (16). Let X be a given bound- 
ing set as in (23). Define PI(x) as in (25) and 

Suppose there eaist afine matrices G(6) and P(6) and 
constant matrices I,, N and Ai',, j = 1, .  . . ,ne solving 
the following linear matrix inequalities a t  all vertices of 
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X x A :  

minq subject to: 

q -trace P + L V ~  + v;L') 2 0 

P t LV, + *: L, > 0 

(28) ( 

(31) 

I + 

N l z  t q i N '  < 0 

where P = P(6) ,G  = G(b),,C'] = * ~ ( z )  and VZ = 

q g ( x , 6 ) .  Then, V(z,6) = z P(z ,6)z  is a Lyapunov 
function in X and X is a domain of attraction for sys- 
tem (5) .  

Theorem 2 Consider system (5) and (32) and a g i v y  
level of performance A > 0. Let O(z), P(z,6), X, 
Vl(x) and *z(x,6) be the same as in Theorem 1. Sup- 
pose there ezist afine matrices G(6) and P(6) and con- 
stant matrices L, N and M,,j = 1,. . . ,ne solving the 
linear mqtrix inequalities (28)-(30) pnd (35) at all ver- 
tices of X x A. Then, V(z, 6 )  = I P(z ,  6)s is a Lya- 
punov function in X and X is a domain of output per- 
formance with level A.  

6 Input-Output Performance Analysis 

Consider the following system: 

(36) z+ = A ( z ( k ) , 6 ) z ( k )  + b ( z ( k ) , J ) ~ ( k ) ,  
z(k) = e(z(k),&)z(k) + d(s(k),J)w(k) 

where z(0) = 0, w E W is the input disturbance sig- 
nal, W = {U : w E CT"',Ilwl/p 5 l}, 6 E A, and 
b(z, 6 ) ,  d(s, 6) are nonlinear functions of z and 6 with 
appropriate dimensions. 

5 Output Performance Analysis 

In this section, we consider the analysis problem where 
we require the region X to satisfy certain output perfor- 
mance in addition to robust stability. More specifically, 
we add to the system ( 5 )  the following output signal: 

z ( k )  = e ( z ( k ) , 6 )  (32) 

where z E W". and e(z, 6) can be decomposed as fol- 
lows: 

where E is a constant matrix and II(z, 6) is as in (15). 

Given a region R c R"* and a level of performance 
X > 0, we say R a domaan of output performance (with 
level A) if R is a domain of attraction and in addition, 
/Iz(k)l/f < X holds for all trajectories of z ( k )  and all 
6 E A, provided s(0) E R. 

To accommodate the extra performance requirement, 
we need to return to Lemma 1 and modify (8) to the 
following : 

e(z ,  6) = EII(z, 6)s (33) 

z' (A'P+A - P )  z + X- ' i z  I --c~z'z, (34) 

for all (z,6) t X x A, where 4 = A(z,6) ,P = P(z,6)  
and P+ = P(s+,6). To see this, we note that the 
condition above (together with other conditions in 
Lemma 1) implies that X is a domain of attraction and 
/lzllf < XV(z(O),S) 5 X for all z(0) E X and 6 E A, 
since V(z(O),S) 5 1. 

Given a region R c R"= and a performance level y > 0, 
we say R a domain of CZ performance (with level y) 
if for any w E W and z(0) = 0, the traject.ory z(k) 
stays in 'R at  all k 2 0, z ( k )  --t 0 as k + CO, and 
ll+ 5 ~ t l ~ ' 1 1 2 .  

Consider t,he region X, with the following definition 

X, d {z : z E W"', / P ( s , 6 ) z  5 c, 6 E A} (37) 

To ensure that X, is a domain of C? performance, we 
again modify (8) but to the following: 

I . I  

V(z+, 6 )  - V(z, 6 )  + y-'z z - 'w 'w 5 €32 '2  (38) 

for all 5 E A and w E W ,  with the additional constraint 
X, c 2. To see this condition (along with other coli- 
ditions in Lemma 1) guarantees that X ,  is a domain 
of Cp performance, we add up the inequalit,y (38) from 
k = 0 to  N to obtain the following: 

V ( z ( N  + 1),6) + go ( I - 2 z ' ( k ) z ( k )  + E 3 Z ' ( k ) Z ( k ) )  

5 C L W  (k )w(k )  5 1 

This implies that V ( z ( k ) , 6 )  5 c < 1 for all k 2 0, 
i.e., z ( k )  E X,. This also implies that IIzlp 5 y/ /ul lp .  
Further, z ( k )  - 0 as k i cdbecause of (38) and the 
fact that w ( k )  + 0 as k + CO. 

The modification above leads to further modification in As in the previous sections, u.e need to decompose the 
Theorem 1, i.e., we need to change (31) to the following: 

H'PH - G& - Q'c'  ] (35) 

system (36). Let A(z,6) and e(z ,  6) be decomposed as 
in (15) and (33). In addition, we require 

A - I E ' E - F ' P F  A'G' 
b(z,6) =B@(z ,6 ) ,  d(z,6) = D@(z ,6) ,  

(39) 
A ( Z , ~ P ( Z , ~ )  = 0, Q~Q(z,~) =In_ + N q 2  + P;N' < 0 

[ G A  
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where B E an= xp4, D E RnS Xn4 and Q2 E Rn- are 
constant matrices, A(%, 6) E JRnAXn' is an affine matrix 
function of (z,6) and Q(z.6) E R"*x"w is a nonlinear 
matrix function of ( x , 6 ) .  

Also, we need to modify (18) to the following: 

where w, is the ith element of tu and Ji (for i = 
1,. . . , nu) are constant matrices. 

We then have the following result 

Theorem 3 Consider system (36) with the decompo- 
sitions as given aboue. Let y > 0 be. a given level of C2 

performance. Let O(z), P(z ,6) ,  X and 91(z) be the 
same as in Theorem 1. Define 

93(1,6) = diag (12, 12, A, R , .  . . , 12) (41) 

1 rll A'G' rI3 o 

r;, B'G' r3, o 
o r;, o r44 
Gd r22 GB '" + N Q 3 + 9 : N '  < 0 ( 4 3 )  

r rll A'G' rI3 o 1 
Gd r22 GB '" + N Q 3 + 9 : N '  < 0 ( 4 3 )  r;, B'G' r3, o 

o r;, o r44 
where rll = -F'PF + Y - ~ E ' E ,  rI3 = T - ~ E ' D ,  

rZ4 = H ' P ~  + R ~  ... H'PJ,,~, I .  
r22 = H ' P H  - QG' - GQ + C:'lS,, 

r33 = -Q;Q2 + y-'D'D, r44 = [Tijj - diag{Si}, 
~ i j  = J ~ P J ,  ( i , j  = I , . .  . ,ne,)- P = P(z - ,~ ) ,  
G = G(z,6), 12 = n(Z.6), A = A(z,6), 3 1  = 4i(z) 
and 93 = 93(x;6). Suppose there exist a scalar 
c: &ne matrices G(6) a ~ d  P(6),  and constant 
matrices Si > 0, R, = -R,, i = 1,. . . , n u ,  N and 
M,,j = 1,. . . , ne  solving the following optimization 
problem at all vertices of d? x A. 

max c subject to: (42) and (43) 

Then, V ( x , 6 )  = x"P(x ,6 )x  is a Lyapunov function in 
X, and X, is a domain of C2 performance with level y. 

7 Concluding Remarks  

This paper has generalized the result of [6] to deal with 
the problem of regional stability and perforn~ance anal- 
ysis for a class of nonlinear uncertain discrete-time sys- 
tems. \$'e have used polynomial Lyapunov functions to 
reduce the conservatism in analysis. In order to make 
the computations feasible, we have applied a decompo- 
sition technique t,o both the nonlinear system and the 

Lyapunov function. We have considered three analysis 
problems: domain of attraction, domain of output per- 
formance, and domain of C2 performance. Future re- 
search will be concentrated on extending the proposed 
technique to control design problems for nonlinear un- 
certain discrete-time systems. 
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